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Abstract. This paper advances the theory of bipolar fuzzy sets by integrating them into the structure of IUP-
algebras. It introduces and formalizes the concepts of bipolar fuzzy IUP-subalgebras, filters, ideals, and strong
ideals, establishing their foundational properties through rigorous theorems and counterexamples. The interplay
between these algebraic structures and their level cuts is examined to provide a nuanced understanding of dual-valued
uncertainty in abstract logic. In addition to its theoretical contributions, this research holds significant educational
value, particularly for science-oriented learning environments where mathematical abstraction and logical reasoning
are cultivated. By translating complex fuzzy-algebraic concepts into structured and illustrative forms, the study
offers a meaningful framework that can inspire student-led investigations and enrich curricula in research-focused
schools. Furthermore, it encourages collaboration between educators and researchers in developing accessible tools
and learning modules that bridge advanced mathematical logic with real-world inquiry, promoting a more inclusive
and research-driven academic atmosphere.
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1 Introduction

The concept of bipolar fuzzy sets (BFSs) was introduced as an extension of Zadehs seminal fuzzy set (FS)
theory [1], which provided a groundbreaking framework for modeling uncertainty and imprecision. Zadehs
theory utilized a single degree of membership within the range [0, 1], enabling the representation of vagueness,
but was limited in scenarios involving duality or conflict. To address these limitations, Zhang [2] introduced
BFSs, incorporating two membership functions: one for positive degrees (𝟋+) and another for negative degrees
(𝟋−), thus enabling the simultaneous modeling of satisfaction and dissatisfaction. Since its inception, the
study of BFSs has significantly advanced the modeling of complex systems characterized by conflicting or dual-
valued information. BFSs have become a cornerstone in the study of uncertainty and decision-making, with
applications spanning decision support, sentiment analysis, and logical algebra. The continuous evolution of
the field, fueled by the contributions of numerous mathematicians and researchers, underscores its relevance
across diverse theoretical and applied domains. Over the years, researchers have extended BFSs into various
algebraic and logical frameworks, yielding fruitful results in multiple fields. For instance, Abughazalah et al.
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[3] introduced bipolar fuzzy (closed) BCI-positive implicative ideals and (closed) BCI-commutative ideals in
BCI-algebras. Further studies have examined the structural properties and applications of BFSs in various
algebraic systems. Alolaiyan et al. [4] explored bipolar fuzzy isomorphisms in subrings, while Gaketem et al.
[5] analyzed bipolar fuzzy comparative UP-filters. Significant progress has also been made in applying BFSs
to logical and algebraic structures. Jun and Song [6] introduced bipolar-valued fuzzy subalgebras and closed
ideals in BCH-algebras, providing foundational properties and conditions under which these structures are
preserved. Their work laid important groundwork for integrating bipolar-valued uncertainty into algebraic
systems. Jun and Park [7] extended this line of research by defining bipolar-valued fuzzy filters in BCH-
algebras. They characterized the structural behavior of these filters and demonstrated their relationships
with level sets, further enriching the theory of fuzzy algebra under bipolar-valued settings. Mahmood and
Munir [8] introduced bipolar fuzzy subgroups and normal subgroups, while Malik et al. [9] investigated rough
approximations in bipolar fuzzy subsemigroups. Recently, research has continued to expand the boundaries
of BFS applications. For instance, Muhiddin et al. [10] characterized bipolar fuzzy positive implicative
ideals in BCK-algebras, and Yaqoob et al. [11] extended the concept to bipolar (λ, δ)-fuzzy structures
in τ -semihypergroups, adding further depth to the theory. Abughazalah et al. [3] applied BFS theory
to the study of various ideals in BCI-algebras, introducing and analyzing bipolar fuzzy positive implicative,
commutative, and closed ideals. Their work enriched the algebraic structure of BCI-algebras by incorporating
bipolar-valued uncertainty, offering refined tools for modeling duality in logical reasoning systems. Al-Kadi
and Muhiuddin [12] focused on the development of bipolar fuzzy BCI-implicative ideals, establishing key
characterizations and algebraic properties within BCI-algebras. Their study contributed to the theoretical
advancement of fuzzy logic by extending the notion of implicative ideals to a bipolar fuzzy context. The
vast body of literature underscores the theoretical richness and practical versatility of BFSs. By combining
dual membership perspectives, BFSs offer a sophisticated approach to capturing nuanced relationships in
uncertain environments. As the field continues to grow, BFSs remain integral to advancing modern fuzzy
logic and algebraic research.

The concept of IUP-algebras was first introduced by Iampan et al. in 2022 [13] as a novel algebraic struc-
ture characterized by four primary subsets: IUP-subalgebras, IUP-filters, IUP-ideals, and strong IUP-ideals.
Their pioneering work not only laid the theoretical foundations of IUP-algebras but also highlighted their
potential as a fertile ground for mathematical research. By establishing fundamental properties and exploring
their initial applications, Iampan et al. opened new avenues for the study of algebraic structures. Building
on this foundation, research in IUP-algebras has rapidly expanded, addressing both theoretical advancements
and practical implications. Chanmanee et al. [14] contributed significantly to this growing body of knowl-
edge in 2023 by exploring the direct product of infinite families of IUP-algebras. Their study introduced
the notion of weak direct products and developed essential results concerning (anti-)IUP-homomorphisms,
deepening the structural understanding of IUP-algebras and providing crucial tools for further exploration.
In 2024, Kuntama et al. [15] integrated FS theory with IUP-algebras, introducing constructs such as fuzzy
IUP-subalgebras, fuzzy IUP-ideals, fuzzy IUP-filters, and fuzzy strong IUP-ideals. Their meticulous analysis
of these fuzzy subsets not only expanded the applicability of IUP-algebras but also bridged the gap between
algebraic structures and fuzzy logic, enabling new interpretations and applications. Further enriching the
framework, Suayngam et al. [16] extended the theory of IUP-algebras by incorporating intuitionistic FSs.
Their introduction of intuitionistic fuzzy IUP-subalgebras, ideals, filters, and strong ideals created hybrid
structures that offered fresh perspectives and avenues for research. This innovative integration demonstrated
the flexibility of IUP-algebras in accommodating advanced fuzzy logic concepts, thereby broadening their
potential applications. Additionally, Suayngam et al. [17] advanced the field by applying Fermatean FSs to
IUP-algebras. Their work focused on Fermatean fuzzy IUP-subalgebras, IUP-ideals, IUP-filters, and strong
IUP-ideals, further expanding the algebra’s theoretical landscape and underscoring its versatility in integrat-
ing sophisticated fuzzy systems. In 2025, Suayngam et al. [18] explored the integration of neutrosophic
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set theory into IUP-algebras, introducing novel definitions and establishing structural properties within this
hybrid framework. Their work broadens the theoretical scope of IUP-algebras by accommodating degrees
of truth, indeterminacy, and falsity, offering a richer model for uncertainty. Suayngam et al. [19] applied
Pythagorean fuzzy sets to IUP-algebras, presenting new characterizations of subalgebras, filters, and ide-
als. By leveraging the extended range of membership functions inherent in Pythagorean fuzzy logic, the
authors provided refined insights into the algebraic behavior under high-order uncertainty. Suayngam et al.
[20] advanced the theory of IUP-algebras by employing intuitionistic neutrosophic sets, analyzing complex
structural relationships through multi-valued logic. Their study delivers a comprehensive perspective on
how indeterminacy and hesitation interact with the algebraic constructs of the IUP framework. This ongo-
ing progression in the study of IUP-algebras reflects their significance as a dynamic and evolving algebraic
framework. With contributions ranging from direct product constructions to fuzzy and intuitionistic fuzzy
extensions, IUP-algebras continue to inspire innovative research, offering a robust platform for mathematical
exploration and interdisciplinary applications.

Despite the growing body of literature on fuzzy generalizations in IUP-algebras, such as those involving
fuzzy, intuitionistic fuzzy, neutrosophic, and Pythagorean fuzzy sets, the bipolar perspective has yet to be
explored. Existing studies do not account for the dual nature of uncertainty, which simultaneously captures
both satisfaction and dissatisfaction, a crucial aspect in many real-world contexts. Motivated by this gap,
the present study aims to incorporate bipolar fuzzy logic into IUP-algebras, providing a more expressive and
flexible framework for modeling algebraic uncertainty.

Building upon these developments, this study extends the concept of BFSs to the framework of IUP-
algebras. It introduces the notions of bipolar fuzzy IUP-subalgebras, bipolar fuzzy IUP-filters, bipolar fuzzy
IUP-ideals, and bipolar fuzzy strong IUP-ideals, establishing their foundational properties and providing illus-
trative examples to validate and refine these constructs. The research further identifies conditions under which
bipolar fuzzy IUP-filters can be characterized as bipolar fuzzy IUP-ideals or bipolar fuzzy IUP-subalgebras,
thereby enriching the structural understanding of IUP-algebras. Additionally, it explores the relationships
between bipolar fuzzy IUP-subalgebras (and their corresponding filters, ideals, and strong ideals) and their
level cuts, as well as the interplay between IUP-subalgebras, IUP-filters, IUP-ideals, and strong IUP-ideals
with their associated characteristic BFSs. These findings provide a robust foundation for integrating bipolar
fuzzy logic into the study of IUP-algebras, highlighting the potential for further theoretical and practical
applications.

The remainder of this paper is organized as follows. Section 2 reviews basic definitions and properties
related to IUP-algebras. In Section 3, we introduce the concept of BFSs in IUP-algebras and establish key
properties of bipolar fuzzy IUP-subalgebras, bipolar fuzzy IUP-filters, bipolar fuzzy IUP-ideals, and bipolar
fuzzy strong IUP-ideals, accompanied by illustrative examples. Section 4 focuses on the analysis of level
cuts and their connections to bipolar fuzzy structures. Finally, Section 5 concludes the paper and discusses
potential directions for future research.

