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Abstract 

COVID-19 became a global pandemic, necessitating a strategy of testing, tracing, and isolating infected individuals. 

Accurately assessing disease severity from lung CT scans is crucial for treatment, but manual analysis is time-consuming and 

error-prone. This paper proposes an automated system using the Swin Transformer to identify COVID-19 severity levels from 

CT images. The authors used the smallest Swin Transformer model (Swin Tiny) and three popular networks: ResNet50, 

DenseNet121 convolutional networks, and ViT (ViT-base-patch16) for comparison. These pre-trained models were then fine-

tuned on the training portion of the authors' dataset, and their performance was evaluated on the testing set.  The dataset 

consisted of five classes, sourced from 689 individuals suspected of COVID-19. Each obtained 3D-CT scan was divided into 

1 cm slices. After preprocessing and selecting the most informative images (those with a larger lung volume), a total of 10,902 

2D images were extracted. The proposed network (Swin Transformer) achieved an accuracy of 0.95 on the test dataset after 

100 epochs and 0.97 after 300 epochs, outperforming other models. Furthermore, this network outperformed all others in terms 

of Macro F1-Score, Macro recall, and Macro precision. This study demonstrates that novel self-attention-based neural 

networks can effectively detect and classify CT images of COVID-19 patients, outperforming well-known convolutional 

neural networks. 
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1. Introduction 

COVID-19 was caused by a virus that was first 

called the new Coronavirus and later SARS-CoV-2 

(1). The most apparent symptoms of patients with 

COVID-19 are runny nose, cough, phlegm, fatigue, 

fever, loss of sense of smell, and shortness of breath 

(2, 3). Although this disease has more symptoms 

than the common cold and flu, due to having some 

common symptoms, it was confused with them at 

first (4). This delayed the identification of patients. 

The COVID-19 virus generally enters the 

human respiratory system through the air and the 

nose. After that, it finds its way into the alveoli 

through the trachea, bronchioles, and cilia. 

Therefore, the patient's lungs are the main organs 

affected by the COVID-19 virus (5). When the 

infection enters the alveoli, type II cells secrete an 

inflammatory signal. In response to this signal, 

macrophages are recruited to the alveoli. This 

immune cell releases cytokine, which leads to the 

opening of blood vessels and the influx of more 

immune cells. This inflammatory response evokes 

alveolar fluid accumulation, diluting surfactant and 

hindering gas exchange. If this process continues, 

the alveoli will be destroyed, and acute respiratory 

distress syndrome (ARDS) will occur (6). These 

events lead to the creation of abnormal areas in the 

human lung that can be recognized on CT images by 

the eye. These abnormalities are observed in various 

forms, such as dilated intra-infiltrate vessels, ground 

glass opacities (GGO), rounded opacities, and 

consolidation (7). 

Abnormalities created in the lungs of sick 

people can be seen easily through Computed 

Tomography (CT) scan images. Although there are 

other ways to diagnose COVID-19, a CT scan of the 

lung is the most accurate way, especially for the 

diagnosis of the stages of COVID-19 lung 

involvement, which is the aim of our research. The 

CT images of the lungs of people with COVID-19 

can be divided into four stages based on the progress 
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of the disease in time, which are called (1) early 

stage, (2) progressive stage, (3) peak stage, and (4) 

absorption stage. 

CT images are three-dimensional, in that each 

lung image (three-dimensional) contains ordinarily 

exceeding 250 images (two-dimensional), each of 

which displays a cross-sectional surface of the lung 

(8). Therefore, it is a time-consuming and 

challenging task for physicians to diagnose COVID-

19 or its stage from images. Since the number of 

patients with COVID-19 is high during the 

epidemic, the possibility of physicians mistakes 

naturally increases. Also, some physicians may be 

unfamiliar with the pattern observed in the lungs of 

COVID-19 patients. Scientists in the field of 

artificial intelligence suggest using deep networks to 

solve these problems. During these years, deep 

learning networks achieved high accuracy in 

machine vision tasks in such a way that even in some 

studies, their accuracy has exceeded the accuracy of 

humans (9). 

