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Revise Date: 20 January 2025        Abstract 

Accept Date: 07 February 2025          Pollution produced by human is a serious danger to the planet Earth in 

our time. In recent decades, a lot of efforts have been made to monitor 

and control the pollution to save the environment. In this paper, the 

fractional-order differential model of the pollution for a system of lakes 

has been introduced. There are three components; the amount of the 

pollution in lake 1, 𝑥, the amount of the pollution in lake 2, 𝑦, and the 

amount of the pollution in lake 3, 𝑧, at any time 𝑡 ≥ 0. The aim of this 

work is to get numerical solution of the proposed fractional-order model 

by Laplace Adomian decomposition method (LADM). The numerical 

solution has been obtained in a series form. The solution has been 

compared with the solutions of some other numerical approaches. The 

results illustrate the ability and accuracy of the present method. The 

Caputo form has been applied for fractional derivatives. All of 

computations have been done in Maple. 
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INTRODUCTION 

   Many natural phenomena in biology, medicine, 

physics, and other branches of science can be 

explained by a system of differential equations 

(Culshaw & Ruan, 2000; Hindmarsh & Rose, 

1984; Chen et al., 1999; Lichae et al., 2019; 

Biazar et al., 2010; Merdan, 2010; Yüzbaşı et al., 

2012). Hoggard (2007) presented a model of 

pollution for a system of lakes. Proposed model is 

simulated for three lakes with interconnecting 

channels. Each lake has been assumed to be a 

large compartment. First, a pollutant enters the 

first lake and then infects two other lakes (See Fig. 

1). The function 𝑝(𝑡) denotes the rate of the 

pollutant that enters the lake 1 for 𝑡 ≥ 0. The rate 

of the pollutant may be vary or constant with any 

time. 

It is important to know the amount of the pollutant 

in each lake at per time. The amount of the 

pollution in lake 1, 2, and 3 are 

defined 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), respectively. 

Constants 𝐹𝑗𝑖  denote the flow rate of water from 

lake 𝑖 into lake 𝑗, 𝑉𝑖 denote the volume of water in 

lake 𝑖, and 𝑟𝑗𝑖(𝑡) denote the flow rate of 

contamination from lake 𝑖 into lake 𝑗 at any time 

t. If there is no flow of water between Lake 𝑖 into 

Lake 𝑗, then 𝐹𝑗𝑖 = 0. The flux of pollution from 

lake 𝑖 into lake 𝑗, called 𝑟𝑗𝑖(𝑡), is defined as 

follows 

{
  
 

  
  𝑟𝑗1(𝑡) =

 𝐹𝑗1𝑥(𝑡),

𝑉1

 𝑟𝑗2(𝑡) =
 𝐹𝑗2𝑦(𝑡),

𝑉2

 𝑟𝑗3(𝑡) =
 𝐹𝑗3𝑧(𝑡).

𝑉3

 

In other words,  𝑟𝑗𝑖(𝑡) determines the rate of 

concentration of contamination in Lake 𝑖 flows 

into lake 𝑗. 
The referred model is modeled as the following 

simple principle: 

Rate of change of contamination = Input rate of 

contamination - output rate of contamination. 

So, the proposed model will be obtained as the 

following form 
𝑑𝑥(𝑡)

𝑑𝑡
=

𝐹13

𝑉3
𝑧(𝑡) + 𝑝(𝑡) −

𝐹31

𝑉1
𝑥(𝑡) −

𝐹21

𝑉1
𝑥(𝑡),  

                                                                                                                                                      

𝑑𝑦(𝑡)

𝑑𝑡
=

𝐹21

𝑉1
𝑥(𝑡) −

𝐹32

𝑉2
𝑦(𝑡), 𝑡 ≥ 0                                                                                

𝑑𝑧(𝑡)

𝑑𝑡
=

𝐹31

𝑉1
𝑥(𝑡) +

𝐹32

𝑉2
𝑦(𝑡) −

𝐹13

𝑉3
𝑧(𝑡),             (1) 

with initial conditions 𝑥(0) = 0, 𝑦(0) =0, 

and 𝑧(0) = 0, which means the lakes are not 

contaminant from the beginning. In order to keep 

constant the volume of water in each lake, the 

following conditions have been assumed: 

Lake 1: 𝐹13 = 𝐹21 + 𝐹31, 
Lake 2: 𝐹21 = 𝐹32, 
Lake 3: 𝐹31 + 𝐹32 = 𝐹13, (see Biazar and 

Farrokhi, 2006). 