2 Preliminaries

IUP-algebra, a relatively recent addition to the landscape of algebraic structures, was first conceptualized to
address specific gaps in the study of non-classical logic systems and fuzzy algebra. Introduced by Iampan
et al. [13] in 2022, IUP-algebras are defined by their distinctive axiomatic framework, which includes four
fundamental subsets: IUP-subalgebras, IUP-filters, IUP-ideals, and strong IUP-ideals. These subsets form the
cornerstone of this algebraic structure, offering a flexible yet robust platform for exploring logical relationships
and algebraic operations.

The unique properties of IUP-algebras, such as their closure under binary operations and their relationship
to algebraic completeness, make them an invaluable tool for advancing theoretical mathematics. Researchers
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have leveraged these properties to investigate the interplay between algebraic constructs and fuzzy logic,
thereby broadening the applicability of IUP-algebras across disciplines. This section aims to lay the ground-
work for the study of BFSs within IUP-algebras by revisiting their foundational definitions, key examples,
and properties.

Definition 2.1. [13] An algebra I = (I; ·, ℘) of type (2, 0) is defined as an IUP-algebra if it satisfies a specific
set of axioms. Here, I represents a nonempty set, · denotes a binary operation defined on I, and ℘ is the
distinguished constant element of I. These foundational elements work in unison to establish the structural
integrity and logical properties of IUP-algebras, as outlined by the following axioms:

(∀λ̇ ∈ I)(℘ · λ̇ = λ̇), (IUP-1)

(∀λ̇ ∈ I)(λ̇ · λ̇ = ℘), (IUP-2)

(∀λ̇, γ̈, β̌ ∈ I)((λ̇ · γ̈) · (λ̇ · β̌) = γ̈ · β̌). (IUP-3)

For clarity and ease of reference, we shall denote the IUP-algebra I as I = (I; ·, ℘) throughout this
discussion, unless stated otherwise.

In I, the following assertions are valid (see [13]).

(∀λ̇, γ̈ ∈ I)((λ̇ · ℘) · (λ̇ · γ̈) = γ̈), (1)

(∀λ̇ ∈ I)((λ̇ · ℘) · (λ̇ · ℘) = ℘), (2)

(∀λ̇, γ̈ ∈ I)((λ̇ · γ̈) · ℘ = γ̈ · λ̇), (3)

(∀λ̇ ∈ I)((λ̇ · ℘) · ℘ = λ̇), (4)

(∀λ̇, γ̈ ∈ I)(λ̇ · ((λ̇ · ℘) · γ̈) = γ̈), (5)

(∀λ̇, γ̈ ∈ I)(((λ̇ · ℘) · γ̈) · λ̇ = γ̈ · ℘), (6)

(∀λ̇, γ̈, β̌ ∈ I)(λ̇ · γ̈ = λ̇ · β̌ ⇔ γ̈ = β̌), (7)

(∀λ̇, γ̈ ∈ I)(λ̇ · γ̈ = ℘ ⇔ λ̇ = γ̈), (8)

(∀λ̇ ∈ I)(λ̇ · ℘ = ℘ ⇔ λ̇ = ℘), (9)

(∀λ̇, γ̈, β̌ ∈ I)(γ̈ · λ̇ = β̌ · λ̇ ⇔ γ̈ = β̌), (10)

(∀λ̇, γ̈ ∈ I)(λ̇ · γ̈ = γ̈ ⇒ λ̇ = ℘), (11)

(∀λ̇, γ̈, β̌ ∈ I)((λ̇ · γ̈) · ℘ = (β̌ · γ̈) · (β̌ · λ̇)), (12)

(∀λ̇, γ̈, β̌ ∈ I)(λ̇ · γ̈ = ℘ ⇔ (β̌ · λ̇) · (β̌ · γ̈) = ℘), (13)

(∀λ̇, γ̈, β̌ ∈ I)(λ̇ · γ̈ = ℘ ⇔ (λ̇ · β̌) · (γ̈ · β̌) = ℘), (14)

the right and the left cancellation laws hold. (15)

Definition 2.2. [13] A nonempty subset S of I is called

(i) an IUP-subalgebra (IUPS) of I if it satisfies the following requirement:

(∀λ̇, γ̈ ∈ S)(λ̇ · γ̈ ∈ S), (16)

(ii) an IUP-filter (IUPF) of I if it satisfies the following requirements:

the constant element ℘ of I is in S, (17)

(∀λ̇, γ̈ ∈ I)(λ̇ · γ̈ ∈ S, λ̇ ∈ S ⇒ γ̈ ∈ S), (18)
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(iii) an IUP-ideal (IUPI) of I if it satisfies the requirement (17) and the following requirement:

(∀λ̇, γ̈, β̌ ∈ I)(λ̇ · (γ̈ · β̌) ∈ S, γ̈ ∈ S ⇒ λ̇ · β̌ ∈ S), (19)

(iv) a strong IUP-ideal (SIUPI) of I if it satisfies the following requirement:

(∀λ̇, γ̈ ∈ I)(γ̈ ∈ S ⇒ λ̇ · γ̈ ∈ S). (20)

As established in [13], the concept of IUPFs represents a significant generalization of IUPIs and IUPSs,
broadening the theoretical scope of these subsets. Notably, both IUPIs and IUPSs serve as further gener-
alizations of SIUPIs, illustrating a clear hierarchical relationship within the structure of IUP-algebras. In
the specific case of I, the SIUPIs align precisely with I itself, reflecting a unique symmetry in this algebraic
framework.

To provide a comprehensive visualization of these interrelationships, the diagram of the special subsets of
IUP-algebras is depicted in Figure 1, offering a concise representation of their structural hierarchy.

Figure 1: Special subsets of IUP-algebras

The following theorem is elementary, and its proof is straightforward.

Theorem 2.3. Let {Bi}i∈I be a nonempty family of IUPSs (resp., IUPFs, IUPIs, SIUPIs) of I. Then∩
i∈I Bi is an IUPSs (resp., IUPFs, IUPIs, SIUPIs) of I.

3 BFSs in IUP-Algebras

The concept of BFSs emerged as a groundbreaking extension of Zadehs classical FS theory, addressing
the limitations of single-membership degrees in capturing dual or conflicting information. Introduced by
Zhang, BFSs incorporate two distinct membership functions: one for positive membership (satisfaction) and
another for negative membership (dissatisfaction). This dual structure allows BFSs to model complex systems
characterized by simultaneous agreement and disagreement, offering a richer framework for representing
uncertainty and imprecision.

Over the years, BFSs have evolved into a powerful tool in algebraic structures, decision-making, sentiment
analysis, and logical systems. By capturing nuanced relationships in uncertain environments, BFSs provide a
robust foundation for integrating advanced fuzzy logic into algebraic frameworks. This section introduces the
concept of BFSs in the context of IUP-algebras, defining key properties and demonstrating their applicability
through illustrative examples and rigorous analysis.

Let I be the universe of discourse. A bipolar fuzzy set (BFS) 𝟋 in I is an object having the form

𝟋 = {(λ̇,𝟋−(λ̇),𝟋+(λ̇)) | λ̇ ∈ I}
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where 𝟋− : I → [−1, 0] and 𝟋+ : I → [0, 1] are mappings. For convenience, we adopt the notation
𝟋 = (I;𝟋−,𝟋+) to represent the BFS 𝟋 = {(λ̇,𝟋−(λ̇),𝟋+(λ̇)) | λ̇ ∈ I}.

In the following, we introduce the notion of bipolar fuzzy IUP-subalgebras, along with their counterparts:
bipolar fuzzy IUP-filters, bipolar fuzzy IUP-ideals, and bipolar fuzzy strong IUP-ideals, within the framework
of the IUP-algebra I. To enhance understanding and demonstrate their practical relevance, we provide
illustrative examples that highlight the fundamental properties and behaviors of these constructs.

Definition 3.1. A BFS 𝟋 = (I;𝟋−,𝟋+) in I is called a bipolar fuzzy IUP-subalgebra (BFIUPS) of I if it
satisfies the following requirements: for any λ̇, γ̈ ∈ I,

𝟋−(λ̇ · γ̈) ≤ max{𝟋−(λ̇),𝟋−(γ̈)}, (21)

𝟋+(λ̇ · γ̈) ≥ min{𝟋+(λ̇),𝟋+(γ̈)}. (22)

Remark 3.2. If 𝟋 = (I;𝟋−,𝟋+) is a BFIUPS of I, then

𝟋−(℘) ≤ 𝟋−(λ̇) and 𝟋+(℘) ≥ 𝟋+(λ̇) for all λ̇ ∈ I.

Indeed, for all λ̇ ∈ I,

𝟋−(℘) = 𝟋−(λ̇ · λ̇) ≤ 𝟋−(λ̇),

𝟋+(℘) = 𝟋+(λ̇ · λ̇) ≥ 𝟋+(λ̇).

Example 3.3. Let us consider the IUP-algebra I = {℘, 1, 2, 3, 4, 5}, defined by the following table, which
encapsulates its binary operation:

Table 1: The Cayley table for Example 3.3

· ℘ 1 2 3 4 5

℘ ℘ 1 2 3 4 5
1 5 ℘ 3 1 2 4
2 2 4 ℘ 5 1 3
3 4 5 1 ℘ 3 2
4 3 2 5 4 ℘ 1
5 1 3 4 2 5 ℘

Define 𝟋 = (I;𝟋−,𝟋+) in I as follows:

I ℘ 1 2 3 4 5

𝟋− −0.9 −0.3 −0.6 −0.3 −0.3 −0.3
𝟋+ 0.8 0.1 0.5 0.1 0.1 0.1

Then 𝟋 = (I;𝟋−,𝟋+) is a BFIUPS of I.

