
Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 51, October 2024

65

Web Service Composition Based on Quality of Service on
the Internet of Things Using Bee Colony Optimization

Algorithm
mihan hossennazhd gargari,Aliali.valiyan kharvanagh

 Department of Computer Engineering, Aras Branch, Islamic Azad University, Aras, Iran
Email: mihan.hossennejad@gmail.com ,ali.valiyan73@gmail.com

Receive Date: 28 December 2024 Revise Date: 15 January 2025 Accept Date: 27 February 2025

Abstract
Today, the rapid development and growth of hardware, network technology, and various types of smart

devices that can connect to the Internet and send and receive data have led to the emergence of a new
technology called the Internet of Things (IoT). Using IoT technology, many objects in our environment are
connected to the Internet and can be managed and controlled through applications available on smartphones
and tablets. Service-oriented architecture has been successfully applied in various fields, including grid
computing, cloud computing, wireless sensor networks, automotive networks, and the IoT. Service-oriented
architecture is an architecture style that supports the loose coupling of services, enabling business flexibility
and interoperability independent of technology. It consists of combining a set of business-based services.
Since a single service may sometimes fail to meet user needs, industrial organizations prefer service
composition to create more complex composite services. The problem of combining IoT services with respect
to their Quality of Service (QoS) involves finding a set of candidate services with different non-functional
characteristics that satisfy user-specified constraints and optimize an objective function. Thus, combining
IoT services based on their QoS is classified as NP-Hard. This paper uses the bee colony optimization (BCO)
algorithm to solve the problem of IoT service composition. The results of the simulation on the QWS dataset
in the MATLAB 2019 environment show that the proposed method outperforms the genetic algorithm (GA)
and the particle swarm optimization (PSO) algorithm.
Keywords: bee colony optimization algorithm, Internet of Things, service composition, service quality

1 Introduction

The advent of the Internet of Things
(IoT) has significantly improved efficiency
and productivity in smart environments,
albeit with associated costs [1, 2]. The IoT
is crucial in meeting user needs with a
combination of services [3, 4]. When
objects are interconnected, we can talk
about an intelligent environment. The IoT is
a natural extension of intelligent
convergence that creates smart convergent
environments by integrating numerous
intelligent objects with diverse capabilities
[5, 6].

The IoT and composite services
have made trade and information exchange
more dynamic than ever. The IoT offers
new opportunities for developing software
that integrates real-time operations in the
industry [1]. While web services serve a
similar function, industrial companies must
consider user requirements, which has
created composite services to bridge this
gap. Quality of service (QoS) criteria vary
with user needs, and combining services
optimizes these criteria [7]. Users typically
have two types of requirements: functional
and non-functional. These are often
formalized in a contract between the user

mailto:mihan.hossennejad@gmail.com
mailto:ali.valiyan73@gmail.com

mihan hossennazhd gargari etal : Web Service Composition Based on Quality…

66

and the service provider, which legally
binds the provider to meet the customer's
needs. These user requirement constraints
are specified during the implementation
phase of composite services [8]. To achieve
value and production activities with an
extra return, it is necessary to consider the
QoS composition [3].

Research has been extensive in the
IoT field, covering middleware, routing [9],
and data quality [10]. However,
comparative studies on composite services
in the IoT remain underexplored. Due to the
IoT applications, devices in which the IoT
is used are distributed across very dynamic
environments. Where communications are
unreliable, service interruptions may occur.
Therefore, devices must be evaluated based
on energy, communications, and
computational capabilities. Security is an
indispensable factor in improving the IoT.
It encompasses four laws, i.e., the laws of
perception, networking, support, and
software, as well as other issues, e.g.,
management key, security strategy, and
security regulations. In addition, trust
management is vital in the IoT. A major
challenge in service composition is
selecting the most appropriate service
instance from available options, which is an
abstract function of service composition
[11].

The IoT faces numerous challenges,
but the challenge dealt with in this research
is service composition. In the contemporary
world, users are preoccupied with access to
their target needs or services. When the user
request is so that a single service cannot
meet it, services are combined to optimize
responses to user criteria [3, 13]. The main
issue in service composition is selecting the
best service among those that perform

equivalent tasks but differ in quality criteria
such as response time, cost, reliability, and
system availability [1]. QoS and its
paramount significance in service
composition are the most crucial challenges
in this field. Combining services is an NP-
Hard problem, and using genetic algorithms
for optimal service selection [14] is
inefficient due to slow convergence and
poor local search. Therefore, the bee colony
optimization (BCO) algorithm has been
used to address this issue.

