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Abstract 

In a world dominated by uncertainty, stochastic modeling is of the utmost importance, so that 

Many problems in economics, finance, and actuarial science naturally require decision makers to 

undertake choices in stochastic environments. Classical methods for solving infinite horizon 

stochastic optimal control problems primarily focus on deriving the solution by defining the value 

function through dynamic programming and the Hamilton-Jacobi-Bellman equation. However, 

obtaining a closed-form solution is generally challenging. To address this issue and identify an 

optimal trajectory and control, this article proposes a hybrid method for solving stochastic optimal 

control problems (SOCPs). This novel approach integrates the multi-step stochastic differential 

transform method with an approximation technique that solves infinite horizon problems by 

leveraging a finite horizon. An applicable example diagrams of the types of instances created from 

the simulation of the described approach, infinite horizon stochastic optimal control problem from 

management science is provided to show the method's effectiveness and efficiency, particularly in 

comparison with existing approaches. 
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1. Introduction 

Banks, investment funds, and insurance companies are examples of investors that invest money in 

the financial markets. They want to make as much money as possible on their investments, but any 

serious investor also needs to consider the risk involved. An investor is, to a certain degree, risk-

averse, i.e., the investor is reluctant to invest in an asset with high potential if this means that the 

risk of losing money is also high. The aim of such investors is to maximize the expected returns 

on their investments while at the same time limiting the risk involved. One way of modeling such 

behaviors is through the theory of stochastic control and the maximization of expected utility 

functions.  

SOCPs frequently occur in many branches of science, especially in economics and finance. 

Stochastic differential equations have become the standard models for financial quantities such as 

asset prices, interest rates, and their derivatives (Oksendal, 2003; Steele, 2001). Three major 

approaches in SOCOs can be differentiated: dynamic programming, duality, and the maximum 

principle (Yong and Zhou, 1999). Dynamic programming obtains, by means of the optimality 

principle of Bellman, the Hamilton-Jacobi-Bellman equation, which characterizes the value 
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function. In fact, in the case of continuous optimal control problems, the dynamic programming 

technique reduces the optimal control problem to solving a partial differential equation (the 

Hamilton-Jacobi-Bellman (HJB) equation). Almost all (just a few special cases) of these equations 

are difficult to solve analytically (Kushner and Dupuis, 2001). Under some smoothness and 

regularity assumptions on the solution, it is possible to obtain, at least implicitly, the optimal 

control. This is the content of the so-called verification theorems that appear in Fleming and Soner 

(2006). However, only a few classes of SOCPs admit analytical solutions for the value function in 

this manner. Besides, finite state Markov chain approximation and finite differences are two 

classical approaches in solving SOCPs numerically (Karatzas and Shreve, 2012; Krawczyk, 1999), 

but analytical and analytical-numerical methods are superior over the numerical methods due to 

the determination of closed-form solutions (Bousabaa, 2023).   

The paper is organized as follows: First, we present the control problem and the preliminaries that 

will be used in the next sections. In section 3, we review the SDTM approach and its hypotheses. 

In section 4, we show how infinite horizon SOCOs can be solved by studying their finite horizon 

approximations, and the new hybrid method for solving infinite horizon SOCPs is explained. In 

order to demonstrate the application and efficiency of the new method, section 5 is devoted to 

describing and solving one of the famous and useful problems in management, namely the Merton 

problem. Finally, the conclusion is presented in section 6. 

2.  Problem statement 

In this section, we consider finite-time homogeneous SOCPs of the type 

𝑆𝑢𝑝𝑢∈𝑈𝐸(∫ 𝑒−𝛽𝑡𝐹(𝑋(𝑡), 𝑢(𝑡))𝑑𝑡)
∞

0

, 

𝑆. 𝑡𝑜: 𝑑𝑥(𝑡) = 𝑓(𝑋(𝑡), 𝑢(𝑡)) + 𝜎(𝑋(𝑡), 𝑢(𝑡))𝑑𝐵(𝑡);  𝑋(0) = 𝑥0,                                                    (1) 
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Where 
nu U R  denotes the set of admissible controls and 

mx R is a state vector. 