Definition 3.4. A BFS 𝟋 = (I;𝟋−,𝟋+) in I is called a bipolar fuzzy IUP-filter (BFIUPF) of I if it satisfies
the following requirements: for any λ̇, γ̈ ∈ I,

𝟋−(℘) ≤ 𝟋−(λ̇), (23)

𝟋+(℘) ≥ 𝟋+(λ̇), (24)

𝟋−(γ̈) ≤ max{𝟋−(λ̇ · γ̈),𝟋−(λ̇)}, (25)

𝟋+(γ̈) ≥ min{𝟋+(λ̇ · γ̈),𝟋+(λ̇)}. (26)
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Example 3.5. Take, for instance, the IUP-algebra I = {℘, 1, 2, 3, 4, 5}, whose structure is defined by the
following Cayley table:

Table 2: The Cayley table for Example 3.5

· ℘ 1 2 3 4 5

℘ ℘ 1 2 3 4 5
1 2 ℘ 1 4 5 3
2 1 2 ℘ 5 3 4
3 3 5 4 ℘ 2 1
4 5 4 3 1 ℘ 2
5 4 3 5 2 1 ℘

Define 𝟋 = (I;𝟋−,𝟋+) in I as follows:

I ℘ 1 2 3 4 5

𝟋− −0.8 −0.7 −0.7 −0.2 −0.2 −0.2
𝟋+ 0.9 0.5 0.5 0.4 0.4 0.4

Then 𝟋 = (I;𝟋−,𝟋+) is a BFIUPF of I.

Definition 3.6. A BFS 𝟋 = (I;𝟋−,𝟋+) in I is called a bipolar fuzzy IUP-ideal (BFIUPI) of I if it satisfies
(23), (24) and the following requirements: for any λ̇, γ̈, β̌ ∈ I,

𝟋−(λ̇ · β̌) ≤ max{𝟋−(λ̇ · (γ̈ · β̌)),𝟋−(γ̈)}, (27)

𝟋+(λ̇ · β̌) ≥ min{𝟋+(λ̇ · (γ̈ · β̌)),𝟋+(γ̈)}. (28)

Example 3.7. Let us consider the IUP-algebra I = {℘, 1, 2, 3, 4, 5}, defined by the following table, which
encapsulates its binary operation:

Table 3: The Cayley table for Example 3.7

· ℘ 1 2 3 4 5

℘ ℘ 1 2 3 4 5
1 3 ℘ 1 4 5 2
2 4 3 ℘ 5 2 1
3 1 2 5 ℘ 3 4
4 2 5 4 1 ℘ 3
5 5 4 3 2 1 ℘

Define 𝟋 = (I;𝟋−,𝟋+) in I as follows:

I ℘ 1 2 3 4 5

𝟋− −0.9 −0.8 −0.8 −0.4 −0.4 −0.4
𝟋+ 0.7 0.5 0.5 0.1 0.1 0.1

Then 𝟋 = (I;𝟋−,𝟋+) is a BFIUPI of I.

Definition 3.8. A BFS 𝟋 = (I;𝟋−,𝟋+) in I is called a bipolar fuzzy strong IUP-ideal (BFSIUPI) of I if it
satisfies the following requirements: for any λ̇, γ̈ ∈ I,

𝟋−(λ̇ · γ̈) ≤ 𝟋−(γ̈), (29)

𝟋+(λ̇ · γ̈) ≥ 𝟋+(γ̈). (30)
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Theorem 3.9. A BFS 𝟋 = (I;𝟋−,𝟋+) in I is constant if and only if it is a BFSIUPI of I.

Proof. Assume that 𝟋 = (I;𝟋−,𝟋+) is a constant BFS in I. Then there exists (∇−,∇+) ∈ [−1, 0]× [0, 1]
such that 𝟋−(λ̇) = ∇− and 𝟋+(λ̇) = ∇+ for all λ̇ ∈ I. Thus, 𝟋−(℘) = ∇− ≤ ∇− = 𝟋−(λ̇) and 𝟋+(℘) =
∇+ ≥ ∇+ = 𝟋+(λ̇) for all λ̇ ∈ I. So, 𝟋−(λ̇ · γ̈) = ∇− ≤ ∇− = 𝟋−(γ̈) and 𝟋+(λ̇ · γ̈) = ∇+ ≥ ∇+ = 𝟋+(λ̇).
Hence, 𝟋 = (I;𝟋−,𝟋+) is a BFSIUPI of I.

Conversely, assume that 𝟋 = (I;𝟋−,𝟋+) is a BFSIUPI of I. Then for all λ̇, γ̈ ∈ I,

𝟋−(℘) ≤ 𝟋−(λ̇) and 𝟋+(℘) ≥ 𝟋+(λ̇),

𝟋−(λ̇ · γ̈) ≤ 𝟋−(γ̈) and 𝟋+(λ̇ · γ̈) ≥ 𝟋+(γ̈).

Then

𝟋−(λ̇) = 𝟋−((λ̇ · ℘) · 0) = 𝟋−(℘),

𝟋+(λ̇) = 𝟋+((λ̇ · ℘) · ℘) = 𝟋+(℘).

Hence, 𝟋−(λ̇) = 𝟋−(℘) and 𝟋+(λ̇) = 𝟋+(℘). Therefore, 𝟋 = (I;𝟋−,𝟋+) is a constant BFS in I. □
Theorem 3.10. Every BFSIUPI of I is a BFIUPI.

Proof. Let 𝟋 = (I;𝟋−,𝟋+) be a BFSIUPI of I. By Theorem 3.9, there exists (∇−,∇+) ∈ [−1, 0] × [0, 1]
such that 𝟋−(λ̇) = ∇− and 𝟋+(λ̇) = ∇+ for all λ̇ ∈ I. For all λ̇, γ̈, β̌ ∈ I,

𝟋−(λ̇ · γ̈) = ∇− ≤ ∇− = max{∇−,∇−} = max{𝟋−(λ̇ · (γ̈ · β̌)),𝟋−(γ̈)},

𝟋+(λ̇ · γ̈) = ∇+ ≥ ∇+ = min{∇+,∇+} = min{𝟋+(λ̇ · (γ̈ · β̌)),𝟋+(γ̈)}.

Hence, 𝟋 = (I;𝟋−,𝟋+) is a BFIUPI of I. □
Example 3.11. Let us examine an IUP-algebra I = {℘, 1, 2, 3, 4, 5}, characterized by the following table:

Table 4: The Cayley table for Example 3.11

· ℘ 1 2 3 4 5

℘ ℘ 1 2 3 4 5
1 3 ℘ 1 4 5 2
2 4 3 ℘ 5 2 1
3 1 2 5 ℘ 3 4
4 2 5 4 1 ℘ 3
5 5 4 3 2 1 ℘

We define a BFS 𝟋 = (I;𝟋−,𝟋+) in I as follows:

I ℘ 1 2 3 4 5

𝟋− −0.8 −0.4 −0.8 −0.4 −0.8 −0.4
𝟋+ 0.3 0.1 0.3 0.1 0.3 0.1

Then 𝟋 is a BFIUPI of I, but it is not a BFSIUPI of I. Indeed,

𝟋−(1 · ℘) = 𝟋−(3) = −0.4 ≰ −0.8 = 𝟋−(℘),

𝟋+(5 · ℘) = 𝟋+(5) = 0.1 ≱ 0.3 = 𝟋+(℘).
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Theorem 3.12. Every BFSIUPI of I is a BFIUPS.

Proof. Let 𝟋 = (I;𝟋−,𝟋+) be a BFSIUPI of I. By Theorem 3.9, there exists (∇−,∇+) ∈ [−1, 0] × [0, 1]
such that 𝟋−(λ̇) = ∇− and 𝟋+(λ̇) = ∇+ for all λ̇ ∈ I. For all λ̇, γ̈ ∈ I,

𝟋−(λ̇ · γ̈) = ∇− ≤ ∇− = max{∇−,∇−} = max{𝟋−(λ̇),𝟋−(γ̈)},

𝟋+(λ̇ · γ̈) = ∇+ ≥ ∇+ = min{∇+,∇+} = min{𝟋+(λ̇),𝟋+(γ̈)}.

Hence, 𝟋 = (I;𝟋−,𝟋+) is a BFIUPS of I. □

Example 3.13. Let us examine an IUP-algebra I = {℘, 1, 2, 3, 4, 5}, characterized by the following table:

Table 5: The Cayley table for Example 3.13

· ℘ 1 2 3 4 5

℘ ℘ 1 2 3 4 5
1 5 ℘ 3 1 2 4
2 2 4 ℘ 5 1 3
3 4 5 1 ℘ 3 2
4 3 2 5 4 ℘ 1
5 1 3 4 2 5 ℘

We define a BFS 𝟋 = (I;𝟋−,𝟋+) in I as follows:

I ℘ 1 2 3 4 5

𝟋− −0.9 −0.4 −0.4 −0.5 −0.5 −0.4
𝟋+ 0.8 0.6 0.6 0.7 0.7 0.6

Then 𝟋 is a BFIUPS of I but it is not a BFSIUPI of I. Indeed,

𝟋−(1 · 3) = 𝟋−(1) = −0.4 ≰ −0.5 = 𝟋−(3),

𝟋+(2 · 3) = 𝟋+(5) = 0.6 ≱ 0.7 = 𝟋+(3).

Theorem 3.14. Every BFIUPI of I is a BFIUPF.

