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Abstract. This paper studies numerical radius inequalities in Hilbert space operators. We
obtain some bounds for the accretive dissipative matrices, extending and improving earlier
bounds. We also give results concerning block matrices.
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1. Introduction and preliminaries

Let H be an arbitrary Hilbert space, endowed with the inner product ⟨·, ·⟩ and induced
norm ∥ · ∥. The notation B(H) will be used to denote the C∗−algebra of all bounded
linear operators on H. Upper case letters will be used to denote the element of B(H).
For T ∈ B(H), the adjoint operator T ∗ is the operator defined by ⟨Tx, y⟩ = ⟨x, T ∗y⟩
for x, y ∈ H, and the operator norm of T is defined by ∥T∥ = sup∥x∥=1 ∥Tx∥. If an
operator T ∈ B(H) satisfies ⟨Tx, x⟩ ⩾ 0 for all x ∈ H, it will be called a positive
operator. Related to the operator norm, the numerical radius of T ∈ B(H) is defined by
ω(T ) = sup∥x∥=1 | ⟨Tx, x⟩ |. This latter quantity defines a norm on B(H) that is equivalent
to the operator norm, where we have the equivalence

∥T∥
2

⩽ ω(T ) ⩽ ∥T∥ (1)
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([6, Theorem 1.3-1]). The following estimates for the numerical radius are known [10, 11]

ω(T ) ⩽ 1

2
|||T |+ |T ∗|||, (2)

ω2(T ) ⩽ 1

2
||T ∗T + TT ∗||. (3)

The inequalities (2) and (3) refine the second inequality in (1). Such inequalities are
essential as one can have upper or lower bounds of one quantity in terms of the other.
Consequently, sharper bounds are highly demanded in this field. We refer the reader to
[2, 3, 8, 12, 14–16, 19–21] and [22] as a sample of treatments of this interest.

For H = H⊕H and T ∈ B (H), the operator T can be represented as an 2×2 operator

matrix

[
T11 T12

T21 T22

]
with Tjk ∈ B (H), j, k = 1, 2. For any T ∈ B (H), we can write

T = A+ iB (4)

in which A = T+T ∗

2 and B = T−T ∗

2i are Hermitian operators. This is the so-called Carte-
sian decomposition of T . In this paper, we will represent the decomposition (4) by[

T11 T12

T21 T22

]
=

[
A11 A12

A21 A22

]
+ i

[
B11 B12

B21 B22

]
(5)

in which Tjk, Bjk, Ajk ∈ B (H), j, k = 1, 2. Then A12 = A∗
21 and B12 = B∗

21. T is accretive
(resp. dissipative) if in its Cartesian decomposition (4), A (resp. B) is positive, and T is
accretive-dissipative if both A and B are positive.

Recently, several authors proved numerical radius inequalities for accretive-dissipative
operator matrices [5, 13, 17]. In this paper, we prove inequalities which relate numerical

radius for some components of the accretive-dissipative operator matrix

[
T11 T12

T21 T22

]
∈

B(H ⊕H) with the norm of some components of its decomposition (5). To reach these
results, we need the well-known lemmas, which are essential in our analysis.

Lemma 1.1 Let ai ⩾ 0 for i = 1, . . . , n, r ⩾ 1. Then
n∑

i=1
ari ⩽ (

n∑
i=1

ai)
r ⩽ nr−1

(
n∑

i=1
ari

)
.

In particular, ar1 + ar2 ⩽ (a1 + a2)
r ⩽ 2r−1(ar1 + ar2).

Lemma 1.2 (McCarthy inequality) Let A ∈ B(H) be positive semidefinite and x ∈ H
such that ∥x∥ ⩽ 1. Then

(i) ⟨Ax, x⟩r ⩽ ⟨Arx, x⟩ for r ⩾ 1.
(ii) ⟨Arx, x⟩ ⩽ ⟨Ax, x⟩r for 0 < r ⩽ 1.

Lemma 1.3 [9, Theorem 1] Let A ∈ B(H) and x, y ∈ H be any vectors. If f and
g are nonnegative continuous functions on [0,∞) satisfying the relation f(a)g(a) = a
(a ∈ [0,∞)), then |⟨Ax, y⟩|2 ⩽ ⟨|A|x, x⟩ ⟨|A∗| y, y⟩ and more general

|⟨Ax, y⟩|2 ⩽
〈
f2 (|A|)x, x

〉 〈
g2 (|A∗|) y, y

〉
. (6)

Lemma 1.4 [9, Lemma 1] Let A,B,C ∈ B(H) such that A and B are positive semidef-
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inite. Then [
A B
B∗ C

]
⩾ 0 ⇔ |< Bx, y >|2 ⩽< Ax, x >< Cy, y > ∀x, y ∈ H.