This paper chiefly focuses on IoT
service composition using the BCO
algorithm. It is important how to use
services. In some cases, it is necessary to
combine services to meet complex user
needs. Service composition aims to ensure
reusability and interoperability by
organizing existing services [8]. The choice
of service composition is driven by the
increasingly complex needs of modern
societies, which are addressed through this
approach. The main contributions of this
paper are as follows:

 Solving the problem of combining
IoT services using the BCO
algorithm

 Evaluating the proposed method on
the QWS dataset

 Examining the proposed method
based on convergence and fitness
function

 Comparing the proposed method
with a genetic algorithm (GA) and
the particle swarm optimization
(PSO) algorithm

The paper is organized as follows.

Section 2 reviews previous studies on
quality of service using different models.

Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 51, October 2024

67

Section 3 explains the steps of the proposed
method. Section 4 reports the results of
evaluating the proposed method. Finally,
Section 5 discusses the concluding points
and lists suggestions for future work.

2 Literature Review

This section reviews previous
studies on service composition in the IoT.

A QoS-aware service composition
approach that exploits a novel bat algorithm
(QC-NBA) has been proposed in [15].
Unlike many service composition
approaches, the NBA method improved the
mechanisms of exploring and exploiting the
composition search space using quantum
techniques. The QC-NBA algorithm was
evaluated using the QWS dataset, which
consists of 2507 services described by nine
QoS attributes. The performance of the QC-
NBA algorithm was enhanced in terms of
execution time and composition quality.
Simulation scenarios showed that the QC-
NBA approach achieved good composition
in terms of QoS application.

In [16], a method based on the ant
colony optimization algorithm has been
proposed for service composition. In this
method, artificial ants collaborate to find
the optimal solution. Pheromone
information (chemicals that real ants leave
behind when they move along a path) is
assigned to the edges of a graph. Artificial
ants in this algorithm travel through the
graph, searching for suitable paths
following pheromone and discovery
information. The amount of pheromone on
each edge evaporates by a certain amount in
each iteration. The pheromone levels
contained on the edges are also updated
based on the paths traveled by the ants.
Artificial ants are usually integrated with a

list that stores their previous activities. They
may perform additional operations (e.g.,
local search, crossover, and mutation) to
improve the quality of the results. In this
method, artificial ants move on a graph to
create composite services. In this graph,
each node represents an IoT hub, and edges
connect these nodes. Each ant chooses its
path based on pheromone and discovery
information. The more the number of ants
that pass through a path, the more the
pheromone accumulates on that path,
increasing the likelihood of its selection by
subsequent ants. The pheromone
degradation value ranges between zero and
one. This method is applied iteratively to
find suitable solutions. The ant colony
algorithm has several advantages over the
GA, including positive feedback and
distributed computing. Another advantage
is its efficiency in finding the right
combination compared to other algorithms.
However, a disadvantage is workload
imbalance.

In [17], a method has been presented
for service composition, where service
centers are sorted in descending order based
on the number of services they offer. This
sorting helps quickly select the center with
the most services first. The algorithm then
checks which services from this center can
help meet the user's needs. If no suitable
service is found, it moves to the next center,
checking its services without including it in
the list of suitable centers. This continues
until the user's needs are met. Once a
suitable service center is found, it is added
to the composition list. If all the user's needs
are not met by the services in a center, the
next center is selected. If two centers are
similar in conditions, i.e., they have the
same number of services, one is chosen

mihan hossennazhd gargari etal : Web Service Composition Based on Quality…

68

randomly. Typically, the center with the
lower number is selected first, but if it is the
second choice, the center with the highest
user quality criterion is selected. The
advantage of this method is that it finds the
appropriate composition with the fewest
centers needed to meet the user's needs.
However, the disadvantage is that it does
not distribute the workload evenly among
the providers.

In [18], a method called cloud-based
service composition has been introduced,
where all possible solutions involving
different cloud compositions are considered
recursively. The algorithm examines all
compositions to find a suitable solution.
The idea is to first consider compositions
with one cloud, then those with two clouds,
and so on, until compositions that include
all clouds in the multi-cloud environment
are considered. This algorithm can find the
appropriate cloud composition that includes
the fewest clouds necessary to meet the
user's request. However, the algorithm is in
the worst condition in terms of complexity
since it examines all possible compositions.
For each ci cloud, where i is a value between
[0, n], there are ci

n different cloud
compositions. Each cloud has services, and
these values are summed together.