Proof. Let 𝟋 = (I;𝟋−,𝟋+) be a BFIUPI of I. Then for all λ̇, γ̈ ∈ I,𝟋−(℘) ≤ 𝟋−(λ̇) and 𝟋+(℘) ≥ 𝟋+(λ̇)
and

𝟋−(γ̈) = 𝟋−(℘ · γ̈)
≤ max{𝟋−(℘ · (λ̇ · γ̈)),𝟋−(λ̇)}
≤ max{𝟋−(λ̇ · γ̈),𝟋−(λ̇)},

𝟋+(γ̈) = 𝟋+(℘ · γ̈)
≥ min{𝟋+(℘ · (λ̇ · γ̈)),𝟋+(λ̇)}
≥ min{𝟋+(λ̇ · γ̈),𝟋+(λ̇)}.

Hence, 𝟋 = (I;𝟋−,𝟋+) is a BFIUPF of I. □
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Example 3.15. Let us examine an IUP-algebra I = {℘, 1, 2, 3, 4, 5}, characterized by the following table:

Table 6: The Cayley table for Example 3.15

· ℘ 1 2 3 4 5

℘ ℘ 1 2 3 4 5
1 1 ℘ 4 5 2 3
2 2 3 ℘ 1 5 4
3 4 5 1 ℘ 3 2
4 3 2 5 4 ℘ 1
5 5 4 3 2 1 ℘

We define a BFS 𝟋 = (I;𝟋−,𝟋+) in I as follows:

I ℘ 1 2 3 4 5

𝟋− −0.9 −0.3 −0.6 −0.3 −0.3 −0.3
𝟋+ 0.8 0.1 0.7 0.1 0.1 0.1

Then 𝟋 is a BFIUPF of I, but it is not a BFIUPI of I. Indeed,

𝟋−(3 · 1) = 𝟋−(5) = −0.3 ≰ −0.6 = 𝟋−(2) = max{𝟋−(℘),𝟋−(2)} = max{𝟋−(3 · (2 · 1)),𝟋−(2)},

𝟋+(1 · 5) = 𝟋+(3) = 0.1 ≱ 0.7 = 𝟋+(2) = min{𝟋+(2),𝟋+(2)} = min{𝟋+(1 · (2 · 5)),𝟋+(2)}.

Theorem 3.16. Every BFIUPS of I is a BFIUPF.

Proof. Let 𝟋 = (I;𝟋−,𝟋+) be a BFIUPS of I. Then for all λ̇, γ̈ ∈ I,𝟋−(0) ≤ 𝟋−(λ̇) and 𝟋+(0) ≥ 𝟋+(λ̇)
and

𝟋−(λ̇) = 𝟋−(℘ · λ̇)
= 𝟋−((γ̈ · ℘) · (γ̈ · λ̇))
≤ max{𝟋−(γ̈ · ℘),𝟋−(γ̈ · λ̇)}
≤ max{max{𝟋−(γ̈),𝟋−(℘)},𝟋−(γ̈ · λ̇)}
≤ max{𝟋−(γ̈),𝟋−(γ̈ · λ̇)}
= max{𝟋−(γ̈ · λ̇),𝟋−(γ̈)},

𝟋+(λ̇) = 𝟋+(℘ · λ̇)
= 𝟋+((γ̈ · ℘) · (γ̈ · λ̇))
≥ min{𝟋+(γ̈ · ℘),𝟋+(γ̈ · λ̇)}
≥ min{min{𝟋+(γ̈),𝟋+(℘)},𝟋+(γ̈ · λ̇)}
≥ min{𝟋+(γ̈),𝟋+(γ̈ · λ̇)}
= min{𝟋+(γ̈ · λ̇),𝟋+(γ̈)}.

Hence, 𝟋 = (I;𝟋−,𝟋+) is a BFIUPF of I. □
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If A is a subset of a nonempty set I, the functions 𝟋−
A : I → [−1, 0] and 𝟋+

A : I → [0, 1] defined as follows:

𝟋−
A (λ̇) =

{
−1 if λ̇ ∈ A

0 otherwise

𝟋+
A (λ̇) =

{
1 if λ̇ ∈ A

0 otherwise.

Therefore, the BFS 𝟋A = (I;𝟋−
A ,𝟋

+
A ) is defined as the characteristic BFS of A in I.

Lemma 3.17. Let A be a nonempty subset of I. Then the constant ℘ of I is in A if and only if 𝟋A satisfies
(23) and (24).

Proof. If ℘ ∈ A, then 𝟋−
A (℘) = −1. Thus, 𝟋−

A (℘) = −1 ≤ 𝟋−
A (λ̇) for all λ̇ ∈ I, that is, it satisfies (23). Since

℘ ∈ A, we have 𝟋+
A (℘) = 1. Thus, 𝟋+

A (℘) = 1 ≥ 𝟋+
A (λ̇) for all λ̇ ∈ I, that is, it satisfies (24).

Conversely, assume that 𝟋−
A satisfies (23) and (24). Then 𝟋−

A (℘) ≤ 𝟋−
A (λ̇) for all λ̇ ∈ I. Since A is a

nonempty subset of I, we let λ̇ ∈ A. Then 𝟋−
A (℘) ≤ 𝟋−

A (λ̇) = −1, so 𝟋−
A (℘) = −1. Hence, ℘ ∈ A. □

Theorem 3.18. A nonempty subset A of I is an IUPS of I if and only if the characteristic BFS 𝟋A is a
BFIUPS of I.

Proof. Assume that A is an IUPS of I. Let λ̇, γ̈ ∈ I.
Case 1: Suppose λ̇, γ̈ ∈ A. Then 𝟋−

A (λ̇) = −1, 𝟋−
A (γ̈) = −1, 𝟋+

A (λ̇) = 1 and 𝟋+
A (γ̈) = 1. Since A is

an IUPS of I, we have λ̇ · γ̈ ∈ A. Thus, 𝟋−
A (λ̇ · γ̈) = −1 ≤ −1 = max{−1,−1} = max{𝟋−

A (λ̇),𝟋
−
A (γ̈)} and

𝟋+
A (λ̇ · γ̈) = 1 ≥ 1 = min{1, 1} = min{𝟋+

A (λ̇),𝟋
+
A (γ̈)}.

Case 2: Suppose λ̇ /∈ A or γ̈ /∈ A. Then 𝟋−
A (λ̇) = 0 or 𝟋−

A (γ̈) = 0 and 𝟋+
A (λ̇) = 0 or 𝟋+

A (γ̈) = 0. Thus,

𝟋−
A (λ̇ · γ̈) ≤ 0 = max{𝟋−

A (λ̇),𝟋
−
A (γ̈)} and 𝟋+

A (λ̇ · γ̈) ≥ 0 = min{𝟋+
A (λ̇),𝟋

+
A (γ̈)}.

Hence, 𝟋A is a BFIUPS of I.
Conversely, assume that 𝟋A is a BFIUPS of I. Let λ̇, γ̈ ∈ A. Then 𝟋−

A (λ̇) = −1, 𝟋−
A (γ̈) = −1, 𝟋+

A (λ̇) = 1

and 𝟋+
A (γ̈) = 1. By (21) and (22), we have 𝟋−

A (λ̇ · γ̈) ≤ max{𝟋−
A (λ̇),𝟋

−
A (γ̈)} = max{−1,−1} = −1 and

𝟋+
A (λ̇ · γ̈) ≥ min{𝟋+

A (λ̇),𝟋
+
A (γ̈)} = min{1, 1} = 1. Thus, 𝟋−

A (λ̇ · γ̈) = −1 and 𝟋+
A (λ̇ · γ̈) = 1, that is, λ̇ · γ̈ ∈ A.

Hence, A is an IUPS of I. □

Theorem 3.19. A nonempty subset A of I is an IUPI of I if and only if the characteristic BFS 𝟋A is a
BFIUPI of I.

Proof. Assume that A is an IUPI of I. Since ℘ ∈ A, it follows from Lemma 3.17 that 𝟋A satisfies (23) and
(24). Next, let λ̇, γ̈, β̌ ∈ I.

Case 1: Suppose λ̇ · (γ̈ · β̌) ∈ A and γ̈ ∈ A. Then λ̇ · β̌ ∈ A. Thus, 𝟋−
A (λ̇ · β̌) = −1 and 𝟋+

A (λ̇ · β̌) = 1.

Hence, 𝟋−
A (λ̇ · β̌) = 1 ≤ max{𝟋−

A (λ̇ · (γ̈ · β̌)),𝟋−
A (γ̈)} and 𝟋+

A (λ̇ · β̌) = 1 ≥ min{𝟋+
A (λ̇ · (γ̈ · β̌)),𝟋+

A (γ̈)}.
Case 2: Suppose λ̇ · (γ̈ · β̌) /∈ A or γ̈ /∈ A. Then 𝟋−

A (λ̇ · (γ̈ · β̌)) = 0 or 𝟋−
A (γ̈) = 0 and 𝟋+

A (λ̇ · (γ̈ · β̌)) = 0

or 𝟋+
A (γ̈) = 0. Thus, max{𝟋−

A (λ̇ · (γ̈ · β̌)),𝟋−
A (γ̈)} = 0 and min{𝟋+

A (λ̇ · (γ̈ · β̌)),𝟋+
A (γ̈)} = 0. Hence,

𝟋−
A (λ̇ · β̌) ≤ 0 = max{𝟋−

A (λ̇ · (γ̈ · β̌)),𝟋−
A (γ̈)} and 𝟋+

A (λ̇ · β̌) ≥ 0 = min{𝟋+
A (λ̇ · (γ̈ · β̌)),𝟋+

A (γ̈)}.
Therefore, 𝟋A is a BFIUPI of I.

