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Abstract 
Today, the rapid development and growth of hardware, network technology, and various types of smart 

devices that can connect to the Internet and send and receive data have led to the emergence of a new 
technology called the Internet of Things (IoT). Using IoT technology, many objects in our environment are 
connected to the Internet and can be managed and controlled through applications available on smartphones 
and tablets. Service-oriented architecture has been successfully applied in various fields, including grid 
computing, cloud computing, wireless sensor networks, automotive networks, and the IoT. Service-oriented 
architecture is an architecture style that supports the loose coupling of services, enabling business flexibility 
and interoperability independent of technology. It consists of combining a set of business-based services. 
Since a single service may sometimes fail to meet user needs, industrial organizations prefer service 
composition to create more complex composite services. The problem of combining IoT services with respect 
to their Quality of Service (QoS) involves finding a set of candidate services with different non-functional 
characteristics that satisfy user-specified constraints and optimize an objective function. Thus, combining 
IoT services based on their QoS is classified as NP-Hard. This paper uses the bee colony optimization (BCO) 
algorithm to solve the problem of IoT service composition. The results of the simulation on the QWS dataset 
in the MATLAB 2019 environment show that the proposed method outperforms the genetic algorithm (GA) 
and the particle swarm optimization (PSO) algorithm. 
Keywords: bee colony optimization algorithm, Internet of Things, service composition, service quality 

1 Introduction 

The advent of the Internet of Things 
(IoT) has significantly improved efficiency 
and productivity in smart environments, 
albeit with associated costs [1, 2]. The IoT 
is crucial in meeting user needs with a 
combination of services [3, 4]. When 
objects are interconnected, we can talk 
about an intelligent environment. The IoT is 
a natural extension of intelligent 
convergence that creates smart convergent 
environments by integrating numerous 
intelligent objects with diverse capabilities 
[5, 6]. 

The IoT and composite services 
have made trade and information exchange 
more dynamic than ever. The IoT offers 
new opportunities for developing software 
that integrates real-time operations in the 
industry [1]. While web services serve a 
similar function, industrial companies must 
consider user requirements, which has 
created composite services to bridge this 
gap. Quality of service (QoS) criteria vary 
with user needs, and combining services 
optimizes these criteria [7]. Users typically 
have two types of requirements: functional 
and non-functional. These are often 
formalized in a contract between the user 
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and the service provider, which legally 
binds the provider to meet the customer's 
needs. These user requirement constraints 
are specified during the implementation 
phase of composite services [8]. To achieve 
value and production activities with an 
extra return, it is necessary to consider the 
QoS composition [3]. 

Research has been extensive in the 
IoT field, covering middleware, routing [9], 
and data quality [10]. However, 
comparative studies on composite services 
in the IoT remain underexplored. Due to the 
IoT applications, devices in which the IoT 
is used are distributed across very dynamic 
environments. Where communications are 
unreliable, service interruptions may occur. 
Therefore, devices must be evaluated based 
on energy, communications, and 
computational capabilities. Security is an 
indispensable factor in improving the IoT. 
It encompasses four laws, i.e., the laws of 
perception, networking, support, and 
software, as well as other issues, e.g., 
management key, security strategy, and 
security regulations. In addition, trust 
management is vital in the IoT. A major 
challenge in service composition is 
selecting the most appropriate service 
instance from available options, which is an 
abstract function of service composition 
[11].  

The IoT faces numerous challenges, 
but the challenge dealt with in this research 
is service composition. In the contemporary 
world, users are preoccupied with access to 
their target needs or services. When the user 
request is so that a single service cannot 
meet it, services are combined to optimize 
responses to user criteria [3, 13]. The main 
issue in service composition is selecting the 
best service among those that perform 

equivalent tasks but differ in quality criteria 
such as response time, cost, reliability, and 
system availability [1]. QoS and its 
paramount significance in service 
composition are the most crucial challenges 
in this field. Combining services is an NP-
Hard problem, and using genetic algorithms 
for optimal service selection [14] is 
inefficient due to slow convergence and 
poor local search. Therefore, the bee colony 
optimization (BCO) algorithm has been 
used to address this issue. 