In [1], a method based on a GA has
been presented for combining services in
the IoT. In this algorithm, when a user
request is received, several resources are
nominated for each task. From these
resources, the one that best satisfies QoS
criteria such as execution time, cost,
reliability, and availability is selected. QoS
criteria describe non-operational
characteristics such as reliability and cost.
The candidate resources for each request
perform the same task but have different

quality criteria. The main question for each
composite request given by the user is to
select a service that improves the user's
knowledge and satisfies the user's requested
QoS criteria. In this method, the algorithm
[19] first generates an initial population and
then iteratively tries to find the appropriate
solution. In each iteration, the individual
fitness value is calculated for each resource
to check the efficiency of each solution, and
a new population is generated through
selection, crossover, and mutation
operations. This process is repeated until
the convergence criteria are met. The QoS
criteria are divided into two parts: positive
and negative. The response time and cost
are in the negative part, and reliability and
availability are in the positive part. All these
four criteria are considered for each
resource. Then, all the services are
combined and encoded, and each gene in
this list encodes a single service for each
task. The initial population is randomly
selected for the GA. In the selection
operation, the probability that a resource
with a certain fitness value is selected from
the population is examined. In the crossover
operation, some pairs of possible solutions,
or resources categorized in different lists,
are randomly selected and combined to
reproduce new solutions. In the mutation
operation, a resource from one list is
selected and replaced with another resource
from a different list. The GA is based on
generating an initial population suitable for
the hybrid model considered for this
method. By imitating the principle of
natural selection, less suitable roots have a
lower chance of survival.

In [20], a clustering-based method called
CL-ACO has been proposed. This
algorithm is based on clustering along with

Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 51, October 2024

69

the ant colony algorithm. Hierarchical
clustering (tree) is used for clustering
services, which reduces time complexity.
The main goal is to provide a set of
individual services with the highest ability
to combine, which allows for responding to
complex user requests. Criteria considered
include accuracy, selection of appropriate
compositions, and reduction of response
time. This algorithm consists of two parts.
In the first part, called publication, the
provider interprets the services using a
semantic model with the OWL-S standard
and publishes them in the semantic
network. The generated services are then
added to similar clusters simultaneously
with their publication in the semantic
network. The second part involves the
client's actions, where the client first makes
a request to the system, including defined
inputs and outputs. Next, the user request
along with the clusters at the root of the tree
is compared using a matching algorithm.
The clusters most similar to the user request
are selected. The client request is then
compared with the children of the selected
cluster. This process continues until the
leaves of the tree structure, representing the
available services, are reached. In this
method, the number of ants is equal to the
number of services. The ants are placed on
the nodes of the graph where the initial
services are located. All the ants then start
to traverse the graph and select the edge
with the highest similarity degree and better
conditions in terms of non-operational
characteristics for traversal.

In [21], a particle swarm algorithm
method has been proposed, combined with
another hybrid optimization algorithm
initially proposed as the Hungarian
algorithm and later developed as the

Munkres algorithm by Harold Kuhn in 1955
[22]. The Munkres algorithm is applied to
10% of the particles after each iteration of
the particle swarm algorithm. One particle
is randomly selected, and 10% of the
workflow is also randomly selected to run
the Munkres algorithm in this iteration. If an
improvement is obtained after using the
Munkres algorithm, those specific particles
are updated with the workflow
optimization, and the next iteration
continues. However, the fitness value is
only about 80% of the optimal value, so it
can be used for services simultaneously.
There is a balance between the fitness value
and the runtime. The composite time
complexity is a drawback of the Munkres
algorithm, and premature convergence is a
drawback of the particle swarm algorithm.
By combining these two algorithms, a
balance is achieved between these
drawbacks.

In [5], the typical features of CMFG
have been analyzed, and the
implementation of the entire service
composition life cycle has been discussed.
Several key issues for service composition,
such as modeling, evaluation, and selection
optimization, have been studied in detail.

3 The Proposed Method

This section presents the proposed method
in two parts. The first part defines the
service composition problem in the IoT and
provides relevant definitions. The second
part discusses the BCO algorithm for
service composition in the IoT. Figure 1
depicts a flowchart of the proposed method.

mihan hossennazhd gargari etal : Web Service Composition Based on Quality…

70

3.1 Problem definition

The problem of combining IoT services
based on their QoS involves finding a set of
candidate services with different
performance characteristics. The goal is to
satisfy the constraints specified by the user
and optimize an objective function. This
section asserts this problem. A sample IoT
service composition based on their QoS can
be expressed as follows. A service
composition request is modeled as a
workflow using a directed acyclic graph
(DAG) as G = (V, E) in which V = {T1, T2,
…, Tn} denotes the number of tasks (n) in
the workflow and E represents the set of
edges indicating task priority.