Detecting COVID-19 and determining its stage 

from CT images always comes with challenges that 

hinder accurate diagnosis. Just as a lack of expertise 

and experience among doctors and radiologists 

increases the likelihood of misdiagnosis, neural 

networks also suffer from reduced accuracy due to 

insufficient training data. Additionally, variations in 

imaging protocols (such as different devices, doses, 

and settings), low image quality caused by patient 

movement, scanner settings, and noise, as well as the 

similarity of COVID-19-related lung abnormalities 

to those of other diseases, are all factors that prevent 

achieving maximum accuracy. 

Vision transformers are a type of neural 

network architecture that has gained popularity in 

the field of computer vision, because they utilize 

attention mechanisms to attend to important parts of 

the image. They are based on the transformer 

architecture, which was originally developed for 

natural language processing tasks (10). Vision 

transformers are designed to process visual data, 

such as images, and they calculate self-attention for 

pixels. 

The main benefit of vision transformers over 

traditional convolutional neural networks (CNNs) is 

their ability to capture long-range dependencies in 

the input data. CNNs are typically designed to 

process local features in an image, which can limit 

their ability to capture global relationships between 

different parts of the image. Vision transformers, on 

the other hand, use self-attention mechanisms to 

capture both local and global dependencies, 

allowing them to better understand the context of 

different image regions (11). 

Swin Transformer is a recent development in 

the field of vision transformers. It introduces a 

hierarchical architecture that divides the input image 

into smaller patches, allowing for more efficient 

processing of large images. This hierarchical 

approach enables the Swin Transformer to capture 

both local and global dependencies in the input data, 

making it particularly effective for tasks such as 

object detection and image classification. The 

benefits of using Swin Transformer in computer 

vision include its ability to handle large-scale visual 

data with high efficiency. Its hierarchical structure 

allows for parallel processing of image patches, 

enabling it to scale to larger input sizes without a 

significant increase in computational cost. 

Additionally, the Swin Transformer has been shown 

to achieve state-of-the-art performance on various 

computer vision tasks, making it a promising 

architecture for future research in this field (12, 13). 

Most of the research conducted on the 

classification of COVID-19 has been done in the 

field of diagnosis and binary classification of 

COVID-19 (COVID and non-COVID). In (14), Li 

Zhang and Yan Wen proposed a framework based 

on the Swin transformer for automatic detection of 

COVID-19 using chest CT scan, which consists of a 

preprocessing step for lung segmentation by U-net, 

and classification has been done by using Swin 

transformer. They then compared this structure with 

two structures using BigTransfers (BiT-M) and 

EfficientNetV2 as the main body, on the COV19-

CT-DB dataset (which contains about 5000 3D CT 

series). Finally, their proposed structure, which used 

Swin-B architecture which is one of the four Swin 

Transformer models, named for its size of 

parameters.in its classification section, could show a 

better performance than the other two structures by 

obtaining an F1 score of 0.935. In another study (7) 

with the same dataset, Dimitrios Kollias and his 

colleagues developed a simple network with CNN-

RNN architecture which is Combination of 

convolutional neural network and recurrent neural 

network, using ResNet50, and used it as a baseline 

for comparison with the results of the  ICCV 2021 

COV19D COVID competition. In the following, 

they discussed the results of some models 

participating in this competition, the best of which 

had reached the F1 score of 0.904. This model was 

a deep learning network with the ResNet backbone 

architecture that utilizes the Periphery-aware Spatial 

Prediction (PSP) technique to extract high-level 

features and calculate the boundary distance map of 

pixels (used to identify the location of pixels within 

the lungs). Additionally, it employs the Contrastive 

Representation Enhancement (CRE) mechanism to 

enhance the similarity between data within the same 

class and distinguish between different classes, 

leading to better network training. The weakness of 

the models in the two mentioned studies, and all 

models trained on this dataset, is that due to the lack 

of labels for CT slices, they can only examine the 

whole CT scan (in 3D). 
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In some research, X-ray images have been 

used to classify COVID-19. For example, Juntao 

Jiang and Shuyi Lin (15) identified COVID-19 using 

a database with 17,955 chest X-ray images and with 

the help of a Swin transformer. They combined the 

Swin transformer and the Transformer in 

Transformer (TNT) with the weighted average 

method (ratio 2 to 1). Then they used it to classify 

X-ray images into three categories: normal, 

pneumonia, and COVID-19. Finally, with their 

proposed model, they achieved an accuracy of 0.94. 