Furthermore, :F U R →  is the utility function and 0  is the discount rate. In our approach 

we have the following limitations, notations, and definitions:  

(i) We restrict this problem to the one-dimensional SOCPs for simplicity of the exposition;  

(ii) We denote (Ft) with the filtration generated by Brownian motion and assume that f, 𝜎, and F  

are continuous functions on 𝑆 × 𝑈, that S and U are respectively closed intervals in ℛ and refer to 

state and control space; 

(iii) An (Ft) –adapted stochastic process is called a feasible control if almost surely for all  

t, we have 𝑢(𝑡) ∈ 𝑈; 

(iv) We let 𝐷 ∈ 𝐶2(𝑆) be all the smooth functions on S with bounded derivatives of all orders,  

so that it includes the value functions of (1). 

Definition 1. A feasible control u(.) is admissible, if 

(i) the governed equation of system (1), a stochastic differential equation, admits a unique  

solution; 

(ii) For all ∅ ∈ 𝐷 and for all 𝑡 > 0, the Dynkin formula [1] holds and 𝐸(|∅(𝑋𝑢(𝑡))| < ∞; 

(iii) 𝐸(∫ 𝑒−𝛽|𝐹(𝑋𝑢(𝑠), 𝑢(𝑠))|𝑑𝑠
∞

0
) < ∞. 

3. Multi-step Stochastic Differential Transformation Method (MSDTM) 

 One of the effective methods for solving the differential equations is differential transformation 

method (DTM), which was originally introduced by Zhou (1986). This method obtains an 

analytical solution in the form of a polynomial based on the Taylor series for differential equations 

(Fakharzadeh and Hashemi, 2012) and has been applied for solving deterministic optimal control 

problems (see Gokdogan and Merdan (2010), and Hesameddini et al. (2012)). In multi-step DTM, 

a modification of DTM and the convergence of the obtained solution series are improved. In 
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Fakharzadeh et al. (2015), an efficient and fast approach for the multi-step DTM was proposed, a 

reliable modification of the DTM that improves the convergence of the series solution. The method 

provides immediate and visible symbolic terms of analytic solutions. For stochastic calculus, the 

DTM is developed to solve stochastic differential equations (Fakharzadeh et al., 2015). In order to 

introduce the tools for subsequent discussions, in this section, we remind some necessary basic 

definitions and properties, which can mostly be found in Oksendal (2003) and Villafuerte et al. 

(2010).  

Definition 1 (stochastic calculus). For a given probability space ),,( PF , a real random variable

X that is defined on this space and satisfying the condition 2( )E X  + , is called a second-order 

random variable (2-r.v.); here E  denotes the expectation operator. The space 2L of all the 2-r.v.’s 

endowed with the norm 
2

2
( ),X E X= is a Banach space (Villafuerte et al., 2010). In the 

probability space ( , , )F P , a stochastic process{ ( ): }X t t I where I  is a closed interval in the real 

line , is called a second-order stochastic process (2-s.p.) if for each )(, tXIt   is a 2-r.v. A 

sequence of 2-r.v.’s { : 0}nX n 
 
is mean square convergent in 2L

 
to a 2-r.v. X as →n if 

2
lim 0.n nX X→ − =  Also, if we have a limiting condition such that 

0

2

( ) ( )
lim ( ) 0t

X t t X t
X t

t
 →

+ −
− =


 then, 2-s.p{ ( ): }X t t I is the mean square derivative of

{ ( ): }.X t t I  

Definition 2. Let k  and assume that the 4-s.p. {𝑣(𝑡): 𝑡 ∈ 𝐼}, has a mean fourth derivative of 

order k  at t I  which is denoted by𝑣(𝑘)(𝑡). The random differential transform of the process 

)(tv is defined as: 

𝑉(𝑘) =
1

𝑘!
[
𝑑𝑘(𝑣(𝑡))

𝑑𝑡𝑘
]𝑡=𝑡0

,                                                                             (2) 
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WhereV is the second process transformed and 
𝑑

𝑑𝑡
 denotes the mean square derivative. The inverse 

transform of V is defined as:
 

𝑣(𝑡) = ∑ 𝑉(𝑘)(𝑡 − 𝑡0)𝑘

∞

𝑘=0

,                                                                           (3)
 

Here, it is formally assumed that the series (3) is uniformly mean fourth convergent in any closed 

interval into the domain of convergence, and as a result, (2) and (3) are well defined (Soong, 1973). 