Each task (Ti) (1 ≤ i ≤ n) in the
workflow has a set of candidate services
CSi={CSi

1,CSi
2,...,CSi

mi}, where CSi
j (1 ≤ j ≤

mi) is a candidate IoT service. Parameter mi

represents the total number of candidate
services available for task Ti. Each
candidate service CSi

j has a set of different
QoS formations QoSi

j={Q1,Q2,...,QK} ,
where Qଵ (1 ≤ l ≤ K) represents a QoS
attribute of the IoT services. The QoS
information related to the IoT services is
stored in the QoS repository. Parameter K is
also the number of QoS attributes related to
the IoT services used in the QoS model.
Parameter QC represents the set of global
constraints specified by the user
(QC=(C1,C2,...,CK}). Considering the
above, the objective of the QoS-aware
service composition problem is to find the
near-optimal composite IoT service such
that Eq. (1) holds [23].

୨ =

1, … , kቊ
∑ S୧ .Q୨ < C୨୬
୧ୀଵ if	Q୨	is	additive

∏ S୧. Q୨ > C୨୬
୧ୀଵ if	Q୨	is	multiplicative (1)

Fig.1. The flowchart of the proposed method

Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 51, October 2024

71

3.2 Dataset

The Quality of Web Service (QWS)
dataset was used in the proposed method as
the QoS parameter values [24]. The dataset
consists of 2507 web services and their QoS
measurements. The QoS parameter values
[25, 26] of the services have been measured
by their proposed Web Service Broker
framework. Each record in the QoS dataset

contains the values of eleven parameters for
each web service. The first nine parameters
are the QoS parameters measured by the
Web Service Broker framework over a six-
day period [27]. The QoS values in the
dataset are the averages of the
measurements performed during this
period. Table 1 provides a simple
description of the nine QoS parameters.

Table 1. The description of Quality of Service (QoS) parameters in the QWS database

Parameter Description Unit

Response time The time required to send a request and receive a response ms
Availability Number of successful invocations per total invocations %
Throughput Total number of invocations for a certain time period Invocations/s
Successability Number of responses per number of request messages %
Compliance The extent of the compliance of the WSDL document with WSDL

specifications
%

Best practices The extent of the compliance of a service from the base WS-I profile %
Latency The time required by a service provider to process a request ms
Documentation Extent of documentation (descriptive labels) in WSDL %

Considering that IoT services are an extension

of web services in the IoT environment, the QWS
dataset was used for the values of QoS parameters.
By carefully describing the QoS parameters in
Table 1, it can be seen that the values of the three
parameters of compliance, best practices, and
documentation are constant for multiple
invocations of a service at runtime. Therefore,
four of the above parameters were used.

3.3 Normalizing QoS parameters

Different QoS parameters of an IoT
service are measured with different units. So, to
calculate the objective function, all these

parameters need to be measured on the same scale.
Therefore, the values of all QoS parameters must
be normalized on the same scale, which would
allow us to have uniform measurements of the
values. The general approach for this purpose is to
normalize the values of all parameters in a range
from zero to one. QoS parameters can be divided
into two categories: maximization and
minimization parameters. Maximization
parameters are those whose values should be
maximized, while minimization parameters are
those whose values should be minimized. Eq. (2)
and (3) show the normalization rules for
maximization and minimization parameters,
respectively [28].

Nୌ.୕ = ቐ
୕ౣ౮
 ିୌ.୕

୕ౣ౮
 ି୕ౣ

 Q୫ୟ୶
୧ ≠ Q୫୧୬

୧

1 Q୫ୟ୶
୧ = Q୫୧୬

୧
 (2)

Nୌ.୕ = ቐ
ୌ .୕ ି୕ౣ

୕ౣ౮
 ି୕ౣ

 Q୫ୟ୶
୧ ≠ Q୫୧୬	

୧

1 Q୫ୟ୶
୧ = Q୫୧୬

୧
 (3)

where CS. Q୧ is the value of the ith QoS parameter
of the candidate service CS, and Nୌ.୕ is its

mihan hossennazhd gargari etal : Web Service Composition Based on Quality…

72

normalized value. Additionally, Q୫ୟ୶
୧ and Q୫୧୬

୧
are the maximum and minimum values of the ith
parameter among all services.