Chih-Chung Hsu and his colleagues in (16) 

presented two designs for identifying  patients 

among suspected COVID-19 cases, one based on 

2D-CT scans (conventional CT slice) and the other 

on 3D-CT scans (each series of CT scans). The 2D-

CT scan-based design, named ADLEaST, employed 

adaptive distribution learning along with statistical 

hypothesis testing. In this design, the features of the 

dataset are extracted by a Swin Transformer and 

these features were divided into different probability 

distributions by a fully-connected layer.  

Subsequently, outlier slice removal (removing 

slices that are unlikely to contain useful lung 

information) and Wilcoxon signed-rank test were 

performed on them to classify them into two groups: 

COVID-19 infected and non-infected. The proposed 

deep neural network is called ADLEaST and 

obtained an accuracy of 0.92 and an F1 score of 

0.92, better than DenseNet201. In their 3D CT-

based approach, they did not use statistical analysis 

and left feature extraction, slice importance 

selection, and classification to their proposed neural 

network, Convolutional CT-Aware Transformer 

(CCAT). This model used a ResNet50 along with 

two vision transformers and achieved an accuracy of 

0.93 and an F1 score of 0.93. 

The use of the Swin network is not limited to 

the field of COVID-19, and it has been used 

successfully in other areas as well, for example for 

coastal wetlands classification (17) and breast 

cancer classification (18). 

The novelty of this paper lies in creating an 

accurate automated method based on the Swin 

Transformer architecture for COVID-19 diagnosis 

and severity determination (five classes: normal, 

early stage, progressive stage, peak stage, absorption 

stage) using a distinct dataset of CT images and 

transfer learning. Since this method, in addition to 

diagnosing COVID-19 patients from healthy 

individuals, also determines the severity of their 

disease, it can, in addition to helping radiologists, 

also guide physicians in determining treatment 

priorities and treatment methods for COVID-19 

patients. In this research, in addition to the Swin 

Tiny pre-trained model, three well-known pre-

——— 

 

 

trained Vision Transformer (ViT-base-patch16), 

ResNet50 and DenseNet121 models were also tested 

on our dataset for comparison. 

The paper is organized as follows: methodogy 

including the database, data preprocessing 

procedure, and proposed networks are illustated in 

section 2. Experiments are descibed in section 3, 

results are presented in section 4 and finally section 

5 concludes the paper. 

2. Methodology 

A)  Database 

In this research, a dataset of 5 classes collected 

from people suspected of COVID-19 is used. Two 

hundred seventy-nine women and 410 men (689 

cases in total) participated in collecting the data. 

These 3D-CTs were divided into 1 cm slices each. 

Between 20 and 30 2D images were provided in total 

from each person. The size of the 2D images is 512 

× 512. Two professional radiologists divided the 

two-dimensional images obtained into five classes: 

normal with 314 images, initial with 80 images, 

progressive with 84 images, peak with 110 images, 

and absorption with 101 images. See Figure 1 for 

sample images. 

Detection of the first stage of COVID-19 is 

done by identifying the ground-glass opacity, the 

second stage by identifying the crazy-paving 

pattern, the third stage by identifying consolidation, 

and the fourth stage by the absence of crazy-paving 

pattern and the gradual clarity of consolidation. 

Ground-glass opacity refers to an area in the lung 

tissue that has increased density and is similar to 

ground glass, foggy and cloudy (19). The crazy-

paving pattern is called the pattern of stones 

arranged irregularly on the mortar. With the 

progression of the disease, when the septa between 

the lung lobes thicken and are placed on the ground-

glass opacities, an appearance similar to crazy-

paving appears (20). Consolidation is the term used 

to describe the compaction of part of the lung tissue 

so that a space that should be filled with air appears 

solid. It occurs when the inside of the lung alveoli is 

filled with pus, blood liquid, or other substances 

(21). 