2. Main results

We start this section with the following result.

Theorem 2.1 Let

[
T11 T12

T21 T22

]
∈ B(H⊕H) be operator matrix with cartesian decompo-

sition (5), r ⩾ 2. If f and g are non-negative continuous functions on [0,∞) satisfying
the relation f(a)g(a) = a (a ∈ [0,∞)), then

ωr(T12) ⩽ 2r−2
∣∣∣∣f2r(|A12|) + g2r(|A∗

12|) + f2r(|B12|) + g2r(|B∗
12|)

∣∣∣∣ . (7)

In particular, if r = 2 and f(t) = g(t) =
√
t. We give

ω2(T12) ⩽
∣∣∣∣ |A12|2 + |A∗

12|2 + |B12|2 + |B∗
12|2

∣∣∣∣ . (8)

Let r = 1 and f(t) = g(t) =
√
t, we give

ω(T12) ⩽
1

2
|| |A12|+ |A∗

12|+ |B12|+ |B∗
12| || . (9)

Proof. We have

|⟨T12x, x⟩|r = |⟨(A12 + iB12)x, x⟩|r

= |⟨A12x, x⟩+ i ⟨B12x, x⟩|r

⩽ (|⟨A12x, x⟩|+ |⟨B12x, x⟩|)r

⩽ 2r−1 (|⟨A12x, x⟩|r + |⟨B12x, x⟩|r)

⩽ 2r−1
(〈

f2(|A12|)x, x
〉 r

2
〈
g2(|A∗

12|)x, x
〉 r

2 +
〈
f2(|B12|)x, x

〉 r
2
〈
g2(|B∗

12|)x, x
〉 r

2

)
(by (6))

⩽ 2r−1 (⟨fr(|A12|)x, x⟩ ⟨gr(|A∗
12|)x, x⟩+ ⟨fr(|B12|)x, x⟩ ⟨gr(|B∗

12|)x, x⟩) (Lemma 1.2(i))

⩽ 2r−2
(
⟨fr(|A12|)x, x⟩2 + ⟨gr(|A∗

12|)x, x⟩
2
+ ⟨fr(|B12|)x, x⟩2 + ⟨gr(|B∗

12|)x, x⟩
2
)

(since ab ⩽ a2 + b2

2
if a, b ∈ (−∞,∞))

⩽ 2r−2
(〈
f2r(|A12|)x, x

〉
+
〈
g2r(|A∗

12|)x, x
〉
+

〈
f2r(|B12|)x, x

〉
+
〈
g2r(|B∗

12|)x, x
〉)

(Lemma 1.2(i))

= 2r−2
(〈
f2r(|A12|) + g2r(|A∗

12|) + f2r(|B12|) + g2r(|B∗
12|)x, x

〉)
.

Taking the supremum over all unit vectors x ∈ Cn, we give (7). Letting f(t) = g(t) =
√
t

and r = 2, we give (8). ■

Remark 1 By squaring both sides of (9), we give

ω2(T12) ⩽
1

4
|| |A12|+ |A∗

12|+ |B12|+ |B∗
12| ||2.
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Remark 2 If

[
T11 T12

T21 T22

]
∈ B(H⊕H) is positive semidefinite, then

[
B11 B12

B∗
12 B22

]
=

[
0 0
0 0

]
in (4), and (7) reduces to ωr(T12) ⩽ 2r−2

∣∣∣∣ f2r(|A12|) + g2r(|A∗
12|)

∣∣∣∣. In particular, if

r = 1 and f(t) = g(t) =
√
t, we give

ω(T12) ⩽
1

2
|| |A12|+ |A∗

12| || =
1

2
|| |T12|+ |T ∗

12| ||. (10)

Thus, (10) refines the second inequality of (7), which is exactly (8). From this point
of view, we note that (7) generalizes (2).

Lemma 2.2 Let A,B ⩾ 0. Then

|| A+B ||2 ⩽ 2|| A2 +B2 ||. (11)

Equality holds iff A = B.

Proof. It is well known that || (A + B)2 || = || A + B ||2 (since A,B ⩾ 0). To reach
(11), it is enough to prove that (A+B)2 ⩽ 2(A2 +B2). We have

2A2 + 2B2 − (A+B)2 = 2A2 + 2B2 − (A2 +B2 +AB +BA)

= A2 +B2 −AB −BA

= (A−B)2 ⩾ 0 (as A-B is Hermitian).