For implementation purposes, the function v(t) is expressed by a finite series, and Eq. (3) can be 

written as: 

𝑣(𝑡) ≈ ∑ 𝑉(𝑘)(𝑡 − 𝑡0)𝑘,

𝑁

𝑘=0

 

that N is decided by the convergence of natural frequency. For a stochastic differential equation, 

we assume that all the involved stochastic quantities take values in L2-space and also that all the 

stochastic operations are in the mean square sense. We note that ( )B t is a Gaussian process with 

mean zero, and it is also a mean fourth continuous process (Merton, 1971). The Brownian motion

( )B t has trajectories belonging to 2 ([0, ])L T  for almost all events. In this space, the Karhunen-

Lèove expansion (Merton, 1971) for Brownian motion takes the form: 

𝐵(𝑡) = 𝐵(𝑡, 𝜔) = ∑ 𝑧𝑖(𝜔)𝜑𝑖(𝑡),0 ≤ 𝑡 ≤ 𝑇

∞

𝑖=0

, 

With: 

𝜑𝑖(𝑡) =
2√2𝑇

(2𝑖 + 1)𝜋
𝑠𝑖𝑛(

(2𝑖 + 1)𝜋𝑡

2𝑇
) 

Where the functions 𝜑𝑖(𝑡),𝑠 form a basis of orthogonal functions and{𝑧𝑖} is a sequence of 

independent and identically distributed Gaussian random variables (Merton, 1971). This approach 
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is also quite powerful for simulating paths of processes without independent increments of 

Brownian motion. By substituting finite terms of the Karhuneun-Loève expansion in (3.2), we 

have: 

𝑑𝑥(𝑡) = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝜎(𝑥, 𝑡)𝑑(∑ 𝑧𝑖𝜑𝑖(𝑡)), 𝑥(0) = 𝑥0.                     (4)

𝑀

𝑖=0

 

Applying the random differential transformation method from (2) and using the properties (I)-(IV) 

in Theorem 1, one can transfer (4) into the following algebraic equation: 

(𝑘 + 1)𝑋(𝑘 + 1) = 𝐴(𝑘) + ∑ ∑ 𝑧𝑖

𝑘

𝑗=0

𝑚

𝑖=0

𝛹𝑖(𝑘)𝛴(𝑘 − 𝑗); 𝑋(0) = 𝑥0,                 (5)
 

Where 𝑋(𝑘), 𝐴(𝑘), 𝛴(𝑘) and𝛹(𝑘) are the transformed processes of , ,x a  and the derivative of

i  respectively. In order to simulate iz , for instance, one can use the Maple random variable 

generator (Random Tools Flavor: distribution).  

We remind that [0, T] is the interval over which we want to find the solution of (4) over t and we 

apply a multi-step approach for ensuring the validity of the mentioned approximations for large T

. In our new approach we assume that the interval [0, T] is divided into M subintervals [𝑡𝑖−1, 𝑡𝑖], 𝑖 =

1,2, . . . , 𝑀 with equal step length. Thus, first, we use the SDTM to Eq. (4) over the interval [0, 𝑡1], 

and then at each subinterval [𝑡𝑖−1, 𝑡𝑖], for 2,i   the SDTM is applied to Eq. (6) over the interval 

],,[ 1 ii tt − where 0t  is replaced by 1−it . It is necessary to refer to the initial conditions of the above 

approach as: 𝑥𝑖(𝑡𝑖−1) = 𝑥𝑖−1(𝑡𝑖−1) for 2,3,..., .i M=  Therefore, the process is repeated to 

generate a sequence of approximate solutions 𝑥𝑖(𝑡), 𝑖 = 1,2, . . . , 𝑀.
 