The CT images in this dataset were prepared at 

the Qaboos Teb Golestan imaging center located in 

the city of Gonbad Kavos (Iran). The device used to 

prepare these images was an American Hispeed CT 

dual scanner (GE Healthcare company). This device 

has imaged the patient's chest in spiral mode and 

holding breath at a speed of 15 millimeters/rotation 

and sagittal view. You can access the database 

through below link1 (22). During the imaging and 

examination of CT images of all individuals, the 

file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_15
file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_16
file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_17
file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_18
file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_19
file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_20
file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_21
file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_22


16                              International Journal of  Smart Electrical Engineering, Vol.14, No1, Winter 2025                         ISSN:  2251-9246 

EISSN: 2345-6221   

ethical standards of Shahid Beheshti Faculty of 

Medical Sciences have been considered (22). 

A fundamental principle for the success of 

classification tasks is the separability of classes. In 

Figure 2, two sample images from each class are 

presented. From the perspective of a less 

experienced individual, significant similarities may 

be observed between inter-class images, making it 

nearly impossible to distinguish between these 

classes. However, if features are extracted using a 

powerful model (e.g., ResNet50) and the inter-class 

variance and intra-class variance are calculated for 

the dataset, the inter-class variance is found to be 

significantly larger (approximately 48 times larger 

for ResNet50) than the intra-class variance. This 

indicates that the data is highly separable. 

B) Data preprocessing 

As previously explained, a substantial number 

of 512×512 two-dimensional images were acquired 

from each person as a result of chest CT imaging 

procedures. Among these obtained images, some 

(such as the first and last images) exhibit a smaller 

lung volume than others. Therefore, a threshold is 

needed to select more valuable images. To achieve 

this, the following tasks were performed. First, a 

333×333 pixel region was extracted from the center 

of each image. Then, using the Otsu32 method, a 

digital image thresholding technique, the two-

dimensional images were binarized.  The number of 

pixels with a value of 1 (white color) now represents 

the lung volume, meaning that the greater the 

number of 1s, the larger the lung volume seen in the 

image. To find an image with these specifications, 

the normalized area was plotted against the frame 

number of CT scans, as shown in Figure 3. 

Therefore, the authors identified the image 

with the greatest lung volume, selected the eight 

images preceding and following it, and separated 

these from the remaining images for subsequent use.  

This process yielded 17 images per individual.  

Subsequently, the images were qualitatively 

reviewed, and some were removed due to poor 

quality.  It is important to note that the original 

512×512 images (not 333×333) were used for the 

experiments. 

 

 

Fig. 1. Examples of images related to the CT scan of a normal 

person's lung and those affected by COVID-19 with different 
stages of involvement and tissue patterns. (a): normal, (b): early 

stage (0-4 days), (c): progressive stage (5-8 days), (d): peak stage 

(9-13 days), (e): absorption stage (≥14 days) (22). 

Table.1. 
The number of examined people from each stage was divided 

into three sets: training, validation, and testing sets. The last row 

shows the number of images after preprocessing. 

Test Validation Training All persons Stage 

32 31 251 314 Normal 

8 8 64 80 Early 

9 8 67 84 Progressive 
12 11 87 110 Peak 

11 10 80 101 Absorption 

72 68 549 689 Total people 
1080 1098 8724 10902  Total images 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Two data samples from each class are shown before 

preprocessing. The images in each row belong to the same class. 
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Fig. 3. Preprocessing and extracting the best lung CT images of 

each patient (reprinted from (22)). 

C)  Proposed Network 

This study proposes a Swin transformer for the 

classification of COVID-19 CT images. This 

transformer is a vision transformer that limits self-

attention computation to local windows, unlike the 

Vision Transformer (ViT), which computes self-

attention across the entire image. The Swin 

transformer's creators posit that most relevant 

information is contained in nearby pixels, thus local 

windows represent a more efficient approach.  ViT 

was the first transformer to enter the field of 

computer vision. It requires a large amount of 

training data and utilizes a Multi-head Self-

Attention (MSA) module, which has high 

computational complexity. With the advent of the 

Swin transformer, these weaknesses were relatively 

addressed. 

Swin is a multifunctional backbone 

transformer, that can be used in various vision tasks. 