This paper chiefly focuses on IoT 
service composition using the BCO 
algorithm. It is important how to use 
services. In some cases, it is necessary to 
combine services to meet complex user 
needs. Service composition aims to ensure 
reusability and interoperability by 
organizing existing services [8]. The choice 
of service composition is driven by the 
increasingly complex needs of modern 
societies, which are addressed through this 
approach. The main contributions of this 
paper are as follows: 

 Solving the problem of combining 
IoT services using the BCO 
algorithm 

 Evaluating the proposed method on 
the QWS dataset 

 Examining the proposed method 
based on convergence and fitness 
function 

 Comparing the proposed method 
with a genetic algorithm (GA) and 
the particle swarm optimization 
(PSO) algorithm 

 
The paper is organized as follows. 

Section 2 reviews previous studies on 
quality of service using different models. 
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Section 3 explains the steps of the proposed 
method. Section 4 reports the results of 
evaluating the proposed method. Finally, 
Section 5 discusses the concluding points 
and lists suggestions for future work. 

2 Literature Review 

This section reviews previous 
studies on service composition in the IoT. 

A QoS-aware service composition 
approach that exploits a novel bat algorithm 
(QC-NBA) has been proposed in [15]. 
Unlike many service composition 
approaches, the NBA method improved the 
mechanisms of exploring and exploiting the 
composition search space using quantum 
techniques. The QC-NBA algorithm was 
evaluated using the QWS dataset, which 
consists of 2507 services described by nine 
QoS attributes. The performance of the QC-
NBA algorithm was enhanced in terms of 
execution time and composition quality. 
Simulation scenarios showed that the QC-
NBA approach achieved good composition 
in terms of QoS application. 

In [16], a method based on the ant 
colony optimization algorithm has been 
proposed for service composition. In this 
method, artificial ants collaborate to find 
the optimal solution. Pheromone 
information (chemicals that real ants leave 
behind when they move along a path) is 
assigned to the edges of a graph. Artificial 
ants in this algorithm travel through the 
graph, searching for suitable paths 
following pheromone and discovery 
information. The amount of pheromone on 
each edge evaporates by a certain amount in 
each iteration. The pheromone levels 
contained on the edges are also updated 
based on the paths traveled by the ants. 
Artificial ants are usually integrated with a 

list that stores their previous activities. They 
may perform additional operations (e.g., 
local search, crossover, and mutation) to 
improve the quality of the results. In this 
method, artificial ants move on a graph to 
create composite services. In this graph, 
each node represents an IoT hub, and edges 
connect these nodes. Each ant chooses its 
path based on pheromone and discovery 
information. The more the number of ants 
that pass through a path, the more the 
pheromone accumulates on that path, 
increasing the likelihood of its selection by 
subsequent ants. The pheromone 
degradation value ranges between zero and 
one. This method is applied iteratively to 
find suitable solutions. The ant colony 
algorithm has several advantages over the 
GA, including positive feedback and 
distributed computing. Another advantage 
is its efficiency in finding the right 
combination compared to other algorithms. 
However, a disadvantage is workload 
imbalance. 

In [17], a method has been presented 
for service composition, where service 
centers are sorted in descending order based 
on the number of services they offer. This 
sorting helps quickly select the center with 
the most services first. The algorithm then 
checks which services from this center can 
help meet the user's needs. If no suitable 
service is found, it moves to the next center, 
checking its services without including it in 
the list of suitable centers. This continues 
until the user's needs are met. Once a 
suitable service center is found, it is added 
to the composition list. If all the user's needs 
are not met by the services in a center, the 
next center is selected. If two centers are 
similar in conditions, i.e., they have the 
same number of services, one is chosen 
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randomly. Typically, the center with the 
lower number is selected first, but if it is the 
second choice, the center with the highest 
user quality criterion is selected. The 
advantage of this method is that it finds the 
appropriate composition with the fewest 
centers needed to meet the user's needs. 
However, the disadvantage is that it does 
not distribute the workload evenly among 
the providers. 

