Journal of Productivity Management Vol20, No.78, Autumn 2026

¥ d
WResemh Article” 10.71737/iom.2026.1192591
Bt

Investigating machine learning-based methods to improve maintenance
and repair management in oil pipelines with emphasis on weighted KNN
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Abstract

Maintenance costs usually account for more than a third of a manufacturing
company’s operating costs, so an optimal maintenance strategy and model should
improve equipment performance. Therefore, predicting the causes of failures and their
roots is a major concern for managers in various industries. In fact, maintenance
managers are always looking to discover what factors can lead to failures in production
and service continuity in order to prevent them from occurring. This can be even more
important in process industries such as oil and gas due to the high volume of losses and
losses caused by equipment failures and stoppages in production and product
transportation. Predicting pipeline failures and data imbalances is one of the main
challenges in the oil industry. Traditional models are unable to accurately identify
failures. The nearest neighbor algorithm, as one of the machine learning methods, has
shown good performance in the presence of unbalanced class distributions. In this
paper, an attempt has been made to improve the prediction accuracy by using KNN
weighting techniques. In this proposed method, the KNN algorithm is combined with
two new weighting methods, and the results of the studies show that these methods
increase the prediction accuracy compared to simple KNN and other machine learning
methods. This paper presents a solution for improving preventive maintenance systems
in pipelines in the oil industry.
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1. Introduction

In the midst of the Fourth Industrial Revolution, industries are constantly
looking for ways to optimize production lines while also seeking to
reduce their costs (Popov et al., 2021). Maintenance costs typically
account for more than one-third of a manufacturing company's operating
costs (Fu et al., 2020). Traditional maintenance techniques are based on
two different strategies: corrective maintenance and preventive
maintenance. Corrective maintenance is performed to repair faulty
systems and equipment only when a failure occurs, thus reducing direct
process costs (Kerf et al.,, 2020). But preventive maintenance is
performed after regular intervals to prevent equipment and systems from
failing. Therefore, repairs are performed on machines or components
when they have an uncertain remaining useful life, leading to both
machine downtime and increased operating costs (Zheng et al., 2021). In
the oil industry, pipes play an important role in transporting oil and
petroleum products, so their efficient and safe operation is crucial to
minimizing environmental risk and company assets. Therefore,
predicting pipeline failure is very important and necessary. Therefore,
studies to predict pipeline failures have increased significantly in recent
years. The present study, considering the existing shortcomings and lack
of research in the field of predicting failures in oil pipelines, seeks to
provide a model to identify and detect failures in oil pipelines. Machine
learning techniques have been used in many studies for fault detection or
failure detection and have shown good performance. Research has also
been conducted on failure detection in the oil industry or failure
prediction in similar equipment, but in the Iranian oil industry, research
that can predict the causes of failure in oil pipes is still rarely seen. In
addition, the use of a combination of metaheuristic algorithms and
machine learning can achieve more accurate results in prediction by
reducing the prediction error, and the use of this methodological
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approach is also limited in research in the field of failure detection in oil
pipes (Zenisk et al., 2019). Given the existing shortcomings and lack of
research in the field of oil pipe failure prediction, this article seeks to
present a model for identifying and detecting oil pipe failures, which is a
serious need in the oil industry. The present study attempts to develop an
appropriate model for predicting oil pipe failures with the help of
machine learning algorithms and predict this failure appropriately. At the
end of the article, we seek to answer this key question: How is the
detection of defects in oil pipes by controlling the identified parameters
with the help of machine learning algorithms?

2. Literature Review

Machine learning techniques have been used in many studies for fault
detection or failure detection and have shown good performance.
Research has also been conducted on failure detection in the oil industry
or failure prediction in similar equipment, but in the Iranian oil industry,
research that can predict the causes of failure in oil pipes is still rarely
seen. In addition, the use of a combination of metaheuristic algorithms
and machine learning can achieve more accurate results in prediction by
reducing the prediction error, and the use of this methodological
approach is also limited in research in the field of failure detection in oil
pipes (Zenisk et al., 2019). Given the existing shortcomings and lack of
research in the field of oil pipeline failure prediction, this article seeks to
present a model for identifying and detecting oil pipeline failures, which
is a serious need in the oil industry. The present study attempts to
develop an appropriate model for predicting oil pipeline failures with the
help of machine learning algorithms and predict this failure
appropriately. At the end of the article, we seek to answer this key
question: how to detect defects in oil pipelines by controlling the
parameters identified with the help of machine learning algorithms?

Oil and gas pipelines are one of the most critical industrial
infrastructures around the world. Failure or leakage in these lines can

(Vo)



“‘H—°0.y.yc\i‘° HL&-’_VAJL‘A_J g b)wc“’ 0,92 539 0k SO0

lead to environmental problems, high repair costs, and even safety
threats. Therefore, developing accurate predictive models that can
identify failures before they occur is of great importance.

One of the challenges in predicting pipeline failures is data imbalance.
In this study, various techniques were used to solve this problem. The
KNN model was implemented with weighting to increase the influence
of closer samples. Also, the k value was optimized so that the model
could better identify minority class samples. This method improved the
accuracy of the model in detecting failure samples compared to simple
KNN (Atcher et al., 2020).