Fig.1 shows system of three lakes with 

interconnecting channels. The source of pollutant 

and the constants 𝐹𝑗𝑖 have been marked.  

The system of differential Eqs. (1) has been 

solved by Adomian and RK4 methods (Biazar et 

al., 2006). In Biazar et al. (2010), the numerical 

solution of (1) has been obtained by the 

variational iteration method. In Merdan (2010), 

the modified differential transformation method 

has been used to achieve the numerical solution of 

(1). A collocation approach has been introduced 

to solve (1) in Yüzbaşı, Şahin, and Sezer (2012). 

The polluted lakes system (1) has been solved by 

PIM in Khalid et al. (2015). 

In this work, we introduce a fractional-order of (1) 

and solve it by LADM. Generalizing system of 

differential equations (1) to a system of fractional-

order differential Eqs. (2) indicates the novelty of 

the paper. Fractional-order differential equations 

are related to fractals (Tatom, 1995; Heymans & 

Bauwens, 1994; Giona & Roman, 1992), save 

memory on themselves (Arafa, Rida, & Khalil, 

2013), have freedom on the degree of the 

derivative operator, and can explain many 

phenomena in sciences (Haq et al., 2017; Ertürk, 

Odibat, & Momani, 2011; Diethelm, 2010). We 

introduce a fractional-order of (1) as follows: 

𝐷𝛼1𝑥(𝑡) =
𝐹13

𝑉3
𝑧(𝑡) + 𝑝(𝑡) −

𝐹31

𝑉1
𝑥(𝑡) −

𝐹21

𝑉1
𝑥(𝑡),  

𝐷𝛼2𝑦(𝑡) =
𝐹21

𝑉1
𝑥(𝑡) −

𝐹32

𝑉2
𝑦(𝑡),   𝑡 ≥ 0                                                                                                                                                              

𝐷𝛼3𝑧(𝑡) =
𝐹31

𝑉1
𝑥(𝑡) +

𝐹32

𝑉2
𝑦(𝑡) −

𝐹13

𝑉3
𝑧(𝑡),      (2) 

with the same initial conditions, where  0 < 𝛼𝑖 ≤
1, 𝑖 = 1,2,3. When 𝛼 → 1, 𝐷𝛼𝑥(𝑡) → 𝐷𝑥(𝑡), 
therefore system of fractional-order differential 

equations of the pollution (2) reduces to 
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traditional model (1). The development of 

numerical methods, especially for the solution of 

fractional differential equations, has led to an 

increasing interest in fractional calculus (Kilbas, 

Srivastava, & Trujillo, 2006). Some numerical 

methods that can be implemented to solve a 

system of fractional-order differential equations 

are: optimal homotopy asymptotic (Marinca & 

Herişanu, 2008; Hashim et al., 2010; Jafari & 

Seifi, 2013; Khan et al., 2014), predictor-

corrector (Diethelm, Ford, & Freed, 2002), 

homotopy analysis (Liao, 2003; Abbasbandy, 

2007), variational iteration (Biazar et al., 2010), 

generalized Euler (Arafa, Rida, & Khalil, 2013), 

Laplace Adomian (Haq et al., 2017; Odibat, 

2006), homotopy perturbation (He, 1999; He, 

2006), differential transformation (Merdan, 

2010), and Runge-Kutta method (Butcher, 2008). 

The rest of this paper is organized as follows: In 

Section 2, a brief review of fractional calculus has 

been presented. Section 3 will be devoted to 

solving (2) by LADM in three phases. In Section 

4, the convergence of the method will be 

discussed. In the last section, we present the 

conclusion. 

 

 

 
Fig. 1. System of three lakes with interconnecting channels (Biazar, Farrokhi, & Islam, 2006) 

 

FRACTIONAL CALCULUS 

The purpose of this section is to remind the reader 

of some fundamental preliminaries of fractional 

calculus.  

Definition 1. The fractional integral of Riemann-

Liouville type of order 𝛼 for a 

function 𝑓: (0,∞) → 𝑅 is defined by  

𝐽𝛼𝑓(𝑠) =
1

𝛤(𝛼)
∫ (𝑠 − 𝑡)𝛼−1
𝑠

0
𝑓(𝑡)𝑑𝑡,                (3)                                          

where 𝛼𝜖(0,∞), (See Diethelm, 2010) 

Definition 2. The Caputo fractional derivative of 

a function 𝑓: (0,∞) → 𝑅 on the closed 

interval [0, 𝑇] is defined as  

𝐷𝛼𝑓(𝑠) =
1

𝛤(𝑚−𝛼)
∫ (𝑠 −
𝑠

0

𝑡)𝑚−𝛼−1 𝑓(𝑚)(𝑡)𝑑𝑡,       𝑚 = ⌊𝛼⌋ + 1.            (4)                 

where ⌊𝛼⌋ is the integer part of 𝛼.  