In [18], a method called cloud-based 
service composition has been introduced, 
where all possible solutions involving 
different cloud compositions are considered 
recursively. The algorithm examines all 
compositions to find a suitable solution. 
The idea is to first consider compositions 
with one cloud, then those with two clouds, 
and so on, until compositions that include 
all clouds in the multi-cloud environment 
are considered. This algorithm can find the 
appropriate cloud composition that includes 
the fewest clouds necessary to meet the 
user's request. However, the algorithm is in 
the worst condition in terms of complexity 
since it examines all possible compositions. 
For each ci cloud, where i is a value between 
[0, n], there are ci

n different cloud 
compositions. Each cloud has services, and 
these values are summed together. 

In [1], a method based on a GA has 
been presented for combining services in 
the IoT. In this algorithm, when a user 
request is received, several resources are 
nominated for each task. From these 
resources, the one that best satisfies QoS 
criteria such as execution time, cost, 
reliability, and availability is selected. QoS 
criteria describe non-operational 
characteristics such as reliability and cost. 
The candidate resources for each request 
perform the same task but have different 

quality criteria. The main question for each 
composite request given by the user is to 
select a service that improves the user's 
knowledge and satisfies the user's requested 
QoS criteria. In this method, the algorithm 
[19] first generates an initial population and 
then iteratively tries to find the appropriate 
solution. In each iteration, the individual 
fitness value is calculated for each resource 
to check the efficiency of each solution, and 
a new population is generated through 
selection, crossover, and mutation 
operations. This process is repeated until 
the convergence criteria are met. The QoS 
criteria are divided into two parts: positive 
and negative. The response time and cost 
are in the negative part, and reliability and 
availability are in the positive part. All these 
four criteria are considered for each 
resource. Then, all the services are 
combined and encoded, and each gene in 
this list encodes a single service for each 
task. The initial population is randomly 
selected for the GA. In the selection 
operation, the probability that a resource 
with a certain fitness value is selected from 
the population is examined. In the crossover 
operation, some pairs of possible solutions, 
or resources categorized in different lists, 
are randomly selected and combined to 
reproduce new solutions. In the mutation 
operation, a resource from one list is 
selected and replaced with another resource 
from a different list. The GA is based on 
generating an initial population suitable for 
the hybrid model considered for this 
method. By imitating the principle of 
natural selection, less suitable roots have a 
lower chance of survival. 

In [20], a clustering-based method called 
CL-ACO has been proposed. This 
algorithm is based on clustering along with 
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the ant colony algorithm. Hierarchical 
clustering (tree) is used for clustering 
services, which reduces time complexity. 
The main goal is to provide a set of 
individual services with the highest ability 
to combine, which allows for responding to 
complex user requests. Criteria considered 
include accuracy, selection of appropriate 
compositions, and reduction of response 
time. This algorithm consists of two parts. 
In the first part, called publication, the 
provider interprets the services using a 
semantic model with the OWL-S standard 
and publishes them in the semantic 
network. The generated services are then 
added to similar clusters simultaneously 
with their publication in the semantic 
network. The second part involves the 
client's actions, where the client first makes 
a request to the system, including defined 
inputs and outputs. Next, the user request 
along with the clusters at the root of the tree 
is compared using a matching algorithm. 
The clusters most similar to the user request 
are selected. The client request is then 
compared with the children of the selected 
cluster. This process continues until the 
leaves of the tree structure, representing the 
available services, are reached. In this 
method, the number of ants is equal to the 
number of services. The ants are placed on 
the nodes of the graph where the initial 
services are located. All the ants then start 
to traverse the graph and select the edge 
with the highest similarity degree and better 
conditions in terms of non-operational 
characteristics for traversal. 