In fact, the MSDTM obtains 

the following solution as a piecewise polynomial on[0, ]T : 
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𝑥(𝑡) = {

𝑥1(𝑡), 𝑡 ∈ [0, 𝑡1],

𝑥2(𝑡), 𝑡 ∈ [𝑡1, 𝑡2],
⋮
𝑥𝑀(𝑡), 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀],

                                               (6) 

Proposition 1. Consider the problem (4.4) and assume that all of the conditions of theorem 2 are 

satisfied. Also, by defining 𝐹(𝑋(𝑡), 𝑡) = 𝑃𝑛(𝑡)𝑋(𝑡) + 𝑄(𝑡), we assume 𝐹: 𝑆 × 𝑇 → 𝐿2 is 

continuous and satisfies the m.s. Lipchitz condition. Then, there exists a unique m.s. solution for 

any initial condition 𝑥0 ∈ 𝐿2. 

Proof: see Hesameddini et al. (2012).  

The purpose of this approach is to extend the application of multi-step DTM for obtaining 

approximated analytical solution of SOCPs. For this aim, we use HJB equation and multi-step 

stochastic differential transform method (MSDTM) to determinate the approximated optimal 

trajectory and optimal control of SOCPs based on the Brownian motion properties in 2L − spaces 

and also the properties of the Karhunen-Loève expansion. 

4. Approximation Method for solving SOCPs with an infinite horizon 

In this section, we review the method of Fleming and Soner (2006), which demonstrated how finite 

horizon approximations to infinite horizon stochastic optimal control problems can be used to 

obtain analytic solutions. This often leads to analytical solutions for the infinite horizon SOCPs by 

studying phase diagrams. First, we consider the truncated stochastic optimal control problem, 

𝑆𝑢𝑝𝑢∈𝛢 𝐸(∫ 𝑒−𝑟𝑡
𝑇

0

𝐹(𝑋(𝑠), 𝑢(𝑠))𝑑𝑠), 

𝑆. 𝑡𝑜: 𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡), 𝑢(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡), 𝑢(𝑡))𝑑𝑊(𝑡),             (7) 

For finite T. We denote its value function as follows: 

𝑉(𝑡, 𝑇, 𝑥) = 𝑆𝑢𝑝𝑢∈𝛢𝑇
𝐸(∫ 𝑒−𝑟(𝑠−𝑡)𝑇

𝑡
𝐹(𝑋(𝑠), 𝑢(𝑠))𝑑𝑠),                    (8) 

And its HJB-equation has form shown in Eq. (9): 
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𝑟𝑉(𝑡, 𝑇, 𝑥) − 𝑉𝑡(𝑡, 𝑇, 𝑥) = 𝑆𝑢𝑝𝑢∈𝑈 {𝐹(𝑥, 𝑢) + 𝑉𝑥(𝑡, 𝑇, 𝑥)𝑓(𝑥, 𝑢) +
1

2
𝑉𝑥𝑥(𝑡, 𝑇, 𝑥)𝜎2(𝑥, 𝑢)} ; 

       𝑉(𝑇, 𝑇, 𝑥) = 0.                                                                                                                                       (9) 

We include the parameter T, which indicates the length of the finite time horizon, explicitly in the 

notation and consider the value function as a function of three variables. For numerical and 

analytical results, a fundamental question is whether the value functions ( , , )V t T x  represent a 

reasonable approximation for the value function ( )V x  of the infinite horizon approximation 

problem. 

Proposition 2. Assume that the value function V (x) of the infinite horizon problem exists and 

satisfies (TVC). Then 

𝐿𝑖𝑚𝑇→∞𝑉(𝑡, 𝑇, 𝑥) = 𝑉(𝑥), 

Independent of t ∈ [0, ∞) and for all x.  

Proposition 3. Assume that the value functions of the finite T-horizon problems can be written as 

𝑉(𝑡, 𝑇, 𝑥) = 𝐴1(𝑡, 𝑇)𝑔1(𝑥) + 𝐴2(𝑡, 𝑇)𝑔2(𝑥)+. . . +𝐴𝑛(𝑡, 𝑇)𝑔𝑛(𝑥), 

Satisfying the following conditions: 

1. The functions gi(x) are linearly independent (as functions) 

2. For all I, the following limit exists 

𝐿𝑖𝑚𝑇→∞𝐴𝑖(𝑡, 𝑇) = 𝐴𝑖 , 

3. For all i and admissible controls 

𝐿𝑖𝑚𝑡→∞𝐸(𝑒−𝑟𝑡|𝑔𝑖(𝑥(𝑡))|) = 0, 

Then the value function of the infinite horizon problem exists and is given by 

𝑉(𝑥) = 𝐴1𝑔1(𝑥) + 𝐴2𝑔2(𝑥)+. . . +𝐴𝑛𝑔𝑛(𝑥)                                (10) 