Definition 3. The Caputo fractional derivative has 

another presentation that can be shown as follows 

𝐷𝛼𝑓(𝑠) = 𝐽𝑚−𝛼(𝐷𝑚𝑓(𝑠)),                               (5)                                            
(See Diethelm, 2010). 

Lemma 1. If 𝛼𝜖(0,∞), then the following result 

holds for fractional calculus 

𝐽𝛼[𝐷𝛼𝑓](𝑠) = 𝑓(𝑠) + ∑
𝑓(𝑗)(0)

𝑗!

𝑚−1
𝑗=0 𝑠𝑗,               (6)                                                      

where  𝑚 = ⌊𝛼⌋ + 1. 
Proof. (See Diethelm, 2010; Kilbas, 2006). 

Definition 4. We remind that the Laplace 

transform of Caputo fractional derivative is 

defined as follows 

ℒ{𝐷𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) − ∑ 𝑠𝛼−𝑘−1𝑚−1
𝑗=0 𝑓(𝑗)(0),

𝑚 − 1 < 𝛼 < 𝑚,𝑚𝜖ℕ,                                 (7) 
SOLUTION OF SYSTEM OF FRACTIONAL-

ORDER DIFFERENTIAL EQUATIONS (2) 
In this section, the system of fractional-order 

differential equations (2) will be solved by 

LADM, and the results will be compared with the 
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results of some other numerical methods. Because 

the proposed model (2) better describes the 

system of polluted lakes, three types of input 

models such as impulse, step, and sinusoidal have 

been considered (Aguirre & Tully, 1999). 

Impulse input 

The impulse input model describes pollutants that 

are released very quickly into the lake. The 

impulse input functions are zero everywhere 

except when contamination enters the lake. 

Impulse input functions have a spike. The spike 

indicates the time at which the pollution has been 

evacuated. 

For example, suppose a barrel of oil drains into 

the lake suddenly; therefore, we assume that the 

input function is equal to 100 at the interval of 0 

to 10. The values of parameters in (2) are reported 

in Aguirre and Tully (1999). 

𝑉1 = 2900 𝑚𝑖
3, 𝑉2 = 850 𝑚𝑖

3, 𝑉3 = 1180 𝑚𝑖
3, 

𝐹21 = 18 𝑚𝑖3/𝑦𝑒𝑎𝑟,𝐹32 = 18 𝑚𝑖
3/𝑦𝑒𝑎𝑟, 𝐹31 =

20 𝑚𝑖3/𝑦𝑒𝑎𝑟, 𝐹13 = 38 𝑚𝑖3/𝑦𝑒𝑎𝑟. 
So, model (2) will be obtained as the following 

form 

𝐷𝛼1𝑥(𝑡) =
38

1180
𝑧(𝑡) + 100 −

20

2900
𝑥(𝑡) −

18

2900
𝑥(𝑡),                                                                                                                                                    

𝐷𝛼2𝑦(𝑡) =
18

2900
𝑥(𝑡) −

18

850
𝑦(𝑡),    𝑡 ≥ 0                                                                                                                                                                  

𝐷𝛼3𝑧(𝑡) =
20

2900
𝑥(𝑡) +

18

850
𝑦(𝑡) −

38

1180
𝑧(𝑡),  (8) 

with the same initial conditions, where  0 < 𝛼𝑖 ≤
1, 𝑖 = 1,2,3.  

Using Laplace transform on both sides of each 

equation of (8) gives 

which implies that 

{
 
 
 
 
 

 
 
 
 
 𝑠𝛼1ℒ{𝑥(𝑡)} − 𝑠𝛼1−1𝑥(0) =

38

1180
ℒ{𝑧(𝑡)} +

100

𝑠
                     

−
38

2900
ℒ{𝑥(𝑡)},                                                                              

   

𝑠𝛼2ℒ{𝑦(𝑡)} − 𝑠𝛼2−1𝑦(0) =
18

2900
ℒ{𝑥(𝑡)} −

18

850
ℒ{𝑦(𝑡)},   

        

𝑠𝛼3ℒ{𝑧(𝑡)} − 𝑠𝛼3−1𝑧(0) =
20

2900
ℒ{𝑥(𝑡)} +

18

850
ℒ{𝑦(𝑡)}        

−
38

1180
ℒ{𝑧(𝑡)},                                                              (10) 