Conversely, assume that 𝟋A is a BFIUPI of I. Since 𝟋A satisfies (23) and (24), it follows from Lemma 3.17
that ℘ ∈ A. Next, let λ̇, γ̈, β̌ ∈ A be such that λ̇ · (γ̈ · β̌) ∈ A and γ̈ ∈ A. Assume that λ̇ · β̌ /∈ A. By (27) and
(28), we have 0 = 𝟋−

A (λ̇ · β̌) ≤ max{𝟋−
A (λ̇ · (γ̈ · β̌)),𝟋−

A (γ̈)} and 0 = 𝟋+
A (λ̇ · β̌) ≥ min{𝟋+

A (λ̇ · (γ̈ · β̌)),𝟋+
A (γ̈)}.

Thus, max{𝟋−
A (λ̇ · (γ̈ · β̌)),𝟋−

A (γ̈)} = 0 and min{𝟋+
A (λ̇ · (γ̈ · β̌),𝟋+

A (γ̈)} = 0. It means that 𝟋−
A (λ̇ · (γ̈ · β̌)) = 0

or 𝟋−
A (γ̈) = 0 and 𝟋+

A (λ̇ · (γ̈ · β̌)) = 0 or 𝟋+
A (γ̈) = 0. Thus, λ̇ · (γ̈ · β̌) /∈ A or γ̈ /∈ A, a contradiction. Hence,

λ̇ · β̌ ∈ A, so A is an IUPI of I. □
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Theorem 3.20. A nonempty subset A of I is an IUPF of I if and only if the characteristic BFS 𝟋A is a
BFIUPF of I.

Proof. Assume that A is an IUPF of I. Since ℘ ∈ I, it follows from Lemma 3.17 that 𝟋A satisfies (23) and
(24). Next, let λ̇, γ̈ ∈ I.

Case 1: Suppose γ̈ ∈ A. Thus, 𝟋−
A (γ̈) = −1 and 𝟋+

A (γ̈) = 1. Hence 𝟋−
A (γ̈) = −1 ≤ max{𝟋−

A (λ̇ · γ̈),𝟋
−
A (λ̇)}

and 𝟋+
A (γ̈) = 1 ≥ min{𝟋+

A (λ̇ · γ̈),𝟋+
A (λ̇)}.

Case 2: Suppose γ̈ /∈ A. Then 𝟋−
A (γ̈) = 0 and 𝟋+

A (γ̈) = 0. Since A is an IUPF of I, we have λ̇ /∈ A or

λ̇ · γ̈ /∈ A. Thus, 𝟋−
A (λ̇) = 0 or 𝟋−

A (λ̇ · γ̈) = 0 and 𝟋+
A (λ̇) = 0 or 𝟋+

A (λ̇ · γ̈) = 0. Hence, 𝟋−
A (γ̈) = 0 ≤ 0 =

max{𝟋−
A (λ̇ · γ̈),𝟋−

A (λ̇)} and 𝟋+
A (γ̈) = 0 ≥ 0 = min{𝟋+

A (λ̇ · γ̈),𝟋+
A (λ̇)}.

Therefore, 𝟋A is a BFIUPF of I.
Conversely, assume that 𝟋A is a BFIUPF of I. Since 𝟋A satisfies (23) and (24), it follows from Lemma

3.17 that ℘ ∈ A. Next, let λ̇, γ̈ ∈ A be such that λ̇ · γ̈ ∈ A and λ̇ ∈ A. Then 𝟋−
A (λ̇ · γ̈) = −1, 𝟋−

A (λ̇) = −1,

𝟋+
A (λ̇ · γ̈) = 1 and 𝟋+

A (λ̇) = 1. Assume that γ̈ /∈ A. By (25) and (26), we have 0 = 𝟋−
A (γ̈) ≤ max{𝟋−

A (λ̇ ·
γ̈),𝟋−

A (λ̇)} = max{−1,−1} = −1 and 0 = 𝟋+
A (γ̈) ≥ min{𝟋+

A (λ̇ · γ̈),𝟋+
A (λ̇)} = min{1, 1} = 1, a contradiction.

Hence, γ̈ ∈ A, so A is an IUPF of I. □
Theorem 3.21. A nonempty subset A of I is an SIUPI of I if and only if the characteristic BFS 𝟋A is a
BFSIUPI of I.

Proof. This result can be directly inferred from Theorem 3.9, providing a clear and concise validation. □
Example 3.22. Let R∗ denote the set of all nonzero real numbers. The structure (R∗; ·, 1) forms an IUP-
algebra, where the binary operation · on R∗ is defined as λ̇ · γ̈ = γ̈

λ̇
for all λ̇, γ̈ ∈ R∗. Consider the subset

S = {λ̇ ∈ R∗ | λ̇ ≥ 1}. This subset qualifies as both an IUPI and an IUPF of R∗, but it does not satisfy the
criteria for being an IUPS.

Furthermore, by Theorems 3.18, 3.19, and 3.20, the characteristic BFS 𝟋S = (R∗;𝟋−
S,𝟋

+
S) is classified

as both a BFIUPI and a BFIUPF of R∗, yet it does not meet the requirements to be a BFIUPS.

Example 3.23. Consider an IUP-algebra I = {℘, 1, 2, 3, 4, 5} with the Cayley table:

Table 7: The Cayley table for Example 3.23

· ℘ 1 2 3 4 5

℘ ℘ 1 2 3 4 5
1 4 ℘ 5 2 1 3
2 2 5 ℘ 4 3 1
3 3 2 1 ℘ 5 4
4 1 4 3 5 ℘ 2
5 5 3 4 1 2 ℘

We define a BFS 𝟋 = (I;𝟋−,𝟋+) in I as follows:

I ℘ 1 2 3 4 5

𝟋− −0.8 −0.2 −0.2 −0.2 −0.2 −0.4
𝟋+ 0.9 0.5 0.5 0.5 0.5 0.7

Then 𝟋 is a BFIUPS of I, but it is not a BFIUPI of I. Indeed,

𝟋−(3 · 1) = 𝟋−(2) = −0.2 ≰ −0.4 = 𝟋−(5) = max{𝟋−(℘),𝟋−(5)} = max{𝟋−(3 · (5 · 1)),𝟋−(5)},

𝟋+(4 · 1) = 𝟋+(4) = 0.5 ≱ 0.7 = 𝟋+(5) = min{𝟋+(5),𝟋+(5)} = min{𝟋+(4 · (5 · 1)),𝟋+(5)}.
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4 Level Cuts of a BFS

Level cuts serve as a fundamental analytical tool in the study of BFSs, providing a structured approach
to examining their inherent properties. By partitioning a BFS into subsets defined by specific membership
thresholds, level cuts allow for a more granular investigation of both the positive and negative membership
functions. These cuts, typically categorized as negative lower cuts and positive upper cuts, capture critical
information about the satisfaction and dissatisfaction levels within a given BFS.

In the context of bipolar fuzzy IUP-algebras, level cuts play a pivotal role in characterizing and analyzing
various types of BFSs, such as subalgebras, filters, and ideals. By connecting these subsets to their respective
level cuts, it becomes possible to derive deeper insights into their structural behavior and algebraic relation-
ships. This section introduces the formal definitions of level cuts, establishes their connection to different
types of bipolar fuzzy subsets, and illustrates their utility through rigorous analysis and examples.

Definition 4.1. Let 𝟋 = (I;𝟋−,𝟋+) be a BFS in I. For (⊔−,⊔+) ∈ [−1, 0]× [0, 1], the sets

Lneg(𝟋,⊔−) = {λ̇ ∈ I | 𝟋−(λ̇) ≤ ⊔−},

Upos(𝟋,⊔+) = {λ̇ ∈ I | 𝟋+(λ̇) ≥ ⊔+}.

are called the negative lower ⊔−-cut and the positive upper ⊔+-cut of 𝟋 = (I;𝟋−,𝟋+), respectively. The set

C(𝟋; (⊔−,⊔+)) = LL(𝟋,⊔−) ∩ Upos(𝟋,⊔+).

is called the (⊔−,⊔+)-cut of 𝟋 = (I;𝟋−,𝟋+). For any ∇+ ∈ [0, 1], we denote the set

C(𝟋;∇+) = C(𝟋; (−∇+,∇+)) = LL(𝟋,−∇+) ∩ Upos(𝟋,∇+).

is called the ∇+-cut of 𝟋 = (I;𝟋−,𝟋+).

Example 4.2. From Example 3.15, we have Lneg(𝟋;−0.5) = {℘, 2},Upos(𝟋; 0.1) = {℘, 1, 2, 3, 4, 5},
and C(𝟋; (−0.5, 0.1)) = {℘, 2}.

Theorem 4.3. Let 𝟋 = (I;𝟋−,𝟋+) be a BFS in I. Then 𝟋 = (I;𝟋−,𝟋+) is a BFIUPS of I if and only if
the following statements are vaild:

(1) for all ⊔− ∈ [−1, 0],Lneg(𝟋;⊔−) is an IUPS of I if Lneg(𝟋;⊔−) is nonempty, and

(2) for all ⊔+ ∈ [0, 1],Upos(𝟋;⊔+) is an IUPS of I if Upos(𝟋;⊔+) is nonempty.