As depicted in Figure 4, this transformer consists of 

four nearly identical stages, and at the end of each 

stage, an image with a different resolution is formed 

as an output. Moving towards the final stage, the 

resolution of these outputs, which are called feature 

maps, decreases but they represent more semantic 

information. At the start of this structure and after 

receiving the image, there is a patch partition 

module that is responsible for dividing the images 

into small, equal patches. The first stage consists of 

a linear embedding module and an even number of 

Swin transformer blocks. The subsequent three 

stages consist of a patch merging module and an 

even number of Swin transformer blocks, these 

stages have similar functionality. Each transformer 

block comprises two multi-window self-attention 

blocks named W-MSA  (Window multi-head self-

attention) and SW-MSA (Shifted window multi-

head self-attention) that are responsible for 

computing self-attention within windows before and 

after shifting them. Each W-MSA block consists of 

a normalization layer (LN), a W-MSA module, and 

a multilayer perceptron (MLP). Also, each SW-

MSA block has the same components as the W-

MSA block, but it uses the SW-MSA module instead 

of the W-MSA module [23]. The following 

describes the most prominent features of this 

network. 

 

Fig. 4. The general framework of Swin transformer (Swin-Tiny) 

(23). 

Reducing the load of calculations: In Vit, the 

computational complexity of calculating self-

attention increases quadratically with the number of 

input image patches, which causes more resources 

to be used to calculate self-attention. Swin 

transformer uses non-overlapping windows to solve 

this problem. In the sense that it considers windows 

of equal size and no overlap for the images, in a way 

that an equal number of image patches are placed 

within each window. Then it calculates the self-

attention within these non-overlapping windows, 

which makes the computational complexity have a 

linear relationship with the size of the image. 

Equations (1) and (2) calculate the computational 

complexity for the MSA and W-MSA modules for 

an image divided into h×w patches and C number of 

channels. In the second equation, M×M is the 

number of patches within each non-overlapping 

window related to W-MSA. As you can see, the first 

equation is quadratic for hw, and the second is linear 

for hw when M is constant [23]. 

Ω(MSA) = 4ℎ𝑤𝐶2 + 2(ℎ𝑤)2𝐶 (1) 

Ω(W − MSA) = 4ℎ𝑤𝐶2 + 2𝑀2ℎ𝑤𝐶 (2) 

The shifted window approach: In this 

approach, after partitioning the image, equal-sized 

windows are initially considered as shown in the left 

figure, and self-attention is calculated in them by the 

W-MSA module. Then, the windows are shifted half 

their width to the bottom right, creating the right 

figure, and this time self-attention is calculated by 

the SW-MSA module in the new windows (shifted 

windows). This window transition is done so that 

patches that were close together but were not 

previously in the same window can also learn from 

each other. This approach is illustrated in Figure 5. 

 

Fig. 5. Shifted window approach (12). 
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Relative position bias: Relative bias is a 

proposed method for embedding the position in 

transformers, which is preferred in the Swin 

structure over techniques such as absolute position 

embedding. This approach encodes the distance 

between patches and gives position information to 

keys and values in Attention instead of simply 

combining it by embedding patches (24). Equation 

(3) shows how to calculate attention with relative 

bias. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄. 𝐾. 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝐵) 𝑉 (3) 

where 𝐵 ∈ 𝑅𝑀2×𝑀2
 represents the relative position 

bias, 𝑄, 𝐾, 𝑉 ∈ 𝑅𝑀2×𝑑 are the query, key and value 

matrices; d is the query/key dimension, and M2 is 

the number of patches in a window [12]. This 

research has been implemented in Python using the 

PyTorch library. Also, the codes were run on Google 

Colab with a T4 GPU and 12.7 GB of RAM, and on 

Kaggle with a P100 GPU and 13 GB of RAM. 

3. Experiments 

Experiment 1: To simplify simulations, the 

authors chose the smallest Swin transformer model 

(Swin Tiny) for experiments. To compare the results 

and evaluate the strength of this model, the style 

models of three other popular networks were used. 

These models were ResNet50 and DenseNet121 

convolutional networks, and ViT (ViT-base-

patch16). ViT was pre-trained on ImageNet 21K 

images, and the other models were pre-trained on 

ImageNet 1K. To employ the data, the dataset was 

divided into three random separate parts with an 

approximate ratio of 80% (training), 10% 

(validation), and 10% (testing), as shown in Table 1. 