5. A New Hybrid Method 
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In Hesameddini et al. (2012), MSDM is introduced and used for solving the finite horizon 

stochastic optimal control problems. In this section, we propose a new variation of this approach 

introduced in section 3, for solving infinite horizon stochastic optimal control problems. To be 

sure, solving governed equations and making a sophisticated guess for value function are major 

weaknesses of the method introduced in section 4. In this article, with a stochastic differential 

transformation, these objections are elevated to some extent. In this paper, the novelty comes from 

the fact that: 

• We hybridize the methods for solving infinite horizon SOCPs which is described in section 

4, with one of the effective methods for solving differential equations named SDTM. 

• Similar to Villafuerte et al. (2010), the DTM is developed to solve stochastic differential 

equations but in our new method, SDTM is applied for definite horizon. 

• Our new approach is in fact complement for approximation method to obtain analytic-

numerical approximation of optimal control and trajectory. 

• We assume that the parameters of the problem (1), belong to L4-space. 

•  Due to the special spaces in (4), the utility function is selected in HARA1 types. This topic 

eliminates the problem of constructing a value function in truncated definite problem. 

However, we write all steps for determine of optimal control and trajectory as the step by step. The 

algorithm that will be used to obtain these purposes for problem (1) is as follows: 

Algorithm 

Step 1. For problem (1), write the truncated problem as (7); 

Step 2. Set HJB-equation for (7) and suppose that for each T the function V (., T,.) defined on 

[0, T] × S, is of class C1,2and satisfies in (9). 

Step 3. Make a sophisticated guess for value function as (10) to obtain V(x); 
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Step 4. Compute the optimal control in feedback form from maximizing the right-hand side of (9); 

Step 5. Solve SDE with SDTM by substituting optimal control in governed system equation. 

We notice that the obtained answer with the above Algorithm is according to variable T, perhaps 

this topic is the most important advantage of our new method. 

6. A Case-study and simulation: Merton’s portfolio problem 

In order to explain the application of the mentioned method for solving SOCPs, as an example, we 

solve the well-known economic problem which is worked out by Merton in Fleming and Soner 

(2006). Merton's portfolio problem is a famous problem in continuous-time finance. This problem 

was formulated and solved by Robert C. Merton in 1969, for both finite lifetimes and infinite time 

horizons. The optimization problem of a portfolio mainly involves describing the investment 

choices of an individual whose degree of risk aversion is known, which is described by the utility 

function. The model in its first version, assumes a market with a certain number of risky securities 

and a risk-free security. The individual has an initial wealth to invest freely in the available assets 

and the objective function to maximize is given by the function of expected utility of the wealth to 

a certain future moment that represents the temporal horizon of the optimization problem. In fact, 

in Merton’s portfolio problem the investor has the possibility to invest only in stock assets. In the 

discussion section of this paper, we have tried to understand what changes should be made to the 

solution in the event that the investor has the opportunity to access both the stock market and the 

derivatives market (Apollinaire and Amanda, 2022; Ji and Zhang, 2024).  

In Merton’s model, we have the option to invest part of our wealth in either a risk-free bond or a 

risky stock, while also planning to consume a portion of our wealth as time progresses. This 

problem assumes that an investor holds a portfolio consisting of two assets, a risk-free bond and 

risky stock. The price ( )b t per share of the bond evolves according to 𝑑𝑏 = 𝑟𝑏𝑑𝑡, whereas the 

http://en.wikipedia.org/wiki/Finance
http://en.wikipedia.org/wiki/Robert_C._Merton
https://epubs.siam.org/doi/abs/10.1137/23M160270X#contrib1
https://epubs.siam.org/doi/abs/10.1137/23M160270X#contrib2
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price of the stock follows the stochastic differential equation 𝑑𝑆 = 𝑆(𝑅𝑑𝑡 + 𝜎𝑑𝐵), where ,r R , 

and are constants, and 0, 0.R r     Let 𝑥(𝑡) denote the investor’s wealth at time t , 𝑢1(𝑡) 

be the fraction of wealth allocated to the risky asset, and 𝑢2(𝑡) represent the consumption rate. 