Proof. Assume that 𝟋 is a BFIUPS of I. Let ⊔− ∈ [−1, 0] be such that Lneg(𝟋;⊔−) ̸= ∅ and λ̇, γ̈ ∈
Lneg(𝟋;⊔−). Then 𝟋−(γ̈) ≤ ⊔− and 𝟋−(λ̇) ≤ ⊔−. Since 𝟋 is a BFIUPS of I, we have 𝟋−(λ̇ · γ̈) ≤
max{𝟋−(λ̇),𝟋−(γ̈)} ≤ ⊔−. Thus, λ̇ · γ̈ ∈ Lneg(𝟋;⊔−). Hence, Lneg(𝟋;⊔−) is an IUPS of I. Next, let
⊔+ ∈ [0, 1] be such that Upos(𝟋;⊔+) ̸= ∅ and let λ̇, γ̈ ∈ Upos(𝟋;⊔+). Then 𝟋+(γ̈) ≥ ⊔+ and 𝟋+(λ̇) ≥ ⊔+.
Since 𝟋 is a BFIUPS of I, we have 𝟋+(λ̇ · γ̈) ≥ min{𝟋+(λ̇),𝟋+(γ̈)} ≥ ⊔+. Thus, λ̇ · γ̈ ∈ Upos(𝟋;⊔+). Hence,
Upos(𝟋;⊔+) is an IUPS of I.

Conversely, assume that for all ⊔− ∈ [−1, 0],Lneg(𝟋;⊔−) is an IUPS of I if Lneg(𝟋,⊔−) is nonempty
and for all ⊔+ ∈ [0, 1],Upos(𝟋;⊔+) is an IUPS of I if Upos(𝟋; t+) is nonempty. Let λ̇, γ̈ ∈ I. Then
𝟋−(λ̇),𝟋−(γ̈) ∈ [−1, 0]. Choose ⊔− = max{𝟋−(λ̇),𝟋−(γ̈)}. Then 𝟋−(λ̇) ≤ ⊔− and 𝟋−(γ̈) ≤ ⊔−, that
is, λ̇, γ̈ ∈ Lneg(𝟋;⊔−) ̸= ∅. By hypothesis, we get Lneg(𝟋;⊔−) is an IUPS of I. So, λ̇ · γ̈ ∈ Lneg(𝟋;⊔−).
Hence, 𝟋−(λ̇ · γ̈) ≤ ⊔− = max{𝟋−(λ̇),𝟋−(γ̈)}. Let λ̇, γ̈ ∈ I. Then 𝟋+(λ̇),𝟋+(γ̈) ∈ [0, 1]. Choose
⊔+ = max{𝟋+(λ̇),𝟋+(γ̈)}. Then 𝟋+(λ̇) ≥ ⊔+ and 𝟋+(γ̈) ≥ ⊔+, that is, λ̇, γ̈ ∈ Upos(𝟋;⊔+) ̸= ∅. By hypoth-
esis, we get Upos(𝟋;⊔+) is an IUPS of I. So, λ̇·γ̈ ∈ Upos(𝟋;⊔+). Hence, 𝟋+(λ̇·γ̈) ≥ ⊔+ = min{𝟋+(λ̇),𝟋+(γ̈)}.
Therefore, 𝟋 = (I;𝟋+,𝟋−) is a BFIUPS of I. □



52 Inthachot C, Moonnon K, Visutho M, Julatha P, Iampan A. Trans. Fuzzy Sets Syst. 2026; 5(2)

Corollary 4.4. If 𝟋 = (I;𝟋−,𝟋+) is a BFIUPS of I, then for all ∇+ ∈ [0, 1], C(𝟋;∇+) is an IUPS of I
while C(𝟋;∇+) is nonempty.

Proof. This conclusion follows seamlessly from Theorems 2.3 and 4.3, reinforcing its logical clarity. □

Theorem 4.5. Let 𝟋 = (I;𝟋−,𝟋+) be a BFS in I. Then 𝟋 = (I;𝟋−,𝟋+) is BFIUPF of I if and only if
the following statements are vaild:

(1) for all ⊔− ∈ [−1, 0],Lneg(𝟋;⊔−) is an IUPF of I if Lneg(𝟋;⊔−) is nonempty, and

(2) for all ⊔+ ∈ [0, 1],Upos(𝟋;⊔+) is an IUPF of I if Upos(𝟋;⊔+) is nonempty.

Proof. Assume that 𝟋 is a BFIUPF of I. Let ⊔− ∈ [−1, 0] be such that Lneg(𝟋;⊔−) ̸= ∅ and let δ̃ ∈
Lneg(𝟋;⊔−). Then 𝟋−(δ̃) ≤ ⊔−. Since 𝟋 is a BFIUPF of I, we have 𝟋−(℘) ≤ 𝟋−(δ̃) ≤ ⊔−. Thus,
℘ ∈ Lneg(𝟋;⊔−). Next, let λ̇, γ̈ ∈ I be such that λ̇ · γ̈ ∈ Lneg(𝟋;⊔−). Then 𝟋−(λ̇ · γ̈) and 𝟋−(λ̇) ≤ ⊔−. Since
𝟋 is a BFIUPF of I, we have 𝟋−(γ̈) ≤ max{𝟋−(λ̇ · γ̈),𝟋−(λ̇)} ≤ ⊔−. So, γ̈ ∈ Lneg(𝟋,⊔−). Hence, Lneg is
an IUPF of I. Let ⊔+ ∈ [0, 1] be such that Upos(𝟋;⊔+) ̸= ∅ and let δ̃ ∈ Upos(𝟋;⊔+). Then 𝟋+(δ̃) ≥ t+.
Since 𝟋 is a BFIUPF of I, we have 𝟋+(℘) ≥ 𝟋+(δ̃) ≥ ⊔+. Thus, ℘ ∈ Upos(𝟋,⊔+). Next, let λ̇, γ̈ ∈ I be
such that λ̇ · γ̈ ∈ Upos(𝟋,⊔+). Then 𝟋+(λ̇ · γ̈) ≥ ⊔+ and 𝟋+(λ̇) ≥ ⊔+. Since 𝟋 is a BFIUPF of I, we have
𝟋+(γ̈) ≥ min{𝟋+(λ̇ · γ̈),𝟋+(λ̇)} ≥ t+. So, γ̈ ∈ Upos(𝟋;⊔+). Hence, Upos(𝟋;⊔+) is an IUPF of I.

Conversely, assume that for all ⊔− ∈ [−1, 0],Lneg(𝟋;⊔−) is an IUPF of I if Lneg(𝟋,⊔−) is nonempty
and for all ⊔+ ∈ [0, 1],Upos(𝟋;⊔+) is an IUPF of I if Upos(𝟋; t+) is nonempty. Let λ̇ ∈ I. Then 𝟋−(λ̇) ∈
[−1, 0]. Choose t− = 𝟋−(λ̇). Then 𝟋−(λ̇) ≤ ⊔−, that is, λ̇ ∈ Lneg(𝟋;⊔−) ̸= ∅. By hypothesis, we get
Lneg(𝟋;⊔−) is an IUPF of I. So, ℘ ∈ Lneg(𝟋;⊔−). Hence, 𝟋−(℘) ̸= ⊔− = 𝟋−(λ̇). Next, let λ̇, γ̈ ∈ I. Then
𝟋−(λ̇ · γ̈),𝟋−(λ̇) ∈ [−1, 0]. Choose ⊔− = max{𝟋−(λ̇ · γ̈),𝟋−(λ̇)}. Then 𝟋−(λ̇ · γ̈) ≤ ⊔− and 𝟋−(λ̇) ≤ t−,
that is, λ̇ · γ̈, λ̇ ∈ Lneg(𝟋; t−) ̸= ∅. By hypothesis, we get Lneg(𝟋;⊔−) is an IUPF of I. So, γ̈ ∈ Lneg.
Hence, 𝟋−(γ̈) ≤ ⊔− = max{𝟋−(λ̇),𝟋−(λ̇ · γ̈)}. Let λ̇ ∈ I. Then 𝟋+(λ̇) ∈ [0, 1]. Choose ⊔+ = 𝟋+(λ̇).
Then 𝟋+(λ̇) ≥ ⊔+, that is, λ̇ ∈ Upos(𝟋;⊔+) ̸= ∅. By hypothesis, we get Upos(𝟋; t+) is an IUPF of I. So,
℘ ∈ Upos(𝟋;⊔+). Hence, 𝟋+(℘) ≥ ⊔+ = 𝟋+(λ̇). Next, let λ̇, γ̈ ∈ I. Then 𝟋+(λ̇ · γ̈),𝟋+(λ̇) ∈ [0, 1]. Choose
⊔+ = min{𝟋+(λ̇ · γ̈),𝟋+(λ̇)}. Then 𝟋+(λ̇ · γ̈) ≥ ⊔+ and 𝟋+(λ̇) ≥ ⊔+, that is, λ̇ · γ̈, x ∈ Upos(𝟋,⊔+) ̸=
∅. By hypothesis, we get Upos(𝟋;⊔+) is an IUPF of I. So, γ̈ ∈ Upos(𝟋;⊔+). Hence, 𝟋+(γ̈) ≥ ⊔+ =
min{𝟋+(λ̇),𝟋+(λ̇ · γ̈). Therefore, 𝟋 is a BFIUPF of I. □

Corollary 4.6. If 𝟋 = (I;𝟋−,𝟋+) is a BFIUPF of I, then for all ∇+ ∈ [0, 1], C(𝟋;∇+) is an IUPF of I
while C(𝟋;∇+) is nonempty.

Proof. The conclusion derives naturally and clearly from Theorems 2.3 and 4.5. □

Theorem 4.7. Let 𝟋 = (I;𝟋−,𝟋+) be a BFS in I. Then 𝟋 = (I;𝟋−,𝟋+) is BFIUPI of I if and only if
the following statements are vaild:

(1) for all ⊔− ∈ [−1, 0],Lneg(𝟋;⊔−) is an IUPI of I if Lneg(𝟋;⊔−) is nonempty, and

(2) for all ⊔+ ∈ [0, 1],Upos(𝟋;⊔+) is an IUPI of I if Upos(𝟋;⊔+) is nonempty.