In [21], a particle swarm algorithm 
method has been proposed, combined with 
another hybrid optimization algorithm 
initially proposed as the Hungarian 
algorithm and later developed as the 

Munkres algorithm by Harold Kuhn in 1955 
[22]. The Munkres algorithm is applied to 
10% of the particles after each iteration of 
the particle swarm algorithm. One particle 
is randomly selected, and 10% of the 
workflow is also randomly selected to run 
the Munkres algorithm in this iteration. If an 
improvement is obtained after using the 
Munkres algorithm, those specific particles 
are updated with the workflow 
optimization, and the next iteration 
continues. However, the fitness value is 
only about 80% of the optimal value, so it 
can be used for services simultaneously. 
There is a balance between the fitness value 
and the runtime. The composite time 
complexity is a drawback of the Munkres 
algorithm, and premature convergence is a 
drawback of the particle swarm algorithm. 
By combining these two algorithms, a 
balance is achieved between these 
drawbacks. 

In [5], the typical features of CMFG 
have been analyzed, and the 
implementation of the entire service 
composition life cycle has been discussed. 
Several key issues for service composition, 
such as modeling, evaluation, and selection 
optimization, have been studied in detail. 

3 The Proposed Method 

This section presents the proposed method 
in two parts. The first part defines the 
service composition problem in the IoT and 
provides relevant definitions. The second 
part discusses the BCO algorithm for 
service composition in the IoT. Figure 1 
depicts a flowchart of the proposed method. 
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3.1 Problem definition 

The problem of combining IoT services 
based on their QoS involves finding a set of 
candidate services with different 
performance characteristics. The goal is to 
satisfy the constraints specified by the user 
and optimize an objective function. This 
section asserts this problem. A sample IoT 
service composition based on their QoS can 
be expressed as follows. A service 
composition request is modeled as a 
workflow using a directed acyclic graph 
(DAG) as G = (V, E) in which V = {T1, T2, 
…, Tn} denotes the number of tasks (n) in 
the workflow and E represents the set of 
edges indicating task priority. 

Each task (Ti) (1 ≤ i ≤ n) in the 
workflow has a set of candidate services 
CSi={CSi

1,CSi
2,...,CSi

mi}, where CSi
j (1 ≤ j ≤ 

mi) is a candidate IoT service. Parameter mi 

represents the total number of candidate 
services available for task Ti. Each 
candidate service CSi

j has a set of different 
QoS formations QoSi

j={Q1,Q2,...,QK} , 
where Qଵ  (1 ≤ l ≤ K) represents a QoS 
attribute of the IoT services. The QoS 
information related to the IoT services is 
stored in the QoS repository. Parameter K is 
also the number of QoS attributes related to 
the IoT services used in the QoS model. 
Parameter QC represents the set of global 
constraints specified by the user 
( QC=(C1,C2,...,CK} ). Considering the 
above, the objective of the QoS-aware 
service composition problem is to find the 
near-optimal composite IoT service such 
that Eq. (1) holds [23]. 

୨ =

1, … , kቊ
∑ S୧ .Q୨ < C୨୬
୧ୀଵ if	Q୨	is	additive

∏ S୧. Q୨ > C୨୬
୧ୀଵ if	Q୨	is	multiplicative (1) 

 

 
Fig.1. The flowchart of the proposed method 
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3.2 Dataset 

The Quality of Web Service (QWS) 
dataset was used in the proposed method as 
the QoS parameter values [24]. The dataset 
consists of 2507 web services and their QoS 
measurements. The QoS parameter values 
[25, 26] of the services have been measured 
by their proposed Web Service Broker 
framework. Each record in the QoS dataset 

contains the values of eleven parameters for 
each web service. The first nine parameters 
are the QoS parameters measured by the 
Web Service Broker framework over a six-
day period [27]. The QoS values in the 
dataset are the averages of the 
measurements performed during this 
period. Table 1 provides a simple 
description of the nine QoS parameters. 