 

Substitution of initial conditions in (10) results in 

{
 
 
 
 
 

 
 
 
 
 ℒ{𝑥(𝑡)} =

38

1180

1

𝑠𝛼1
ℒ{𝑧(𝑡)} +

100

𝑠𝛼1+1
                                                                     

−
38

2900

1

𝑠𝛼1
ℒ{𝑥(𝑡)},                                                                 

   

ℒ{𝑦(𝑡)} =
18

2900

1

𝑠𝛼2
ℒ{𝑥(𝑡)} −

18

850

1

𝑠𝛼2
ℒ{𝑦(𝑡)},                                          

        

ℒ{𝑧(𝑡)} =
20

2900

1

𝑠𝛼3
ℒ{𝑥(𝑡)} +

18

850

1

𝑠𝛼3
ℒ{𝑦(𝑡)}                                              

−
38

1180

1

𝑠𝛼3
ℒ{𝑧(𝑡)},                          (11)     

 

 Applying inverse Laplace transform reads to   

{
 
 
 
 
 

 
 
 
 
 𝑥(𝑡) =

38

1180
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑧(𝑡)}]                                                

+
100𝑡𝛼1

𝛤(𝛼1+1)
−

38

2900
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑥(𝑡)}],                                        

𝑦(𝑡) =
18

2900
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑥(𝑡)}]                                                 

−
18

850
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑦(𝑡)}],                                                           

𝑧(𝑡) =
20

2900
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑥(𝑡)}]                                                 

+
18

850
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑦(𝑡)}]                                                             

−
38

1180
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑧(𝑡)}].                                                       

   

Let's consider 𝑥, 𝑦, and 𝑧, are as the following 

series 

𝑥 = ∑ 𝑥𝑖
∞
𝑖=0 , 𝑦 = ∑ 𝑦𝑖

∞
𝑖=0 , 𝑧 = ∑ 𝑧𝑖

∞
𝑖=0 .             (12) 

To compute the Adomian polynomials, using an 

alternate algorithm (Biazar et al., 2003), the 

following recursive sequence would be derived: 

{

𝑥0(𝑡) =
100𝑡𝛼1

𝛤(𝛼1+1)
,

𝑦0(𝑡) = 0,         

𝑧0(𝑡) = 0,         

                                                (13) 

𝑥𝑛+1(𝑡) =
38

1180
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑧𝑛(𝑡)}]                               

−
38

2900
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑥𝑛(𝑡)}],          

𝑦𝑛+1(𝑡) =
18

2900
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑥𝑛(𝑡)}]                               

−
18

850
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑦𝑛(𝑡)}],              

𝑧𝑛+1(𝑡) =
20

2900
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑥𝑛(𝑡)}]                                 

+
18

850
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑦𝑛(𝑡)}]                   

−
38

1180
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑧𝑛(𝑡)}].                                     (14)  

 

We will calculate four terms of infinite series 

of 𝑥, 𝑦, and 𝑧, as an approximate solution. 
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{
 
 
 
 

 
 
 
 𝑥(𝑡) =∑𝑥𝑖(𝑡) ≈

∞

𝑖=0

𝑥0(𝑡) + 𝑥1(𝑡)+𝑥2(𝑡) + 𝑥3(𝑡),

 

𝑦(𝑡) =∑𝑦𝑖(𝑡)

∞

𝑖=0

≈ 𝑦0(𝑡) + 𝑦1(𝑡)+𝑦2(𝑡) + 𝑦3(𝑡),

   

𝑧(𝑡) =∑𝑧𝑖(𝑡)

∞

𝑖=0

≈ 𝑧0(𝑡) + 𝑧1(𝑡) + 𝑧2(𝑡) + 𝑧3(𝑡). (15)

 

Let's take 𝛼1, 𝛼2, and 𝛼3 equal to 𝛼, so the 

approximate solution of system (3) would be 

derived as follows 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑥(𝑡) =

100𝑡𝛼

𝛤(𝛼 + 1)
−
38

29

𝑡2𝛼

𝛤(2𝛼 + 1)
+

48849

1240475

𝑡3𝛼

𝛤(3𝛼 + 1)

−
1982603583

1804084816250

𝑡4𝛼

𝛤(4𝛼 + 1)
,         

  

𝑦(𝑡) =
18

29

𝑡2𝛼

𝛤(2𝛼 + 1)
−
1521

71485

𝑡3𝛼

𝛤(3𝛼 + 1)
                        

+
361275039

519821048750

𝑡4𝛼

𝛤(4𝛼 + 1)
,                               

   