3.4 Building initial population

In the BCO algorithm, bees are divided into
three groups: worker bees, onlooker bees, and
scout bees. Worker bees search for food around
food sources using their memory. They also share
their information about these sources with the
onlooker bees. Onlooker bees tend to choose good
food sources from those found by worker bees. A
food source with better quality (fitness) has a
higher chance of being selected by the onlooker
bees. Scout bees also search for new food sources,
filling the worker bees that have abandoned their
own food sources.

In the BCO algorithm, half of the initial
population consists of worker bees and the other
half of onlooker bees. Therefore, in the proposed
approach, the random solutions that are generated
are as many as the number of population size (PS),
half considered worker bees and the other half
onlooker bees.

3.5 Bee movement

3.5.1 Worker and onlooker bees

In the first stage of the BCO algorithm, each
worker bee finds a new food source, which
essentially means creating a new solution. If X୧ is
the ith worker bee and V୧ is the location of the new
food source, V୧ is obtained from Eq. (4).

V୧୩ = X୧୩ + φ୧୩ × ൫X୧୩ − X୨୩൯ (4)

where X୨ is a randomly selected solution (i ≠ j)
and k is a subscript randomly selected from the
numbers 1 to N. Also, φ୧୩ is a uniformly
distributed random number in the interval [-1, 1].
After a new food source – or, indeed, a solution –
is created, a greedy search is used. If the fitness of
V୧ is better than the fitness of its parent (X୧), then
X୧ is replaced with V୧ and updated; otherwise, X୧
remains unchanged. After all worker bees have
completed their search process, they share their

updated food source information with the
onlooker bees through a dance. An onlooker bee
evaluates the nectar information collected from all
worker bees and selects a food source with a
probability related to its nectar content. The
probabilistic selection at this stage is actually a
roulette wheel selection, calculated using Eq. (5).

P୧ = ୧୲
∑ ୧୲ౠౠ

 (5)

where Fit୧ is the fitness value of the ith solution in
the population. As shown in Eq. (6), the food
source with higher fitness has a higher probability
of being selected by the onlooker bees.

3.5.2 Scout bees

If, after a predefined number of iterations
(called the bound), some food sources (or
solutions) do not improve in fitness, they are
abandoned. If X୧ is considered an abandoned food
source, the scout bee finds a new food source and
replaces X୧ using Eq. (6).

X୧୩ = LB୨ + rand(0,1) × (UB୨ − LB୨) (6)

where rand(0,1) represents a random number with
a normal distribution in the interval [0,1], and LB
and UB denote the lower and upper bounds of the
ith dimension, respectively.

3.6 Coding

In the initialization phase of the BCO algorithm,
an initial population of random solutions must be
created. In this algorithm, each bee represents a
solution to the problem, and a solution here is the
composite IoT service represented by an array of
length n (the number of tasks in the workflow).
The number stored at subscript i of the array
represents the ID of the candidate service that will
execute the task T୧. Considering that the number
of solutions in the initial population will be p, the
initial population of solutions will be a p × n
matrix.

Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 51, October 2024

73

3.7 Fitness function

The main objectives of the QoS-aware IoT
service composition problem are to satisfy the
constraints specified by the user and to optimize a
fitness function. The fitness function should
optimize the values of the QoS parameters for the

constructed composite IoT service. Given that
four parameters – response time (Resp),
availability (Avail), reliability (Reli), and latency
(Late) – have been used in the proposed method,
the fitness function for a solution is defined as Eq.
(7).

Fitness(Sol) = wଵ ∗ Sol. Avail + wଶ ∗ Sol. Reli ∗ wଷ ∗ Sol. Respିଵ + wସ ∗ Sol. Lateିଵ
wଵ + wଶ + wଷ + wସ = 1

(7)

where the coefficients wଵ , wଶ , wଷ , and wସ are
positive weights indicating the importance of each
QoS parameter and specified by the user.