Thus, 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡)) is control variable and attains its values in 𝑈 = [0,1] × [0, +∞). In 

this manner, the total wealth evolves as:  

𝑑𝑥(𝑡) = (1 − 𝑢1(𝑡))𝑥(𝑡)
𝑑𝑏

𝑏
+ 𝑢1(𝑡)𝑥(𝑡)

𝑑𝑆

𝑆
− 𝑢2(𝑡)𝑑𝑡.

 

Therefore,
 

𝑑𝑥(𝑡) = 𝑟(1 − 𝑢1(𝑡))𝑥(𝑡)𝑑𝑡 + 𝑢1(𝑡)𝑥(𝑡){𝑅𝑑𝑡 + 𝜎𝑑𝐵(𝑡)} − 𝑢2(𝑡)𝑑𝑡, 𝑥(0) = 𝑥0.       (11)
 

We stop the process if the wealth reaches zero (bankruptcy). In addition, we assume that the 

running cost is 𝐹(𝑥(𝑡), 𝑢(𝑡)) = 𝑙(𝑢2(𝑡)), where 𝑙(𝑢2(𝑡)) represents the utility of consuming at 

rate 𝑢2(𝑡) > 0
 
. Of note, the problem is to maximize the total expected utility, discounted at rate 

𝑟 > 0:
 

𝐸(∫ 𝑒−𝑟𝑡𝑙(𝑢2(𝑠))𝑑𝑠),
𝜏

0

 

Where denotes the random first time (.)x leaves 𝑄 = {(𝑥, 𝑡): 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ≥ 0}.  

For this problem, we apply algorithm described in the previous section. In step 1, we have the 

truncated problem, and we choose the following utility function, which is of the hyperbolic 

absolute risk aversion type (Abazari and Abazari, 2010; Steele, 2001). In next step, the HJB-

equation takes the form in Eq. (11). 

In Krawczyk (1999), the HJB equation for this SOCP is given as: 

𝑣𝑡 + 𝑚𝑎𝑥𝑢2≥0
0≤𝑢1≤1

{
(𝑢1𝑥𝜎)2

2
𝑣𝑥𝑥 + (𝑟(1 − 𝑢1)𝑥 + 𝑅𝑥𝑢1 − 𝑢2)𝑣𝑥 + 𝑒−𝛽𝑡𝑙(𝑢2)} = 0,                 (12) 

With boundary conditions 𝑣(0, 𝑡) = 0and𝑣(𝑥, 𝑇) = 0. 
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 The chosen utility function, which is of the hyperbolic absolute risk aversion type (Abazari and 

Abazari, 2010; Steele, 2001), is: 

𝑙(𝑐) =
1

𝛾
𝑐𝛾;   0 < 𝛾 < 1. 

For next step, the optimal control is computed by maximizing the expression given in the HJB 

equation. This yields the following optimal control form: 

𝑈∗ = (𝑈1
∗, 𝑈2

∗) = (−
(𝑅 − 𝑟)𝑉𝑥

𝜎2𝑥𝑉𝑥𝑥
, 𝑉𝑥

1
𝛾−1) 

It is assumed that an investor with an initial wealth of 𝑥0 = 105 unit aims to maximize his/her 

satisfaction over the next ten years. The parameters considered in this study are 𝑟 = 0.05, 𝑅 =

0.11, 𝜎 = 0.4, and 𝛾 = 0.5. In this paper, it is assumed that the investor can invest using the above 

data over an infinite horizon. Substituting the derived optimal control into equation (12), we obtain 

the following equation: 

𝛽𝑉 − 𝑉𝑡 =
1

𝑉𝑥
+ 𝑟𝑥𝑉𝑥 −

1

2

(𝑅 − 𝑟)2𝑉𝑥
2

𝜎2𝑉𝑥𝑥
;   𝑉(𝑇, 𝑇, 𝑥) = 0.           (13) 

To solve equation (13), we define the following value function as: 

𝑉(𝑡, 𝑇, 𝑥) =  𝐴1(𝑡, 𝑇)√𝑥, 

Given the boundary condition of (13), this holds in state space for all x, implying that: 

𝐴1(𝑇, 𝑇) = 0.                                                                               (14) 

By substituting A1(T,T)=0 from equation (14) into equation (13), we obtain the following 

differential equation, which is of Bernoulli equation type: 

𝐴1̇(𝑡, 𝑇) − (𝛽 − 2𝑟 −
(𝑅 − 𝑟)2

2𝜎2
) 𝐴1(𝑡, 𝑇) =

−2

𝐴1(𝑡, 𝑇)
;  𝐴1(𝑇, 𝑇) = 0. 