𝑧(𝑡) =
20

29

𝑡2𝛼

𝛤(2𝛼 + 1)
−

381738

21088075

𝑡3𝛼

𝛤(3𝛼 + 1)
                   

+
1238903361

3066944187625

𝑡4𝛼

𝛤(4𝛼 + 1)
.                                    (16)  

 

When 𝛼 = 1, the solution of (3) will be obtained 

as the following form 

 

{
 
 
 
 
 

 
 
 
 
 𝑥(𝑡) =

100𝑡

𝛤(2)
−
38

29

𝑡2

𝛤(3)
+

48849

1240475

𝑡3

𝛤(4)
                                                              

−
1982603583

1804084816250

𝑡4

𝛤(5)
,                                                             

  

𝑦(𝑡) =
18

29

𝑡2

𝛤(3)
−
1521

71485

𝑡3

𝛤(4)
+

361275039

519821048750

𝑡4

𝛤(5)
,                               

   

𝑧(𝑡) =
20

29

𝑡2

𝛤(3)
−

381738

21088075

𝑡3

𝛤(4)
                                                                           

+
1238903361

3066944187625

𝑡4

𝛤(5)
.                 (17)   

 

Step input 

The step input model describes pollutants that are 

added to the lake at steady concentration. Before 

time zero, the pollutant concentration is zero. 

After time zero, the pollutant enters into the lake 

suddenly and input contaminant increases with 

constant rate. For an example, suppose a 

manufacturing plant begins to produce at time 

zero and dumps raw sewage on a constant rate, 

therefore, we assume input function is equal to 

100t. So, model (3) with parameters that given in 

subsection 3.1 will be obtained as the following 

form 

𝐷𝛼1𝑥(𝑡) =
38

1180
𝑧(𝑡) + 100𝑡 −

20

2900
𝑥(𝑡) −

18

2900
𝑥(𝑡),  

𝐷𝛼2𝑦(𝑡) =
18

2900
𝑥(𝑡) −

18

850
𝑦(𝑡),      𝑡 ≥ 0 

𝐷𝛼3𝑧(𝑡) =
20

2900
𝑥(𝑡) +

18

850
𝑦(𝑡) −

38

1180
𝑧(𝑡),  

𝑥(0) = 0, 𝑦(0) =0, 𝑧(0) = 0. 
According to previous subsection, we derive  

{
 
 
 
 
 

 
 
 
 
 𝑥(𝑡) =

38

1180
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑧(𝑡)}] +

100𝑡𝛼1+1

𝛤(𝛼1 + 2)
                                                                                      

−
38

2900
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑥(𝑡)}],                                    

𝑦(𝑡) =
18

2900
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑥(𝑡)}] −

18

850
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑦(𝑡)}],                                                           

𝑧(𝑡) =
20

2900
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑥(𝑡)}] +

18

850
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑦(𝑡)}]                                                            

−
38

1180
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑧(𝑡)}] .      (18)                       

 

To calculate the approximate solution, using an 

alternate algorithm for Adomian polynomials 

(Biazar et al., 2003), the following recursive 

sequence would be derived: 

{
 

 𝑥0(𝑡) =
100𝑡𝛼1+1

𝛤(𝛼1 + 2)
,

𝑦0(𝑡) = 0,         

𝑧0(𝑡) = 0,         

                                               (19) 

 

{
 
 
 
 

 
 
 
 𝑥𝑛+1(𝑡) =

38

1180
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑧𝑛(𝑡)}] −

38

2900
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑥𝑛(𝑡)}],                                               

𝑦𝑛+1(𝑡) =
18

2900
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑥𝑛(𝑡)}] −

18

850
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑦𝑛(𝑡)}],                                                

𝑧𝑛+1(𝑡) =
20

2900
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑥𝑛(𝑡)}] +

18

850
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑦𝑛(𝑡)}].                                                 

−
38

1180
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑧𝑛(𝑡)}]           (20)

 

We take 𝛼1, 𝛼2, and 𝛼3 equal to 𝛼. We will calculate 

four terms of infinite series of 𝑥, 𝑦, and 𝑧, as an 

approximate solution as the following form: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑥(𝑡) =

100 𝑡𝛼+1

𝛤(𝛼 + 2)
−
38

29

𝑡2𝛼+1

𝛤(2𝛼 + 2)
+

48849

1240475

𝑡3𝛼+1

𝛤(3𝛼 + 2)
           

−
1982603583

1804084816250

𝑡4𝛼+1

𝛤(4𝛼 + 2)
,                

  

𝑦(𝑡) =
18

29

𝑡2𝛼+1

𝛤(2𝛼 + 2)
−
1521

71485

𝑡3𝛼+1

𝛤(3𝛼 + 2)
                                      