4 Evaluation and Results
This section reports the results of the simulation

and evaluation of the proposed method using the
BCO algorithm. It is described below how the
proposed method was simulated and how various
experiments were conducted to evaluate it. All
experiments were performed on a Dell computer

with a 2.0 GHz Core i7 processor and 4 GB of
main memory. The QWS dataset was also used as
the QoS data on candidate IoT services. The
proposed method was simulated and evaluated
using MATLAB software. Since the proposed
method uses a meta-heuristic algorithm, the
results were evaluated in terms of convergence
and stability. Additionally, the results were
compared with those of the GA and PSO
algorithm. Table 2 shows the parameters related to
the GA, PSO algorithm, and the proposed method.

Table 2. Initialization of the parameters

Algorithm Parameter Value

Genetic algorithm Initial population size 100
Crossover operator Binary
Selection operator Roulette wheel
Crossover rate 0.8
Mutation rate 0.05

Particle swarm optimization algorithm Initial particle number 100

C1 1
C2 2

Artificial bee colony optimization algorithm Number of initial bees 100

Number of worker bees 50
Number of onlooker bees 50

4.1 Testing QoS criteria

This test was designed to evaluate the
quality of the created composite IoT
service. For each QoS criterion, a service
request with 20 tasks and a maximum of
100 candidate services was tested 10 times
for all three algorithms. The average results

are reported in Table 3. Furthermore,
Figures 2-5 depict the bar graphs for each
criterion. The results indicate that the
composite service generated by the BCO
algorithm has better quality in terms of all
QoS criteria than the GA and PSO
algorithm.

mihan hossennazhd gargari etal : Web Service Composition Based on Quality…

74

Table 3. The results of the simulation of QoS criteria

Number of tasks Algorithm Availability Reliability Latency Response time

20 GA 0.8724 0.7961 0.0652 0.0681
 PSO 0.8873 0.8471 0.0584 0.0592
 BCO 0.9217 0.9627 0.0472 0.0484

Fig.2. The availability of the generated
composite service

Fig.3. The reliability of the generated composite
service

Fig. 4. The latency of the generated composite

service
Fig.5. The response time of the generated

composite service

0.8724

0.8873

0.9217

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Av
ai

la
bi

lit
y

GA PSO BCO

0.7961
0.8471

0.9627

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

R
el

ia
bi

lit
y

GA PSO BCO

0.0652

0.0584

0.0472

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

La
te

nc
y

GA PSO BCO

0.0681

0.0593

0.0484

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
es

po
ns

e
T

im
e

GA PSO BCO

Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 51, October 2024

75

4.2 Testing convergence

For the convergence test, the proposed
method, the GA, and the PSO algorithm
were run for three composition requests
consisting of 10, 20, and 50 tasks. Figures 6

to 8 show the convergence to the final
solution. In these graphs, the horizontal axis
represents the algorithm iteration order, and
the vertical axis represents the best fitness
value of each iteration.

Fig.6. The convergence of the proposed method
compared to the genetic algorithm and the particle
swarm optimization algorithm (Number of tasks: 10)

Fig. 7. Convergence of the convergence of the
proposed method compared to the genetic
algorithm and the particle swarm optimization
algorithm (Number of tasks: 20)

The results reveal that the proposed

method for combining IoT services has a
high degree of convergence and finds a
near-optimal composite IoT service.
Additionally, the results indicate that the

quality of the composite service created by
the proposed method is better than that of
the PSO algorithm and GA.

Fig. 8. The convergence of the proposed method compared to the genetic algorithm and the particle swarm

optimization algorithm (Number of tasks: 50)

mihan hossennazhd gargari etal : Web Service Composition Based on Quality…

76

4.3 Testing stability
Another important test for heuristic

algorithms is to examine their stability.
Since heuristic algorithms, including the
BCO algorithm, have a random and non-
deterministic nature, it is essential to assess
their stability. The stability of an algorithm
refers to whether it produces the same or
similar responses for different executions.
To test the stability of the proposed

algorithm, it was executed 10 times for
three different composition requests with
10, 20, and 50 tasks. Figures 9-11 display
the fitness value of the IoT composite
service created in each execution. The
horizontal axis indicates the order of the
algorithm execution, and the vertical axis
indicates the fitness value of the IoT
composite service created in each execution.