By solving the differential equation, we obtain the following solution for A1(t,T) : 
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𝐴1(𝑡, 𝑇) = 𝑒𝜃𝑡√
2

𝜃
(𝑒−2𝜃𝑡 − 𝑒−2𝜃𝑇)   

And the corresponding value function is: 

𝑉(𝑡, 𝑇, 𝑥) = 𝑒𝜃𝑡√
2𝑥

𝜃
(𝑒−2𝜃𝑡 − 𝑒−2𝜃𝑇) 

Where: 

𝜃 = 𝛽 − 2𝑟 −
(𝑅 − 𝑟)2

2𝜎2
 

It can then be included from above result that 

lim
𝑇→∞

𝐴1(𝑡, 𝑇) = √
2

𝜃
 

Therefore, the suitable candidate for the value function is: 

𝑉(𝑥) = √
2𝑥

𝜃
 

We therefore obtain that the optimal control is 

𝑈∗ = (𝑈1
∗, 𝑈2

∗) = (
2(𝑅 − 𝑟)

𝜎2
, 2𝜃𝑥(𝑡)) 

By substitute this form of optimal control into governed equation (11), we obtain (15): 

𝑑𝑥(𝑡) = (5𝑟 + 3
(𝑅 − 𝑟)

𝜎2
− 2𝛽) 𝑥(𝑡)𝑑𝑡 +

2(𝑅 − 𝑟)

𝜎2
𝑥(𝑡)𝑑𝐵(𝑡)           (15) 

Which describes the dynamics of the investor's wealth over time. 

By solving the above equation using SDTM for a definite horizon in the mean square space, we 

can obtain simulations of the optimal control and the optimal trajectory as function of T. Figure 1 

presents the approximated optimal controls for 5 random runs, assuming T=1o. In fact, we examine 
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the solution obtained with the hybrid approach and substitute one instead T. In the second stage, 

the new method was applied to this problem fifty random runs, assuming T=10. The average 

wealth from these simulations is plotted in Figure 2. For this choice, the obtained solution is 

compared with the results from Kirk (2004). Our results have been satisfactory for several reasons. 

Frist, the obtained optimal trajectory matches the result presented in Kirk (2004), indicating that 

the introduced approach is valid and reliable. Second, we introduce a time continues trajectory and 

optimal control strategy. Third, the selection of the endpoint in this problem implies determining 

the optimal investment strategy that aligns with the moment the investment period concludes. 

Accordingly, the value of x reaches zero at this time. This fact is consistent with the results 

obtained in Gokdogan and Merdan (2010) using the new method. The endpoint or selection of a 

definite horizon can represent the equilibrium point of the system. Therefore, accurately estimating 

this point demonstrates the efficiency and effectiveness of the new approach. 

Conclusions 

In this work, we have presented a new method for solving infinite horizon SOCPs to determine an 

approximate analytical strategy. The obtained solution is a series in which the coefficients can be 

computed very accurately. Our hybrid approach has some advantages over previous methods, such 

as the variational iteration method, Markov chain techniques, and others. First, it provides a 

continuous curve for the solution; second, the convergence of the new approach is guaranteed and 

the solution is presented as a polynomial with suitable approximation. An advantage of this 

approach is that it provides solutions for SOCPs while accounting for noise in the system. This 

topic is particularly useful in addressing financial and economic problems, such as nominal shocks, 

real shocks, and productivity shocks. It is designed to outline and evaluate various strategies to 

manage and mitigate such challenges effectively. We would like to emphasize that the novelty 
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presented in this paper lies in the hybridization of two well-known methods, effectively creating a 

comprehensive approximation approach. 
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Figures 

 

Figure 1. Five samples of trajectory. 
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Figure 2. The average wealth of running fifty times randomly. 
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