+
361275039

519821048750

𝑡4𝛼+1

𝛤(4𝛼 + 2)
,                                        

   

𝑧(𝑡) =
20

29

𝑡2𝛼+1

𝛤(2𝛼 + 2)
−

381738

21088075

𝑡3𝛼+1

𝛤(3𝛼 + 2)
                               

+
1238903361

3066944187625

𝑡4𝛼+1

𝛤(4𝛼 + 2)
.                                                (21)  
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When 𝛼 = 1, we get the solution of (17) as follows 
 

{
 
 
 
 

 
 
 
 𝑥(𝑡) =

100 𝑡2

𝛤(3)
−
38

29

𝑡2𝛼+1

𝛤(4)
+

48849

1240475

𝑡4

𝛤(5)
                                                                  

−
1982603583

1804084816250

𝑡5

𝛤(6)
,                                           
  

𝑦(𝑡) =
18

29

𝑡3

𝛤(4)
−
1521

71485

𝑡4

𝛤(5)
+

361275039

519821048750

𝑡5

𝛤(6)
,                                        

   

𝑧(𝑡) =
20

29

𝑡3

𝛤(4)
−

381738

21088075

𝑡4

𝛤(5)
+

1238903361

3066944187625

𝑡5

𝛤(6)
. (22)                                

 

Sinusoidal input 
The step input model describes pollutants that are 

entered to the lake periodically. For an example, we 

assume that 𝑝(𝑡) = 𝛼 + 𝛽 sin 
2𝜋𝑡

𝑇
 , where 𝛼 is the 

average input concentration of pollutant and 𝛽 is the 

amplitude of fluctuations. Let's consider 𝛼 = 𝛽, 
and 𝑇 = 2𝜋, therefore, we have 𝑝(𝑡) = 1 + sin 𝑡. So, 

model (3) with parameters that given in subsection 

Impulse input will be obtained as follows  

𝐷𝛼1𝑥(𝑡) =
38

1180
𝑧(𝑡) + 1 + sin 𝑡 −

20

2900
𝑥(𝑡) −

18

2900
𝑥(𝑡),  

𝐷𝛼2𝑦(𝑡) =
18

2900
𝑥(𝑡) −

18

850
𝑦(𝑡)  𝑡 ≥ 0 

𝐷𝛼3𝑧(𝑡) =
20

2900
𝑥(𝑡) +

18

850
𝑦(𝑡) −

38

1180
𝑧(𝑡),                (23)  

with the same initial conditions as previous 

subsections. 

According to Impulse input subsection, 

𝑥(𝑡) =
38

1180
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑧(𝑡)}] +

𝑡𝛼1+1

𝛤(𝛼1 + 1)
                                                                

+∑(−1)𝑘
𝑡𝛼1+2𝑘+1

𝛤(𝛼1 + 2𝑘 + 1)

∞

𝑘=0

−
38

2900
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑥(𝑡)}],                                        

𝑦(𝑡) =
18

2900
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑥(𝑡)}] −

18

850
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑦(𝑡)}],                                      

𝑧(𝑡) =
20

2900
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑥(𝑡)}] +

18

850
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑦(𝑡)}]                               

−
38

1180
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑧(𝑡)}] .            (24)

 

The recursive sequence would be derived: 

{
 
 

 
 𝑥0(𝑡) =

𝑡𝛼1+1

𝛤(𝛼1 + 1)
+∑(−1)𝑘

𝑡𝛼1+2𝑘+1

𝛤(𝛼1 + 2𝑘 + 1)

∞

𝑘=0

,             

𝑦0(𝑡) = 0,                                                                                     

𝑧0(𝑡) = 0,                                                                          (24)

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑥𝑛+1(𝑡) =

38

1180
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑧𝑛(𝑡)}]                               

−
38

2900
ℒ−1 [

1

𝑠𝛼1
ℒ{𝑥𝑛(𝑡)}],                                               

𝑦𝑛+1(𝑡) =
18

2900
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑥𝑛(𝑡)}]                               

−
18

850
ℒ−1 [

1

𝑠𝛼2
ℒ{𝑦𝑛(𝑡)}],                                                

𝑧𝑛+1(𝑡) =
20

2900
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑥𝑛(𝑡)}]                              

+
18

850
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑦𝑛(𝑡)}]                

      −
38

1180
ℒ−1 [

1

𝑠𝛼3
ℒ{𝑧𝑛(𝑡)}] .                                        (25)

 

Let's take 𝛼1, 𝛼2, and 𝛼3 equal to 𝛼.  