This implies that (A+B)2 ⩽ 2(A2 +B2), so we reach our claim. ■

Remark 3 By squaring both sides of (10), we give ω2(T12) ⩽ 1
4 || |T12|+ |T ∗

12| ||2. This
inequality refines (3). To show this,

ω2(T12) ⩽
1

4
|| |T12|+ |T ∗

12| ||2 ⩽
1

2
|| |T12|2 + |T ∗

12|2 || (by (11)).

Theorem 2.3 Let

[
T11 T12

T21 T22

]
∈ B(H⊕H) be accretive-dissipative operator matrix with

cartesian decomposition (5), r ⩾ 1. Then

ωr(T11) ⩽ 2r−1|| Ar
11 +Br

11 || for all r ∈ (−∞,∞). (12)

Proof. We have

|⟨T11x, x⟩|r = |⟨(A11 + iB11)x, x⟩|r

= |⟨A11x, x⟩+ i ⟨B11x, x⟩|r

⩽ (|⟨A11x, x⟩|+ |⟨B11x, x⟩|)r (by triangle inequality)

= (⟨A11x, x⟩+ ⟨B11x, x⟩)r (since A11 ⩾ 0 and B11 ⩾ 0)

= ⟨(A11 +B11)x, x⟩r

= || A11 +B11 ||r.

Taking the supremum over all unit vectors x, we give (12). Let r = 1. We give ω(T11) ⩽
|| A11 +B11 ||. ■
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We conclude this paper by presenting an upper bound for the numerical radius of the
off-diagonal operator matrix. It is well-known that for any A,B ∈ B (H)

ω

([
0 A
B 0

])
≤ 1

2
(∥A∥+ ∥B∥) . (13)

This follows from the following fact (see [7, (4.6)]) that

ω

([
0 A
B 0

])
=

1

2
sup
θ∈R

∥∥∥A+ eiθB∗
∥∥∥ .

To obtain the following result, which contains a refinement of (13), we mimic some ideas
from [18, Corollary 2.1].

Theorem 2.4 Let A,B ∈ B (H). Then, for any t ∈ R,

ω

([
0 A
B 0

])
≤ 1

2

(
ω

([
0 (1 + t)A

(1− t)B 0

])
+ ω

([
0 (1− t)A

(1 + t)B 0

]))
.

Proof. It has been shown in [4, Corollary 2.4] that

∥A+B∥ ≤
∥∥∥∥tA+ (1− t)

A+B

2

∥∥∥∥+

∥∥∥∥tB + (1− t)
A+B

2

∥∥∥∥ ≤ ∥A∥+ ∥B∥ ,

for any t ∈ R. If we replace B by eiθB, we infer that

∥∥∥A+ eiθB
∥∥∥ ≤

∥∥∥∥tA+ (1− t)
A+ eiθB

2

∥∥∥∥+

∥∥∥∥teiθB + (1− t)
A+ eiθB

2

∥∥∥∥
=

1

2

(∥∥∥(1 + t)A+ (1− t) eiθB
∥∥∥+

∥∥∥(1− t)A+ (1 + t) eiθB
∥∥∥) .

From this, we can write

1

2

∥∥∥A+ eiθB
∥∥∥ ≤ 1

4

(∥∥∥(1 + t)A+ (1− t) eiθB
∥∥∥+

∥∥∥(1− t)A+ (1 + t) eiθB
∥∥∥)

≤ 1

2

(
ω

([
0 (1 + t)A

(1− t)B∗ 0

])
+ ω

([
0 (1− t)A

(1 + t)B∗ 0

]))
,

i.e.,

1

2

∥∥∥A+ eiθB
∥∥∥ ≤ 1

2

(
ω

([
0 (1 + t)A

(1− t)B∗ 0

])
+ ω

([
0 (1− t)A

(1 + t)B∗ 0

]))
,

for any t ∈ R. Now, if we take supremum over θ ∈ R, we obtain

ω

([
0 A
B∗ 0

])
≤ 1

2

(
ω

([
0 (1 + t)A

(1− t)B∗ 0

])
+ ω

([
0 (1− t)A

(1 + t)B∗ 0

]))
.