 
Table 1. The description of Quality of Service (QoS) parameters in the QWS database 

Parameter Description Unit 

Response time The time required to send a request and receive a response ms 
Availability Number of successful invocations per total invocations % 
Throughput Total number of invocations for a certain time period Invocations/s 
Successability Number of responses per number of request messages % 
Compliance The extent of the compliance of the WSDL document with WSDL 

specifications 
% 

Best practices The extent of the compliance of a service from the base WS-I profile % 
Latency The time required by a service provider to process a request ms 
Documentation Extent of documentation (descriptive labels) in WSDL % 

 
Considering that IoT services are an extension 

of web services in the IoT environment, the QWS 
dataset was used for the values of QoS parameters. 
By carefully describing the QoS parameters in 
Table 1, it can be seen that the values of the three 
parameters of compliance, best practices, and 
documentation are constant for multiple 
invocations of a service at runtime. Therefore, 
four of the above parameters were used. 

3.3 Normalizing QoS parameters 

Different QoS parameters of an IoT 
service are measured with different units. So, to 
calculate the objective function, all these 

parameters need to be measured on the same scale. 
Therefore, the values of all QoS parameters must 
be normalized on the same scale, which would 
allow us to have uniform measurements of the 
values. The general approach for this purpose is to 
normalize the values of all parameters in a range 
from zero to one. QoS parameters can be divided 
into two categories: maximization and 
minimization parameters. Maximization 
parameters are those whose values should be 
maximized, while minimization parameters are 
those whose values should be minimized. Eq. (2) 
and (3) show the normalization rules for 
maximization and minimization parameters, 
respectively [28]. 

Nୌ.୕ = ቐ
୕ౣ౮
 ିୌ.୕

୕ౣ౮
 ି୕ౣ

 Q୫ୟ୶
୧ ≠ Q୫୧୬

୧

1 Q୫ୟ୶
୧ = Q୫୧୬

୧
                                                      (2) 

Nୌ.୕ = ቐ
ୌ .୕ ି୕ౣ



୕ౣ౮
 ି୕ౣ

 Q୫ୟ୶
୧ ≠ Q୫୧୬	

୧

1 Q୫ୟ୶
୧ = Q୫୧୬

୧
                                                       (3) 

where CS. Q୧ is the value of the ith QoS parameter 
of the candidate service CS, and Nୌ.୕  is its 



mihan hossennazhd gargari etal : Web Service Composition Based on Quality… 

72 
 

normalized value. Additionally, Q୫ୟ୶
୧  and Q୫୧୬

୧  
are the maximum and minimum values of the ith 
parameter among all services. 

3.4 Building initial population 

In the BCO algorithm, bees are divided into 
three groups: worker bees, onlooker bees, and 
scout bees. Worker bees search for food around 
food sources using their memory. They also share 
their information about these sources with the 
onlooker bees. Onlooker bees tend to choose good 
food sources from those found by worker bees. A 
food source with better quality (fitness) has a 
higher chance of being selected by the onlooker 
bees. Scout bees also search for new food sources, 
filling the worker bees that have abandoned their 
own food sources. 

In the BCO algorithm, half of the initial 
population consists of worker bees and the other 
half of onlooker bees. Therefore, in the proposed 
approach, the random solutions that are generated 
are as many as the number of population size (PS), 
half considered worker bees and the other half 
onlooker bees. 

3.5 Bee movement 

3.5.1 Worker and onlooker bees 

In the first stage of the BCO algorithm, each 
worker bee finds a new food source, which 
essentially means creating a new solution. If X୧ is 
the ith worker bee and V୧ is the location of the new 
food source, V୧ is obtained from Eq. (4). 

V୧୩ = X୧୩ + φ୧୩ × ൫X୧୩ − X୨୩൯ (4) 

where X୨  is a randomly selected solution (i ≠ j) 
and k is a subscript randomly selected from the 
numbers 1 to N. Also, φ୧୩  is a uniformly 
distributed random number in the interval [-1, 1]. 
After a new food source – or, indeed, a solution – 
is created, a greedy search is used. If the fitness of 
V୧ is better than the fitness of its parent (X୧), then 
X୧ is replaced with V୧ and updated; otherwise, X୧ 
remains unchanged. After all worker bees have 
completed their search process, they share their 

updated food source information with the 
onlooker bees through a dance. An onlooker bee 
evaluates the nectar information collected from all 
worker bees and selects a food source with a 
probability related to its nectar content. The 
probabilistic selection at this stage is actually a 
roulette wheel selection, calculated using Eq. (5). 