for 𝑛 = 0, 

{
 
 
 

 
 
 𝑥1(𝑡) = −

38

2900
{

𝑡2𝛼

𝛤(2𝛼+1)
+ ∑ (−1)𝑘

𝑡2𝛼+2𝑘+1

𝛤(2𝛼+2𝑘+2)
∞
𝑘=0 },                
  

𝑦1(𝑡) =
18

2900
{

𝑡2𝛼

𝛤(2𝛼+1)
+ ∑ (−1)𝑘

𝑡2𝛼+2𝑘+1

𝛤(2𝛼+2𝑘+2)
∞
𝑘=0 },                     
   

𝑧1(𝑡) =
20

2900
{

𝑡2𝛼

𝛤(2𝛼+1)
+ ∑ (−1)𝑘

𝑡2𝛼+2𝑘+1

𝛤(2𝛼+2𝑘+2)
∞
𝑘=0 },                   

                                                                                             (26)     

        

for 𝑛 = 1, 

{
  
 

  
 𝑥2(𝑡) =

48849

124047500
{

𝑡3𝛼

𝛤(3𝛼+1)
+∑ (−1)𝑘

𝑡3𝛼+2𝑘+1

𝛤(3𝛼+2𝑘+2)
∞
𝑘=0 },                         
  

𝑦2(𝑡) = −
1521

7148500
{

𝑡3𝛼

𝛤(3𝛼+1)
+ ∑ (−1)𝑘

𝑡3𝛼+2𝑘+1

𝛤(3𝛼+2𝑘+2)
∞
𝑘=0 },                           
   

𝑧2(𝑡) = −
190869

1054403750
{

𝑡3𝛼

𝛤(3𝛼+1)
+∑ (−1)𝑘

𝑡3𝛼+2𝑘+1

𝛤(3𝛼+2𝑘+2)
∞
𝑘=0 },                      

                   

   

                                                                        (27) 
for 𝑛 = 2, 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑥3(𝑡) = −
1982603583

180408481625000

{
 
 

 
 

𝑡4𝛼

𝛤(4𝛼 + 1)
+

∑(−1)𝑘
𝑡4𝛼+2𝑘+1

𝛤(4𝛼 + 2𝑘 + 2)

∞

𝑘=0 }
 
 

 
 

,                         

  

𝑦3(𝑡) =
361275039

51982104875000

{
 
 

 
 

𝑡4𝛼

𝛤(4𝛼 + 1)
+

∑(−1)𝑘
𝑡4𝛼+2𝑘+1

𝛤(4𝛼 + 2𝑘 + 2)

∞

𝑘=0 }
 
 

 
 

,                                 

   

𝑧3(𝑡) =
1238903361

306694418762500

{
 
 

 
 

𝑡4𝛼

𝛤(4𝛼 + 1)
+

∑(−1)𝑘
𝑡4𝛼+2𝑘+1

𝛤(4𝛼 + 2𝑘 + 2)

∞

𝑘=0 }
 
 

 
 

,     (28)                          

 

so the approximate solution of (22), by calculating 

four terms of infinite series of 𝑥, 𝑦, and 𝑧, is 

obtained as the following form: 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑥(𝑡) =
𝑡𝛼+1

𝛤(𝛼 + 1)
+∑(−1)𝑘

𝑡𝛼+2𝑘+1

𝛤(𝛼 + 2𝑘 + 1)

∞

𝑘=0

                                    

−
38

2900
{

𝑡2𝛼

𝛤(2𝛼 + 1)
+∑(−1)𝑘

𝑡2𝛼+2𝑘+1

𝛤(2𝛼 + 2𝑘 + 2)

∞

𝑘=0

},                            

  

 +
48849

124047500
{

𝑡3𝛼

𝛤(3𝛼 + 1)
+∑(−1)𝑘

𝑡3𝛼+2𝑘+1

𝛤(3𝛼 + 2𝑘 + 2)

∞

𝑘=0

}             

−
1982603583

180408481625000
{

𝑡4𝛼

𝛤(4𝛼 + 1)
+∑(−1)𝑘

𝑡4𝛼+2𝑘+1

𝛤(4𝛼 + 2𝑘 + 2)

∞

𝑘=0

} 

 𝑦(𝑡) =
18

2900
{

𝑡2𝛼

𝛤(2𝛼 + 1)
+∑(−1)𝑘

𝑡2𝛼+2𝑘+1

𝛤(2𝛼 + 2𝑘 + 2)