Fig.9. The stability of the proposed method

(Number of tasks: 10)

Fig.10. The stability of the proposed method
(Number of tasks: 20)

Fig.11. The stability of the proposed method (Number of tasks: 50)

4

4.21

4.42

4.63

4.84

5.05

5.26

5.47

0 2 4 6 8 10

Fi
tn

es
s f

un
ct

io
n

va
lu

e

Algorithm execution order

Stability, No. of Tasks: 10

1.1
1.14
1.18
1.22
1.26
1.3

1.34
1.38
1.42
1.46

0 5 10

Fi
nt

ne
ss

 fu
nc

tio
n

va
lu

e

Algorithm execution order

Stability, No. of Tasks: 20

0.1
0.104
0.108
0.112
0.116
0.12

0.124
0.128
0.132
0.136
0.14

0.144
0.148

0 5 10

Fi
tn

es
s f

un
ct

io
n

va
lu

e

Algorithm execution order

Stability, No. of Tasks: 50

Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 51, October 2024

77

A review of the stability graphs shows that
the proposed method is, in general, highly
stable, which is reflected in the lack of
fluctuation in the fitness value of the near-
optimal IoT composite service across
different executions of the algorithm.
However, the results also show that the
algorithm is much more stable for
composition requests with a smaller number
of tasks than those with a larger number of
tasks.

5 Conclusion and Future Works

This paper presented a BCO algorithm to
address the problem of combining IoT
services while considering their QoS. The
proposed approach was simulated in the
MATLAB software environment alongside
two other algorithms: GA and PSO
algorithm. We examined and compared
their efficiency in terms of convergence and
stability. The results from various test
scenarios demonstrated that the proposed
approach had a good convergence rate and
was highly stable. Additionally, the latency
of the proposed method was found to be
lower than that of the other two algorithms.
There are numerous other metaheuristic
approaches that can be effective in
combining and selecting IoT services.
Therefore, researchers in their future works
are recommended to explore other
metaheuristic approaches to the problem of
combining IoT services and compare them
with the approach presented in this paper.

References

[1] [1] Q. Li, R. Dou, F. Chen, G. Nan, "A QoS-
oriented Web service composition approach
based on multi-population genetic algorithm
for Internet of things," International Journal of
Computational Intelligence Systems. Vol. 7,
No. 2, pp. 26-34, 2014.

[2] [2] Y. Xu, W. Xiao, X. Yang, R. Li, Y. Yin, Z.
Jiang, "Towards effective semantic annotation
for mobile and edge services for Internet-of-
Things ecosystems," Future Generation
Computer Systems. Vol. 139, No. 1, pp. 64-73,
2023.

[3] [3] A. Saied, N. Nima Jafari, "Service
Composition Mechanisms in the Multi-Cloud
Environments: A Survey," International
journal of new computer architectures and their
applications. Vol. 6, No. 2, pp. 40-48, 2016.

[4] [4] F. Seghir, G. Khababa, "An improved
discrete flower pollination algorithm for fuzzy
QoS-aware IoT services composition based on
skyline operator," The Journal of
Supercomputing. Vol. No. pp. 2023.

[5] [5] J. Liu, S. Xu, F. Zhang, L. Wang, "A hybrid
Genetic-Ant Colony Optimization Algorithm
for the Optimal Path Selection," Intelligent
Automation & Soft Computing. Vol. 23, No. 2,
pp. 235-242, 2017.

[6] [6] M. A. khelili, S. slatnia, O. kazar, A.
merizig, S. mirjalili, "Deep learning and
metaheuristics application in internet of things:
A literature review," Microprocessors and
Microsystems. Vol. 98, No. 2, pp. 104792,
2023.

[7] [7] A. Mousa, J. Bentahar, "An Efficient QoS-
aware Web Services Selection Using Social
Spider Algorithm," Procedia Computer
Science. Vol. 94, No. 1, pp. 176-182, 2016.

[8] [8] Y. Zhang, D. Xi, H. Yang, F. Tao, Z. Wang,
"Cloud manufacturing based service
encapsulation and optimal configuration
method for injection molding machine,"
Journal of Intelligent Manufacturing. Vol. 30,
No. 7, pp. 2681-2699, 2019.

[9] [9] J. Jiang, G. Han, C. Lin, "A survey on
opportunistic routing protocols in the Internet
of Underwater Things," Computer Networks.
Vol. 225, No. 1, pp. 109658, 2023.

[10] [10] S. Nayak, N. Ahmed, S. Misra, "Deep
Learning-Based Reliable Routing Attack
Detection Mechanism for Industrial Internet of
Things," Ad Hoc Networks. Vol. 123, No. 2,
pp. 102661, 2021.

[11] [11] G. Sambasivam, J. Amudhavel, T.
Vengattaraman, P. Dhavachelvan, "An QoS
based multifaceted matchmaking framework
for web services discovery," Future Computing

mihan hossennazhd gargari etal : Web Service Composition Based on Quality…

78

and Informatics Journal. Vol. 3, No. 2, pp. 371-
383, 2018.