Also, before the training process , the MLP heads of 

the last layer of the models were removed and 

replaced with new MLP heads which have 5 neurons 

in the outer layer. Then, the Swin model was trained 

with a learning rate of 0.0001 and the AdamW 

optimizer, ResNet with a learning rate of 0.0001 and 

the Adam optimizer, DenseNet and ViT with a 

learning rate of 0.001 and the Stochastic gradient 

descent (SGD) optimizer, for 100 epochs on training 

data, to achieve stability. It is worth noting that these 

hyperparameters provide the best performance for 

the mentioned networks (25). Simultaneously with 

the training process and after each epoch, the authors 

performed a validation epoch and finally evaluated 

the model on the test data and displayed the results. 

After each training epoch, the training data is 

shuffled, but the validation data is not shuffled. For 

data augmentation and normalization steps, a 

random resized crop with 224 pixels size and 

random horizontal flipping has been used on training 

data, and the center crop technique has been used on 

validation and testing data. Also, since the models 

examined in this experiment were already trained on 

the ImageNet dataset, the entire dataset has been 

normalized based on the average values and 

standard deviation of the ImageNet dataset. This 

procedure stabilizes the gradient. Finally, the images 

given as input to the models had a length and width 

of 224 pixels. 

Experiment 2: The Swin Tiny model was 

trained with the same conditions as before for 300 

epochs (Experiment 1 was done for 100 epochs). In 

this situation, the model becomes more stable and 

more accurate on the testing dataset. 

 

4. Results and Discussion 

A) Evaluation metrics 

Accuracy, precision, recall, and F1 score are 

the most common metrics used to evaluate the 

performance of neural networks. Formulas for these 

metrics are provided below: 
Accuracy = 

𝑇𝑃+ 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (6) 

F1Score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 = 

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (7) 

TP, TN, FP, and FN are acronyms for true 

positive, true negative, false positive, and false 

negative, respectively.  

A Receiver Operating Characteristic curve, or 

ROC curve is a probability diagram that shows the 

effect of different sensitivity values on the 

specificity. The vertical axis of this diagram shows 

the true positive rate, and the horizontal axis shows 

the false positive rate. The Area under the ROC 

Curve (AUC) metric is used to compare and 

evaluate the performance of models. The higher the 

value (area), the better the overall performance of 

the model. 

Macro average and micro average are two 

components of averaging methods. In the macro 

average method, first, the desired metric (e.g., 

precision) of each class is calculated, and then the 

average of all of them is taken. But in the micro 

average method, after calculating the all-classes 

desired metric, their weighted average is calculated. 

The authors used macro-averaged precision, 

recall, and F1-score metrics, and macro and micro-

averaged AUC to compare the performance of the 

networks. The use of macro averages is useful in 

cases where the number of data points in each class 

is not equal (26). 

B) Quantitative evaluations 

Experiment 1: You can see the curves of 

accuracy, and cross-entropy loss function obtained 

from training and validation of models for 100 

file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_24
file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_25
file:///D:/IJSEE/52-new/Article-FileWord-202412231194340%20(1).docx%23_ENREF_26


19                              International Journal of  Smart Electrical Engineering, Vol.14, No1, Winter 2025                         ISSN:  2251-9246 

EISSN: 2345-6221   

epochs in Figure 6 and Figure 7. In the curves related 

to training, as we move from epoch 1 to epoch 100, 

the model's accuracy increases, and the amount of 

loss function decreases. This matter is seen with 

more distortion in the curves related to validation, 

which is normal. You can also see that in the last 

epoch, the accuracy gradient has decreased, and the 

models have reached relative stability, which means 

the models are close to the global minimum. 

After fine-tuning the models, they were tested 

on the test data. The obtained results for 

classification (accuracy, F1 macro score, macro 

precision, and macro recall) are shown in Table 2. 