Proof. Assume that 𝟋 is a BFIUPI of I. Let ⊔− ∈ [−1, 0] be such that Lneg(𝟋;⊔−) ̸= ∅ and let δ̃ ∈
Lneg(𝟋;⊔−). Then 𝟋−(δ̃) ≤ ⊔−. Since 𝟋 is a BFIUPI of I, we have 𝟋−(℘) ≤ 𝟋−(δ̃) ≤ ⊔−. Thus, ℘ ∈
Lneg(𝟋;⊔−). Next, let λ̇, γ̈, β̌ ∈ I be such that λ̇·(γ̈·β̌) ∈ Lneg(𝟋;⊔−) and γ̈ ∈ Lneg(𝟋;⊔−). Then𝟋−(λ̇·(γ̈·β̌))
and 𝟋−(γ̈) ≤ ⊔−. Since 𝟋 is a BFIUPI of I, we have 𝟋−(λ̇ · β̌) ≤ max{𝟋−(λ̇ · (γ̈ · β̌)),𝟋−(γ̈)} ≤ ⊔−. So,
λ̇ · β̌ ∈ Lneg(𝟋; t−). Hence, Lneg(𝟋, t−) is an IUPI of I. Let t+ ∈ [0, 1] be such that Upos(𝟋;⊔+) ̸= ∅ and let
δ̃ ∈ Upos. Then 𝟋+(δ̃) ≥ t+. Since 𝟋 is a BFIUPI of I, we have 𝟋+(℘) ≥ 𝟋+(δ̃) ≥ t+. Thus, ℘ ∈ Upos(𝟋;⊔+).
Next, let λ̇, γ̈, β̌ ∈ I be such that λ̇ · (γ̈ · β̌) ∈ Upos(𝟋;⊔+) and γ̈ ∈ Upos(𝟋;⊔+). Then 𝟋+(λ̇ · (γ̈ · β̌)) ≥ ⊔+



Bipolar Fuzzy Sets in IUP-Algebras: Concepts and Analysis. Trans. Fuzzy Sets Syst. 2026; 5(2) 53

and 𝟋+(γ̈) ≥ ⊔+. Since 𝟋 is a BFIUPI of I, we have 𝟋+(λ̇ · β̌) ≥ min{𝟋+(λ̇ · (γ̈ · β̌)),𝟋+(γ̈)} ≥ ⊔+. So,
λ̇ · β̌ ∈ Upos(𝟋;⊔+). Hence, Upos(𝟋;⊔+) is an IUPI of I.

Conversely, assume that for all ⊔− ∈ [−1, 0],Lneg(𝟋;⊔−) is an IUPI of I if Lneg(𝟋;⊔−) is nonempty and
for all ⊔+ ∈ [0, 1],Upos(𝟋;⊔+) is an IUPI of I if Upos(𝟋;⊔+) is nonempty. Let λ̇ ∈ I. Then 𝟋−(λ̇) ∈ [−1, 0].
Choose ⊔− = 𝟋−(λ̇). Then 𝟋−(λ̇) ≤ ⊔−, that is, λ̇ ∈ Lneg(𝟋;⊔−) ̸= ∅. By hypothesis, we get Lneg(𝟋;⊔−)
is an IUPI of I. So, ℘ ∈ Lneg(𝟋;⊔−). Hence, 𝟋−(℘) ≤ ⊔− = 𝟋−(λ̇). Next, let λ̇, γ̈, β̌ ∈ I. Then
𝟋−(λ̇ · (γ̈ · β̌)),𝟋−(γ̈) ∈ [−1, 0]. Choose ⊔− = max{𝟋−(λ̇ · (γ̈ · β̌)),𝟋−(γ̈)}. Then 𝟋−(λ̇ · (γ̈ · β̌)) and
𝟋−(γ̈) ≤ t−, that is, λ̇ · (γ̈ · β̌), γ̈ ∈ Lneg(𝟋;⊔−) ̸= ∅. By hypothesis, we get Lneg(𝟋;⊔−) is an IUPI of
I. So, λ̇ · γ̈ ∈ Lneg(𝟋;⊔−). Hence, 𝟋−(λ̇ · β̌) ≤ t− = max{𝟋−(λ̇ · (γ̈ · β̌),𝟋−(γ̈)}. Let λ̇ ∈ I. Then
𝟋+(λ̇) ∈ [0, 1]. Choose ⊔+ = 𝟋+(λ̇). Then 𝟋+(λ̇) ≥ ⊔+, that is, λ̇ ∈ Upos(𝟋;⊔+) ̸= ∅. By hypothesis, we
get Upos(𝟋;⊔+) is an IUPI of I. So, ℘ ∈ Upos(𝟋;⊔+). Hence, 𝟋+(℘) ≥ ⊔+ = 𝟋+(λ̇). Next, let λ̇, γ̈, β̌ ∈ I.
Then 𝟋+(λ̇ · (γ̈ · β̌)),𝟋+(γ̈) ∈ [0, 1]. Choose ⊔+ = min{𝟋+(λ̇ · (γ̈ · β̌)),𝟋+(γ̈)}. Then 𝟋+(λ̇ · (γ̈ · β̌)) and
𝟋+(γ̈) ≥ ⊔+, that is, λ̇ · (γ̈ · β̌), γ̈ ∈ Upos(𝟋;⊔+) ̸= ∅. By hypothesis, we get Upos(𝟋;⊔+) is an IUPI of I. So,
λ̇ · β̌ ∈ Upos(𝟋;⊔+). Hence, 𝟋+(λ̇ · β̌) ≥ ⊔+ = min{𝟋+(λ̇ · β̌),𝟋+(γ̈)}. Therefore, 𝟋 is a BFIUPI of I. □

Corollary 4.8. If 𝟋 = (I;𝟋−,𝟋+) is a BFIUPI of I, then for all ∇+ ∈ [0, 1], C(𝟋;∇+) is an IUPI of I
while C(𝟋;∇+) is nonempty.

Proof. This result follows directly and intuitively from Theorems 2.3 and 4.7. □

Theorem 4.9. Let 𝟋 = (I;𝟋−,𝟋+) be a BFS in I. Then 𝟋 = (I;𝟋−,𝟋+) is a BFSIUPI of I if and only
if the following statements are vaild:

(1) for all ⊔− ∈ [−1, 0],Lneg(𝟋;⊔−) is an SIUPI of I if Lneg(𝟋;⊔−) is nonempty, and

(2) for all ⊔+ ∈ [0, 1],Upos(𝟋;⊔+) is an SIUPI of I if Upos(𝟋;⊔+) is nonempty.

Proof. Assume that 𝟋 is a BFSIUPI of I. Let ⊔− ∈ [−1, 0] be such that Lneg ̸= ∅ let λ̇, γ̈ ∈ I be such that
λ̇ · γ̈ ∈ Lneg(𝟋;⊔−) and γ̈ ∈ Lneg(𝟋;⊔−). Then 𝟋−(λ̇ · γ̈) ≤ ⊔− and 𝟋−(γ̈) ≤ ⊔−. Since 𝟋 is a BFSIUPI
of I, we have 𝟋−(λ̇ · γ̈) ≤ 𝟋−(γ̈) ≤ t−. Hence, Lneg(𝟋;⊔−) is an SIUPI of I. Let ⊔+ ∈ [0, 1] be such that
Upos ̸= ∅ and let, λ̇, γ̈ ∈ I be such that λ̇ · γ̈ ∈ Upos(𝟋;⊔+) and γ̈ ∈ Upos(𝟋;⊔+). Then 𝟋+(λ̇ · γ̈) ≥ ⊔+ and
𝟋+(γ̈) ≥ ⊔+. Since 𝟋 is a BFSIUPI of I, we have 𝟋+(λ̇ · γ̈) ≥ 𝟋+(γ̈) ≥ t+. Hence, Upos(𝟋;⊔+) is an SIUPI
of I.

Conversely, assume that for all ⊔− ∈ [−1, 0],Lneg(𝟋;⊔−) is an SIUPI of I if Lneg(𝟋;⊔−) is nonempty and
for all ⊔+ ∈ [0, 1], Upos(𝟋;⊔+) is an SIUPI of I if Upos(𝟋;⊔+) is nonempty. Let γ̈ ∈ I. Then 𝟋−(γ̈) ∈ [−1, 0].
Choose ⊔− = 𝟋−(γ̈). Then 𝟋−(γ̈) ≤ ⊔−, that is, γ̈ ∈ Lneg(𝟋;⊔−) ̸= ∅. By hypothesis, we get Lneg(𝟋;⊔−) is
an SIUPI of I. Since Lneg(𝟋;⊔−) is an SIUPI of I and (γ̈) ∈ Lneg(𝟋;⊔−), we have 𝟋−(λ̇ · γ̈) ≤ ⊔− = 𝟋−(γ̈).
Let γ̈ ∈ I. Then 𝟋+(γ̈) ∈ [0, 1]. Choose ⊔+ = 𝟋+(γ̈). Then 𝟋+(γ̈) ≥ ⊔+, that is, γ̈ ∈ Lneg(𝟋;⊔+) ̸= ∅. By
hypothesis, we get Upos(𝟋;⊔+) is an SIUPI of I. Since Upos(𝟋;⊔+) is an SIUPI of I and (γ̈) ∈ Upos(𝟋;⊔+),
we have 𝟋+(λ̇ · γ̈) ≥ ⊔+ = 𝟋+(γ̈). Therefore, 𝟋 is a BFSIUPI of I. □

Corollary 4.10. Let 𝟋 = (I;𝟋−,𝟋+) be a BFS in I. Then 𝟋 = (I;𝟋−,𝟋+) is a BFSIUPI of I if and only
if for all ∇+ ∈ [0, 1], C(𝟋;∇+) is an SIUPI of I while C(𝟋;∇+) is nonempty.