∞

𝑘=0

}                       

−
1521

7148500
{

𝑡3𝛼

𝛤(3𝛼 + 1)
+∑(−1)𝑘

𝑡3𝛼+2𝑘+1

𝛤(3𝛼 + 2𝑘 + 2)

∞

𝑘=0

}      

+
361275039

51982104875000
{

𝑡4𝛼

𝛤(4𝛼 + 1)
+∑(−1)𝑘

𝑡4𝛼+2𝑘+1

𝛤(4𝛼 + 2𝑘 + 2)

∞

𝑘=0

}  

𝑧(𝑡) =
20

2900
{

𝑡2𝛼

𝛤(2𝛼 + 1)
+∑(−1)𝑘

𝑡2𝛼+2𝑘+1

𝛤(2𝛼 + 2𝑘 + 2)

∞

𝑘=0

}                     

−
190869

1054403750
{

𝑡3𝛼

𝛤(3𝛼 + 1)
+∑(−1)𝑘

𝑡3𝛼+2𝑘+1

𝛤(3𝛼 + 2𝑘 + 2)

∞

𝑘=0

}

+
1238903361

306694418762500
{

𝑡4𝛼

𝛤(4𝛼 + 1)
+∑(−1)𝑘

𝑡4𝛼+2𝑘+1

𝛤(4𝛼 + 2𝑘 + 2)

∞

𝑘=0

}

                                

 

                                                                        (29) 

When 𝛼 = 1, the solution of (22) is as follows 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑥(𝑡) =
𝑡2

𝛤(2)
+∑(−1)𝑘

𝑡2𝑘+2

𝛤(2𝑘 + 2)

∞

𝑘=0

                                

−
38

2900
{
𝑡2

𝛤(3)
+∑(−1)𝑘

𝑡2𝑘+3

𝛤(2𝑘 + 4)

∞

𝑘=0

},                            

  

 +
48849

124047500
{
𝑡3

𝛤(4)
+∑(−1)𝑘

𝑡2𝑘+4

𝛤(2𝑘 + 5)

∞

𝑘=0

}             

−
1982603583

180408481625000
{
𝑡4

𝛤(5)
+∑(−1)𝑘

𝑡2𝑘+5

𝛤(2𝑘 + 6)

∞

𝑘=0

} 

 𝑦(𝑡) =
18

2900
{
𝑡2

𝛤(3)
+∑(−1)𝑘

𝑡2𝑘+3

𝛤(2𝑘 + 4)

∞

𝑘=0

}                       

−
1521

7148500
{
𝑡3

𝛤(4)
+∑(−1)𝑘

𝑡2𝑘+4

𝛤(2𝑘 + 5)

∞

𝑘=0

}      

+
361275039

51982104875000
{
𝑡4

𝛤(5)
+∑(−1)𝑘

𝑡2𝑘+5

𝛤(2𝑘 + 6)

∞

𝑘=0

}  

𝑧(𝑡) =
20

2900
{
𝑡2

𝛤(3)
+∑(−1)𝑘

𝑡2𝑘+3

𝛤(2𝑘 + 4)

∞

𝑘=0

}                      

−
190869

1054403750
{
𝑡3

𝛤(4)
+∑(−1)𝑘

𝑡2𝑘+4

𝛤(2𝑘 + 5)

∞

𝑘=0

}

+
1238903361

306694418762500
{
𝑡4

𝛤(5)
+∑(−1)𝑘

𝑡2𝑘+5

𝛤(2𝑘 + 6)

∞

𝑘=0

}

                                

 

                                                                      (30) 

CONVERGENCE ANALYSIS OF THE 

METHOD 
In this section, the convergence of the proposed 

method, using the idea presented in Ayati and 

Biazar (2015), is studied. 

CONCLUSION 

   In this paper, a fractional-order model of HIV-1 

with three components has been introduced. By 

applying Laplace transform and Adomian 

decomposition method (LADM) which is a strong 

approach to compute numerical solution of 

fractional differential equations, we gain an 

approximate solution of the proposed model. The 

accuracy of the proposed approach has been made 

it a reliable method. The result of LADM has been 

compared with the results of some other methods 

such as GEM, HAM, RK4 (Arafa, Rida, & Khalil, 

2013), and HPM (Merdan & Khan, 2010). The 

results are presented in Tables1-3. When 𝛼 → 1, 

then 𝐷𝛼𝑥(𝑡) → 𝐷𝑥(𝑡), therefore the fractional-

order of presented model reduces to traditional 

model. Because of the fact that obtaining the exact 

solution for system of fractional equation is 

difficult or impossible, our suggestion for future 

research is solving them by such numerical 

methods. 
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