Since the recognition of each class has equal 

importance, macro metrics were used. As can be 

seen, Swin achieved the highest accuracy, which is 

0.95. Due to its higher accuracy than ViT (0.9), its 

success in improving the classification accuracy of 

vision transformers can be realized. After the Swin 

Transformer, the ResNet50 and DenseNet121 

convolutional networks ranked next with 0.93 

accuracy. Despite the equal accuracy of these two 

networks, if other metrics are considered, the 

ResNet50 network performed slightly better than 

DenseNet121. This proximity of percentages 

indicates the almost equal ability of these two 

convolutional networks in classification tasks. After 

these three networks, the ViT is ranked last with an 

accuracy of 0.9, despite having more complexity and 

parameters than other models. Also, the recall of the 

Swin transformer is significantly greater than other 

models, which is important for medical issues like 

the present work. Another metric is the F1 score, 

which results from the combination of two metrics: 

precision and recall. In this metric, Swin likewise 

obtained the highest score (0.94), which shows the 

complete superiority of this transformer over the rest 

of the compared models.  

Another metric considered to compare the 

networks' ability (on test data) was AUC. Since the 

dataset has five classes and is not binary, the authors 

averaged the AUC value of all classes with micro 

and macro methods. For this purpose, the ROC 

curve of each network was drawn (Figure 8). The 

highest value of micro AUC, 0.96, was obtained by 

Swin, ResNet, and DenseNet. The highest value of 

macro AUC, 0.95, was acquired by Swin, followed 

by the two convolutional networks, which achieved 

a value of 0.94. This small difference indicates the 

almost equal resolution ability of these three 

networks.  

In general, these results indicate the significant 

effect of the transfer learning technique in 

addressing the data scarcity problem. Transfer 

learning is a technique whereby the network 

leverages experience gained from training on a large 

dataset to solve another related task with a smaller 

dataset. This technique is employed when the tasks 

of the network(s) are closely related (27). With this, 

the network will no longer have random weights at 

the beginning of the work, and instead, it will use 

weights obtained from training with previous data. 

Experiment 2: Figure 9 and Figure 10 show the 

curves of the loss function and accuracy for 300 

training and validation epochs. It is evident that the 

Swin transformer has reached complete stability 

without overfitting, and it is fair to say that its 

changes have become imperceptible after 200 

epochs. 

Table 3 shows the scores obtained by this 

network. The network has achieved about 0.97 

accuracy in our test data, which is an outstanding 

result. The macro F1 score, macro precision, and 

macro recall of the model equal 0.96. 

 

 

 

Fig. 6. Training accuracy and Training loss function (Cross-

Entropy) in 100 training epochs. 

Table.2. 
Results of models on test data 

Model  Macro 

precision 

 Macro 

recall 

Macro 

F1-Score 

Accuracy 

 Swin 

Transformer 

 0.95  0.93 0.94 0.95 

Resnet50  0.93  0.90 0.92 0.93 

Densenet121  0.92  0.90 0.91 0.93 

ViT   0.88  0.87 0.87 0.90 
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Fig. 7. Validation accuracy and Validation loss function (Cross-

Entropy) in 100 validation epochs 

Figure 11 shows the network confusion matrix. 

The abbreviations in this matrix are as follows: AB 

(absorption stage), E (early stage), NL (normal 

stage), PE (peak stage), and PR (progressive stage). 

The diagonal elements of this matrix represent the 

number of images that are correctly classified, and 

the other numbers represent incorrect predictions 

where one class label is mistaken for another class 

label. Out of 512 lung images of normal people 

(NL), only five cases were incorrectly predicted as 

other classes. Additionally, only one out of 163 

peak-stage images (PE) was incorrectly predicted as 

a normal lung, which is an acceptable result. Note 

that the higher accuracy of the network in 

distinguishing the class of normal people from the 

rest of the classes is due to the clear difference 

between the images of normal lungs and those of 

lungs affected by COVID-19. The authors also 

illustrated the ROC curve of this model for each of 

the five classes of the test dataset, separately using 

the Scikit-learn Python library and in the thresholds 

selected by the library (0, 1, and 2) (Figure 12). The 

ideal state of a network is a state whose curve is 

close to the upper-left corner of the diagram 

because, in this state, the recall is higher, the FPR is 

lower, and the AUC is also larger. After checking 

the curve of all five classes, it was found that the NL 

(Normal) class has the highest AUC with 0.99. 

 

 

 

 

Fig. 8. Macro & Micro average ROC curve for four models: Vit-

base-patch16, Swin Tiny, ResNet50 and Densenet121. 
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After that, class E (Early stage), PE (Peak 

stage), and PR (Progressive stage) ranked second 

with a value of 0.98, and class AB (Absorption 

stage) ranked last with the lowest AUC (0.96). 