Proof. The conclusion follows directly from Theorems 2.3, 3.9, and 4.9, establishing that I is uniquely
identified as the sole SIUPI of itself. □

Theorem 4.11. Let 𝟋 = (I;𝟋−,𝟋+) be a BFIUPF of I satisfies the following assertion:

𝟋−(γ̈ · (λ̇ · β̌)) ≤ 𝟋−(λ̇ · (γ̈ · β̌)) and 𝟋+(γ̈ · (λ̇ · β̌)) ≥ 𝟋+(λ̇ · (γ̈ · β̌)) for all λ̇, γ̈, β̌ ∈ I.

Then 𝟋 = (I;𝟋−,𝟋+) is a BFIUPI of I.
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Proof. For all λ̇, γ̈, β̌ ∈ I,

𝟋−(℘) ≤ 𝟋−(λ̇),

𝟋−(λ̇ · β̌) ≤ max{𝟋−(γ̈ · (λ̇ · β̌)),𝟋−(γ̈)} ≤ max{𝟋−(λ̇ · (γ̈ · β̌)),𝟋−(γ̈)},

𝟋+(℘) ≥ 𝟋+(λ̇),

𝟋+(λ̇ · β̌) ≥ min{𝟋+(γ̈ · (λ̇ · β̌)),𝟋+(γ̈)} ≥ min{𝟋+(λ̇ · (γ̈ · β̌)),𝟋+(γ̈)}.

Hence, 𝟋 = (I;𝟋−,𝟋+) is a BFIUPI of I. □

Theorem 4.12. Let 𝟋 = (I;𝟋−,𝟋+) be a BFIUPF of I satisfies the following assertion:

𝟋−(γ̈ · (λ̇ · β̌)) ≤ 𝟋−(λ̇),𝟋−(γ̈) ≤ 𝟋−(β̌) and 𝟋+(γ̈ · (λ̇ · β̌)) ≥ 𝟋+(λ̇),𝟋+(γ̈) ≥ 𝟋+(β̌) for all λ̇, γ̈, β̌ ∈ I.

Then 𝟋 = (I;𝟋−,𝟋+) is a BFIUPS of I.

Proof. For all λ̇, γ̈, β̌ ∈ I,

𝟋−(℘) ≤ 𝟋−(λ̇),

𝟋−(λ̇ · β̌) ≤ max{𝟋−(γ̈ · (λ̇ · γ̈)),𝟋−(γ̈)} ≤ max{𝟋−(λ̇),𝟋−(β̌)},

𝟋−(℘) ≥ 𝟋−(λ̇),

𝟋+(λ̇ · β̌) ≥ min{𝟋+(γ̈ · (λ̇ · γ̈)),𝟋+(γ̈)} ≥ min{𝟋+(λ̇),𝟋+(β̌)}.

Hence, 𝟋 = (I;𝟋−,𝟋+) is a BFIUPS of I. □

Definition 4.13. Let 𝟋 = (I;𝟋−,𝟋+) be a BFS I. We define the subset 𝟋−(℘, ℘) of I by

𝟋−1(℘, ℘) = {λ̇ ∈ I | 𝟋−(λ̇) = 𝟋−(℘) and 𝟋+(λ̇) = 𝟋+(℘)}. (31)

Theorem 4.14. Let 𝟋 = (I;𝟋−,𝟋+) be a BFIUPS of I. Then 𝟋−1(℘, ℘) is an IUPS of I.

Proof. Clearly, ℘ ∈ 𝟋−1(℘, ℘). Let λ̇, γ̈ ∈ 𝟋−1(℘, ℘). Then 𝟋−(λ̇) = 𝟋−(℘),𝟋+(λ̇) = 𝟋+(℘),𝟋−(γ̈) =
𝟋−(℘), and 𝟋+(γ̈) = 𝟋+(℘). Thus,

𝟋−(℘) ≤ 𝟋−(λ̇ · γ̈)
≤ max{𝟋−(λ̇),𝟋−(γ̈)}
= max{𝟋−(℘),𝟋−(℘)}
= 𝟋−(℘),

𝟋+(℘) ≥ 𝟋+(λ̇ · γ̈)
≥ min{𝟋+(λ̇),𝟋+(γ̈)}
= min{𝟋+(℘),𝟋−(℘)}
= 𝟋+(℘).

So, 𝟋−(λ̇ · γ̈) = 𝟋−(℘) and 𝟋+(λ̇ · γ̈) = 𝟋+(℘), that is, λ̇ · γ̈ ∈ 𝟋−1(℘, ℘). Therefore, 𝟋−1(℘, ℘) is an IUPS
of I. □
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Theorem 4.15. Let 𝟋 = (I;𝟋−,𝟋+) be a BFIUPF of I. Then 𝟋−1(℘, ℘) is an IUPF of I.

Proof. Clearly, ℘ ∈ 𝟋−1(℘, ℘). Let λ̇, γ̈ ∈ I be such that λ̇ · γ̈ ∈ 𝟋−1(℘, ℘) and λ̇ ∈ 𝟋−1(℘, ℘). Then
𝟋−(λ̇) = 𝟋−(℘),𝟋+(λ̇) = 𝟋+(℘),𝟋−(λ̇ · γ̈) = 𝟋−(℘), and 𝟋+(λ̇ · γ̈) = 𝟋+(℘). Thus,

𝟋−(℘) ≤ 𝟋−(γ̈)

≤ max{𝟋−(λ̇ · γ̈),𝟋−(λ̇)}
= max{𝟋−(℘),𝟋−(℘)}
= 𝟋−(℘),

𝟋+(℘) ≥ 𝟋+(γ̈)

≥ min{𝟋+(λ̇ · γ̈),𝟋+(λ̇)}
= min{𝟋+(℘),𝟋+(℘)}
= 𝟋+(℘).

So, 𝟋−(γ̈) = 𝟋−(℘) and 𝟋+(γ̈) = 𝟋+(℘), that is, γ̈ ∈ 𝟋−1(℘, ℘). Therefore, 𝟋−1(℘, ℘) is an IUPF of I. □

Theorem 4.16. Let 𝟋 = (I;𝟋−,𝟋+) be a BFIUPI of I. Then 𝟋−1(℘, ℘) is an IUPI of I.

Proof. Clearly, ℘ ∈ 𝟋−1(℘, ℘). Let λ̇, γ̈, β̌ ∈ I be such that λ̇ · (γ̈ · β̌) ∈ 𝟋−1(℘, ℘) and γ̈ ∈ 𝟋−1(℘, ℘). Then
𝟋−(λ̇ · (γ̈ · β̌)) = 𝟋−(℘),𝟋+(λ̇ · (γ̈ · β̌)) = 𝟋+(℘),𝟋−(γ̈) = 𝟋−(℘), and 𝟋+(γ̈) = 𝟋+(℘). Thus,

𝟋−(℘) ≤ 𝟋−(λ̇ · β̌)
≤ max{𝟋−(λ̇ · (γ̈ · β̌)),𝟋−(γ̈)}
= max{𝟋−(℘),𝟋−(℘)}
= 𝟋−(℘),

𝟋+(℘) ≥ 𝟋+(λ̇ · β̌)
≥ min{𝟋+(λ̇ · (γ̈ · β̌)),𝟋+(γ̈)}
= min{𝟋+(℘),𝟋−(℘)}
= 𝟋+(℘).

So, 𝟋−(λ̇ · (γ̈ · β̌)) = 𝟋−(℘) and 𝟋+(λ̇ · (γ̈ · β̌)) = 𝟋+(℘), that is, γ̈ ∈ 𝟋−1(℘, ℘). Therefore, 𝟋−1(℘, ℘) is an
IUPI of I. □

Theorem 4.17. Let 𝟋 = (I;𝟋−
,𝟋+) be a BFS in I. Then 𝟋 = (I;𝟋−,𝟋+) is a BFSIUPI of I if and only

if 𝟋−1(℘, ℘) is an SIUPI of I.

Proof. This result follows directly from Theorem 3.9, affirming that I is uniquely characterized as the sole
SIUPI of itself. □

5 Conclusion

This study has yielded several significant findings that advance the theoretical understanding of BFSs within
the framework of IUP-algebras:
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(1) Introduction of Core Concepts: We introduced and formalized four key types of BFSs in IUP-algebras:
BFIUPSs, BFIUPFs, BFIUPIs, and BFSIUPIs, laying the groundwork for future exploration of these
structures.

(2) Characterization of Relationships: Conditions under which BFIUPFs can be classified as BFIUPIs or
BFIUPSs were established, as detailed in Theorems 4.11 and 4.12.

(3) Relationship Between BFS and Subsets: A clear and concise relationship between a BFS 𝟋 and its
associated subset 𝟋−1(℘, ℘) was identified and proved; see Theorem 4.14.

(4) Interplay with Characteristic BFSs: We demonstrated a straightforward relationship between BFIUPSs
(and their counterparts: BFIUPFs, BFIUPI, and BFSIUPIs) and their characteristic BFSs, providing
an important connection for further algebraic investigation; see Theorem 3.18.

These findings significantly contribute to the study of IUP-algebras, enriching their theoretical framework and
providing a foundation for future research on the integration of bipolar fuzzy logic with algebraic structures.

Future work may focus on extending the developed concepts to other generalized fuzzy frameworks, such
as hesitant or picture fuzzy environments, or investigating applications in decision theory, rough set approx-
imations, and knowledge representation. Additionally, the categorical properties and morphisms between
bipolar fuzzy IUP-algebras merit deeper exploration.
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