We deduce the desired result by substituting B by B∗. ■
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Assume that 0 ≤ t ≤ 1. We can write from Theorem 2.4 that

ω

([
0 (1 + t)A

(1− t)B 0

])
+ ω

([
0 (1− t)A

(1 + t)B 0

])
≤ (1 + t) ∥A∥+ (1− t) ∥B∥

2
+

(1− t) ∥A∥+ (1 + t) ∥B∥
2

= ∥A∥+ ∥B∥ ,

due to (13). Consequently,

ω

([
0 A
B 0

])
≤ 1

2

(
ω

([
0 (1 + t)A

(1− t)B 0

])
+ ω

([
0 (1− t)A

(1 + t)B 0

]))
≤ 1

2
(∥A∥+ ∥B∥) .

(14)

Remark 4 We know that ω

([
0 X
Y 0

])
= ω

([
0 Y
X 0

])
, for any X,Y ∈ B (H) [7, Lemma

2.1 (c)]. So, we obtain from (14) that

ω (A) ≤ ω

([
0 (1 + t)A

(1− t)A 0

])
≤ ∥A∥

for any 0 ≤ t ≤ 1. In particular, if A is a normal operator, then

ω

([
0 (1 + t)A

(1− t)A 0

])
= ∥A∥ ; (0 ≤ t ≤ 1) .

Remark 5 It has been shown in Remark 4 that if A ∈ B(H), then for 0 ⩽ t ⩽ 1,

ω(A) ⩽ ω

([
0 (1 + t)A

(1− t)A 0

])
⩽ ∥A∥. (15)

For simplicity, let us use the following notations. For θ ∈ R, let

fθ(t) =
1

2

∥∥∥(1 + t)A+ (1− t)eiθA∗
∥∥∥ and f(t) = ω

([
0 (1 + t)A

(1− t)A 0

])
,

where t ∈ R. Since ω

([
0 X
Y 0

])
= 1

2 sup
θ∈R

∥∥X + eiθY ∗∥∥ , it follows that sup
θ∈R

fθ(t) = f(t).

It can be easily seen that the function fθ is a convex function of t for each θ. This is
followed by a direct application of the triangle inequality. Since f = supθ∈R fθ, it follows

that f is a convex function, too. Further, due to the fact ω

([
0 X
Y 0

])
= ω

([
0 Y
X 0

])
, we

see that f(t) = f(−t). Therefore, f is a convex function on R, which is symmetric about
t = 0. Consequently,

(i) f is decreasing on (−∞, 0) and increasing on (0,∞).
(ii) f attains its minimum at t = 0.

Noting that f(0) = ω(A) and f(1) = ∥A∥ may summarize as follows:
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(a) If −1 ⩽ t ⩽ 1, then

ω(A) ⩽ ω

([
0 (1 + t)A

(1− t)A 0

])
⩽ ∥A∥,

which is equivalent to the fact that f(0) ⩽ f(t) ⩽ f(1) = f(−1), for −1 ⩽ t ⩽ 1.
(b) If t ⩾ 1 or t ⩽ −1, we have

ω

([
0 (1 + t)A

(1− t)A 0

])
⩾ ∥A∥,

which is equivalent to the fact that f(t) ⩾ f(1) for these values of t.

A concluding comment in this remark is that since f is continuous increasing on [0, 1],
f(0) = ω(A) and f(1) = ∥A∥, it means that f interpolates continuously between ω(A)
and ∥A∥. This implies that the function f can obtain explicit refinements of any given
refinement of the inequality ω(A) ⩽ ∥A∥.

So, for example in (15), we have

ω(A) ⩽ 1

2

√
∥|A|2 + |A∗|2∥+ ∥ |A||A∗|+ |A∗||A| ∥ ⩽ ∥A∥.

Now using the above function f , there exists t0 ∈ [0, 1] such that

f(t0) =
1

2

√
∥|A|2 + |A∗|2∥+ ∥ |A||A∗|+ |A∗||A| ∥ = L.

When 0 < t1 < t0 < t2 < 1, we have ω(A) ⩽ f(t1) ⩽ f(t0) = L ⩽ f(t2) ⩽ ∥A∥. Finding
t0 can be done using numerical calculations. This, of course, depends on A. Thus, we have
a rigorous approach for finding refinements of any inequality that refines ω(A) ⩽ ∥A∥,
as we have explained with (15).

Remark 6 It is well-known from [1, Corollary 3] that if X,Y ∈ B (H) are positive
operators, then

ω

([
0 X
Y 0

])
=

1

2
(∥X∥+ ∥Y ∥) .

Thus, from (14), we infer that

ω

([
0 (1 + t)A

(1− t)B 0

])
+ ω

([
0 (1− t)A

(1 + t)B 0

])
= ∥A∥+ ∥B∥ ; (0 ≤ t ≤ 1)

provided that A,B are positive operators.
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