P୧ = ୧୲
∑ ୧୲ౠౠ

 (5) 

where Fit୧ is the fitness value of the ith solution in 
the population. As shown in Eq. (6), the food 
source with higher fitness has a higher probability 
of being selected by the onlooker bees. 

3.5.2 Scout bees 

If, after a predefined number of iterations 
(called the bound), some food sources (or 
solutions) do not improve in fitness, they are 
abandoned. If X୧ is considered an abandoned food 
source, the scout bee finds a new food source and 
replaces X୧ using Eq. (6). 

X୧୩ = LB୨ + rand(0,1) × (UB୨ − LB୨) (6) 

where rand(0,1) represents a random number with 
a normal distribution in the interval [0,1], and LB 
and UB denote the lower and upper bounds of the 
ith dimension, respectively. 

3.6 Coding 

In the initialization phase of the BCO algorithm, 
an initial population of random solutions must be 
created. In this algorithm, each bee represents a 
solution to the problem, and a solution here is the 
composite IoT service represented by an array of 
length n (the number of tasks in the workflow). 
The number stored at subscript i of the array 
represents the ID of the candidate service that will 
execute the task T୧. Considering that the number 
of solutions in the initial population will be p, the 
initial population of solutions will be a p × n 
matrix. 
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3.7 Fitness function 

The main objectives of the QoS-aware IoT 
service composition problem are to satisfy the 
constraints specified by the user and to optimize a 
fitness function. The fitness function should 
optimize the values of the QoS parameters for the 

constructed composite IoT service. Given that 
four parameters – response time (Resp), 
availability (Avail), reliability (Reli), and latency 
(Late) – have been used in the proposed method, 
the fitness function for a solution is defined as Eq. 
(7). 

Fitness(Sol) = wଵ ∗ Sol. Avail + wଶ ∗ Sol. Reli ∗ wଷ ∗ Sol. Respିଵ + wସ ∗ Sol. Lateିଵ 
wଵ + wଶ + wଷ + wସ = 1 

(7) 

where the coefficients wଵ , wଶ , wଷ , and wସ  are 
positive weights indicating the importance of each 
QoS parameter and specified by the user. 

4 Evaluation and Results 
This section reports the results of the simulation 

and evaluation of the proposed method using the 
BCO algorithm. It is described below how the 
proposed method was simulated and how various 
experiments were conducted to evaluate it. All 
experiments were performed on a Dell computer 

with a 2.0 GHz Core i7 processor and 4 GB of 
main memory. The QWS dataset was also used as 
the QoS data on candidate IoT services. The 
proposed method was simulated and evaluated 
using MATLAB software. Since the proposed 
method uses a meta-heuristic algorithm, the 
results were evaluated in terms of convergence 
and stability. Additionally, the results were 
compared with those of the GA and PSO 
algorithm. Table 2 shows the parameters related to 
the GA, PSO algorithm, and the proposed method. 

 
Table 2. Initialization of the parameters 

Algorithm Parameter Value 

Genetic algorithm Initial population size 100 
Crossover operator Binary 
Selection operator Roulette wheel 
Crossover rate 0.8 
Mutation rate 0.05 

   
Particle swarm optimization algorithm Initial particle number 100 

C1 1 
C2 2 

   
Artificial bee colony optimization algorithm Number of initial bees 100 

Number of worker bees 50 
Number of onlooker bees 50 

4.1 Testing QoS criteria 

This test was designed to evaluate the 
quality of the created composite IoT 
service. For each QoS criterion, a service 
request with 20 tasks and a maximum of 
100 candidate services was tested 10 times 
for all three algorithms. The average results 

are reported in Table 3. Furthermore, 
Figures 2-5 depict the bar graphs for each 
criterion. The results indicate that the 
composite service generated by the BCO 
algorithm has better quality in terms of all 
QoS criteria than the GA and PSO 
algorithm. 
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Table 3. The results of the simulation of QoS criteria 