Therefore, all of them have a high AUC, which 

indicates the excellent performance of the Swin 

model in distinguishing all classes from each other. 

As a result, this model can help radiologists and 

physicians in diagnosing normal lungs and 

determining the stage of lung involvement, as well 

as allocating resources for patient hospitalization 

and such decisions.  

The Table 4 presents a comparison of several 

studies on COVID-19 stage classification based on 

lung involvement severity with our study. The 

results obtained from this research are significantly 

better compared to the paper (22) that worked on the 

same dataset. The authors believe that this is due to 

using more 2D images for training (more than five 

frames per person), using a different preprocessing 

technique, and the power of the Swin transformer. A 

key advantage of our approach over studies such as 

Paper (28), Paper (29), and similar research is that it 

eliminates the need for lung and lesion 

segmentation. Furthermore, Paper (29) has an 

additional limitation, as it requires access to the 

patient's previous CT scans and clinical metadata for 

classification. Despite these advantages, a limitation 

of our study is that the dataset was collected from a 

single source, which may affect the model’s 

generalizability to external data. 

 

Fig. 9. The training and validation accuracy of the Swin 

transformer in 300 epochs. 

Table.3. 

Results of the Swin model on test data after 300 epochs of training 

Macro 

F1 

Score 

Macro 

recall 
Macro 

precision 
Accuracy Model 

0.96 0.96 0.96 0.97 Swin 

transformer 

 

 

Fig. 10. The training and validation loss function of the Swin 

transformer in 300 epochs. 

 

Fig. 11. Confusion matrix of the Swin transformer on the test data 

after 300 training epochs (AB: absorption stage, E: early stage, 

NL: normal, PE: peak stage, and PR: progressive stage). 

 

Fig. 12. The ROC curve of the Swin tiny model is for the test data 

(class 0: absorption stage (AB), class 1: early stage (E), class 2: 

normal (NL), class 3: peak stage (PE), and class 4: progressive 

stage (PR)). 
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Table.4. 
Comparison of Our Work with Others in COVID-19 Classification Based on CT Images. 

Author Dataset Methodology Results 

Zhidan Li et al., 

2021 (29) 

A combination of multiple 

public and private datasets. 

Lung and lesion segmentation, followed by classification through 

comparison with the patient's previous images (dual-Siamese channels) and 

the use of clinical metadata. 

Accuracy: 

86.7 

Qiblawey Y et 

al., 2021 (28) 

Four public datasets Classification based on Percentage of Infection (PI) using lung and lesion 

segmentation. (4 classes) 

Accuracy: 

97 

Gifani P et al., 
2023 (22) 

Private Dataset  Ensemble of transfer learning models with convolutional neural networks Accuracy: 
91.94 

Our work Private Dataset   Swin Transformer with Transfer Learning Accuracy: 

97 

5. Conclusion and future work 

The authors selected three well-known 

networks to compare with the Swin transformer, 

then trained, validated, and tested all four networks 

on a 5-class dataset of suspected COVID-19 

patients. They observed that the Swin transformer 

outperformed the other models in all scores. The 

authors then trained the Swin model for an 

additional 300 epochs on their training data to 

maximize the network's accuracy in the validation 

data. Subsequently, they classified the test data 

using this network, resulting in improved results 

compared to before, with the model achieving 0.97 

accuracy in test data and 0.967 accuracy in 

validation data. These results demonstrated the 

strong performance of the model in data 

classification, which was attributed to the efficiency 

of the local attention of this network and the transfer 

learning technique used in the networks. 

One limitation of the work was the small 

amount of data and the absence of a class with lung 

images of non-COVID pneumonia, which would 

have allowed the model to detect non-COVID 

pneumonia in addition to identifying the stage of 

COVID-19 involvement and distinguishing a 

COVID-19 patient from a healthy person.  

Therefore, the authors intend to address this in future 

work. Additionally, it is advisable to assess the 

generalizability of this model within the same 

dataset. Furthermore, as the Swin transformer is a 

multifunctional network, it may be beneficial to first 

segment the images using Swin and then classify 

them, followed by comparing the results with the 

current findings. 
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