[12] [12] B. Andrei, B. A. Elena, "Quality Control
in Logistics Activities through Internet of
Things Technology," Scientific Bulletin of
Naval Academy. Vol. 19, No. 1, pp. 27-30,
2016.

[13] [13] L.-l. Shi, L. Liu, L. Jiang, R. Zhu, J.
Panneerselvam, "QoS prediction for smart
service management and recommendation
based on the location of mobile users,"
Neurocomputing. Vol. 471, No. 1, pp. 12-20,
2022.

[14] [14] P. Asghari, A. M. Rahmani, H. H. S.
Javadi, "Privacy-aware cloud service
composition based on QoS optimization in
Internet of Things," Journal of Ambient
Intelligence and Humanized Computing. Vol.
13, No. 11, pp. 5295-5320, 2022.

[15] [15] A. Kouicem, M. E. Khanouche, A. Tari,
"Novel bat algorithm for QoS-aware services
composition in large scale internet of things,"
Cluster Computing. Vol. 25, No. 5, pp. 3683-
3697, 2022.

[16] [16] Q. Yu, L. Chen, B. Li, "Ant colony
optimization applied to web service
compositions in cloud computing," Computers
& Electrical Engineering. Vol. 41, No. 2, pp.
18-27, 2015.

[17] [17] H. Kurdi, A. Al-Anazi, C. Campbell, A. Al
Faries, "A combinatorial optimization
algorithm for multiple cloud service
composition," Computers & Electrical
Engineering. Vol. 42, No. 2, pp. 107-113, 2015.

[18] [18] Z. Guobing, C. Yixin, X. Yang, H.
Ruoyun, X. You, AI Planning and
Combinatorial Optimization for Web Service
Composition in Cloud Computing, in A nnu al
Internatio nal Co nf erence o n Clo u d Co m p
u t ing a nd Virtu a lizatio n (CCV 2010). 2010.
p. 1-8.

[19] [19] D. Wang, Y. Yang, Z. Mi, "A genetic-
based approach to web service composition in
geo-distributed cloud environment,"
Computers & Electrical Engineering. Vol. 43,
No. 1, pp. 129-141, 2015.

[20] [20] R. Narges Hesami, K. Esmaeil, J.
Mehrdad, "An Optimized Semantic Web

Service Composition Method Based on
Clustering and Ant Colony Algorithm," ArXiv.
Vol. abs/1402.2271, No. pp. 2014.

[21] [21] S. A. Ludwig. Applying Particle Swarm
Optimization to Quality-of-Service-Driven
Web Service Composition. in 2012 IEEE 26th
International Conference on Advanced
Information Networking and Applications.
2012.

[22] [22] H. W. Kuhn, "The Hungarian method for
the assignment problem," Naval Research
Logistics Quarterly. Vol. 2, No. 1-2, pp. 83-97,
1955.

[23] [23] J. Zhou, X. Yao, "A hybrid artificial bee
colony algorithm for optimal selection of QoS-
based cloud manufacturing service
composition," The International Journal of
Advanced Manufacturing Technology. Vol. 88,
No. 9, pp. 3371-3387, 2017.

[24] [24] E. Al-Masri, Q. H. Mahmoud,
Investigating Web Services on the World Wide
Web, in Proceedings of the 17th International
Conference on World Wide Web. 2008,
Association for Computing Machinery. p. 795–
804 , numpages = 10.

[25] [25] E. Al-Masri, Q. H. Mahmoud. QoS-based
Discovery and Ranking of Web Services. in
2007 16th International Conference on
Computer Communications and Networks.
2007.

[26] [26] E. Al-Masri, Q. H. Mahmoud, Discovering
the Best Web Service, in Proceedings of the
16th International Conference on World Wide
Web. 2007, Association for Computing
Machinery. p. 1257–1258 , numpages = 2.

[27] [27] M. S. Das, A. Govardhan, D. V. Lakshmi.
A classification approach for web and cloud
based applications. in 2016 International
Conference on Engineering & MIS (ICEMIS).
2016.

[28] [28] R. Boucetti, O. Hioual, S. M. Hemam, "An
approach based on genetic algorithms and
neural networks for QoS-aware IoT services
composition," Journal of King Saud University
- Computer and Information Sciences. Vol. 34,
No. 8, Part B, pp. 5619-5632, 2022.