Number of tasks Algorithm Availability Reliability Latency Response time 

20 GA 0.8724 0.7961 0.0652 0.0681 
 PSO 0.8873 0.8471 0.0584 0.0592 
 BCO 0.9217 0.9627 0.0472 0.0484 

 

  

 

Fig.2. The availability of the generated 
composite service 

 

 

Fig.3. The reliability of the generated composite 
service 

 

 

  
Fig. 4. The latency of the generated composite 

service 
Fig.5. The response time of the generated 

composite service 
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4.2 Testing convergence 

For the convergence test, the proposed 
method, the GA, and the PSO algorithm 
were run for three composition requests 
consisting of 10, 20, and 50 tasks. Figures 6 

to 8 show the convergence to the final 
solution. In these graphs, the horizontal axis 
represents the algorithm iteration order, and 
the vertical axis represents the best fitness 
value of each iteration. 

 

  
Fig.6. The convergence of the proposed method 
compared to the genetic algorithm and the particle 
swarm optimization algorithm (Number of tasks: 10) 
 

Fig. 7. Convergence of the convergence of the 
proposed method compared to the genetic 
algorithm and the particle swarm optimization 
algorithm (Number of tasks: 20) 
 

 
The results reveal that the proposed 

method for combining IoT services has a 
high degree of convergence and finds a 
near-optimal composite IoT service. 
Additionally, the results indicate that the 

quality of the composite service created by 
the proposed method is better than that of 
the PSO algorithm and GA. 

 

 
Fig. 8. The convergence of the proposed method compared to the genetic algorithm and the particle swarm 

optimization algorithm (Number of tasks: 50) 
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4.3 Testing stability 
Another important test for heuristic 

algorithms is to examine their stability. 
Since heuristic algorithms, including the 
BCO algorithm, have a random and non-
deterministic nature, it is essential to assess 
their stability. The stability of an algorithm 
refers to whether it produces the same or 
similar responses for different executions. 
To test the stability of the proposed 

algorithm, it was executed 10 times for 
three different composition requests with 
10, 20, and 50 tasks. Figures 9-11 display 
the fitness value of the IoT composite 
service created in each execution. The 
horizontal axis indicates the order of the 
algorithm execution, and the vertical axis 
indicates the fitness value of the IoT 
composite service created in each execution. 

 

  
Fig.9. The stability of the proposed method 

(Number of tasks: 10) 
 

Fig.10. The stability of the proposed method 
(Number of tasks: 20) 

 
 

 
Fig.11. The stability of the proposed method (Number of tasks: 50) 
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A review of the stability graphs shows that 
the proposed method is, in general, highly 
stable, which is reflected in the lack of 
fluctuation in the fitness value of the near-
optimal IoT composite service across 
different executions of the algorithm. 
However, the results also show that the 
algorithm is much more stable for 
composition requests with a smaller number 
of tasks than those with a larger number of 
tasks. 

5   Conclusion and Future Works 

This paper presented a BCO algorithm to 
address the problem of combining IoT 
services while considering their QoS. The 
proposed approach was simulated in the 
MATLAB software environment alongside 
two other algorithms: GA and PSO 
algorithm. We examined and compared 
their efficiency in terms of convergence and 
stability. The results from various test 
scenarios demonstrated that the proposed 
approach had a good convergence rate and 
was highly stable. Additionally, the latency 
of the proposed method was found to be 
lower than that of the other two algorithms. 
There are numerous other metaheuristic 
approaches that can be effective in 
combining and selecting IoT services. 
Therefore, researchers in their future works 
are recommended to explore other 
metaheuristic approaches to the problem of 
combining IoT services and compare them 
with the approach presented in this paper. 
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