Traditional methods are designed based on statistical analysis and
probabilistic models. Among these methods, logistic regression can be
mentioned. This method has been used to predict the probability of
failure, but its accuracy is low in nonlinear data. Linear discriminant
analysis and quadratic discriminant analysis have also been used to
classify the condition of pipes, but they have poor performance against
complex data. The main drawback of traditional methods is the inability
to process large volumes of industrial sensor data and the inability to
model complex and nonlinear patterns, as well as sensitivity to noise and
lack of training data (Megana-Mora et al., 2019).

Recent advances in machine learning have made it possible to analyze
large data sets and discover complex patterns. Various studies have
shown that machine learning-based methods have higher accuracy in
failure prediction, some of the most important of which are:

Random Forest A model based on combining multiple decision trees
that has high accuracy, but in some cases overfitting.

* Support Vector Machine (SVM) requires a lot of processing time,
especially for data with certain boundaries, but in large data volumes.

XGBoost is one of the boosting methods that are capable of modeling
nonlinear and complex relationships and has shown better performance
than other models in many forecasting problems.
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* Artificial neural networks have the ability to learn complex features
from data, but they require a large amount of data for training and have
low interpretability.

Therefore, the most important limitations of machine learning methods
are the need for balanced data to prevent model bias

and the high computational complexity of some models. (Yang et al.,
2019).

In recent years, various methods have been proposed for pipeline
failure prediction. Past studies have mainly focused on the use of basic
models such as Logistic Regression, LDA, and QDA. However, new
research shows that ensemble learning methods such as Random Forest
and Boosting can improve the prediction accuracy. This paper aims to
combine the advantages of traditional algorithms and optimized KNN
methods.

KNN is one of the simplest but most effective machine learning
algorithms for classification and prediction problems. This method uses
data spacing for decision making and has high generalizability. The most
important strengths of the KNN method are its simplicity of
implementation, no need for complex training, and good performance on
small and unbalanced datasets. In order to improve the accuracy and
performance and overcome the limitations of this method, a combination
of weights has been used.

The challenges in previous methods are the lack of attention to data
imbalance, which in many previous studies have run machine learning
models on balanced data, while failures rarely occur in industrial data,
and the lack of use of KNN optimization techniques: Previous papers
have usually used standard KNN and have not investigated
improvements such as weighting. (Lin et al., 2019).

In this paper, the KNN model is combined with two new weighting
methods:

(@) Exponential Weighting increases the influence of closer samples
and improves the accuracy of the model.
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(b) Hyperbolic Tangent Weighting allows more distant samples to
have an impact on the prediction, but their role is reduced.

Therefore, to further investigate the topic, the performance and
accuracy of weighted KNN models are compared with machine learning
methods to determine whether the proposed method can be applied in
real conditions.

In order to state the problem of the paper, given that traditional
methods had many limitations and could not process complex data, and
since machine learning methods have higher accuracy, but require
optimization for unbalanced data. Therefore, the present paper improves
KNN with weighting techniques and compares it with machine learning
models.

3. Methodology

The data collection tool in the present study includes a database to
extract data values and a Delphi questionnaire to confirm the input
variables. The Delphi questionnaire includes 8 variables mentioned in the
conceptual model and the variables section. The Delphi questionnaire of
the present study is set on a scale of 1 to 10 and is graded from 1 to 10
from least important to most important. The validity of the questionnaire
is collected using the opinions of ten professors and its reliability is
collected using the Cronbach's alpha test. The statistical population of the
present study includes all experts in oil projects in the lIranian OQil
Company who are preferably familiar with oil pipe failures and have
technical expertise. Considering the judgmental nature of the sample,
selecting 10 to 20 people leads to sample adequacy, and in the present
study, at least 10 people are selected as a sample. In the above graph, the
final average of each variable was obtained using the Delphi method. The
most important variables are viscosity and sludge weight, followed by
flow acceleration. Of course, it should be noted that the average of the
variables is not very important in the present study, and only the lack of
disagreement and agreement of the experts on the research variables is
important, which of course was achieved. Next, we enter the machine
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learning stage to predict the effect of the final eight variables using the
Delphi method. Next, we identified eight variables that are effective in
pipe failure. Then, based on the identified variables, it was determined to
what extent these variables can be good predictors for detecting defects
in oil pipes. To overcome the problem of data imbalance, oversampling
techniques such as SMOTE and ADASYN have been used. These
methods increase the balance in the data distribution by generating
artificial samples from the minority class and improve the accuracy of the
model.

In this paper, the KNN model has been optimized in two ways:
exponential weighting and hyperbolic tangent. These methods have
improved the prediction accuracy. To examine the impact of these
techniques, the proposed models have been compared with simple KNN
and other machine learning algorithms including Random Forest, SVM
and XGBoost.

e Exponential Weighting in KNN
e Hyperbolic tangent weighting in KNN

In this method, the weight of each neighbor is adjusted by the
hyperbolic tangent function. exponential and hyperbolic tangent graphs,
which show that as the sample distance increases, the assigned weight
decreases more sharply, which will have a positive effect on the
performance of the method.

3. Result

In this article, in order to select the best method for predicting oil
pipeline failures based on the identified variables and applying
classification methods, a Python program has been used. The data is
analyzed based on 8 variables and 319 samples for class analysis using
different algorithms, and the results are presented.. After applying filters
to pre-process the data, various machine learning methods were
implemented and compared in terms of evaluation indicators in Table 2.

5. Discussion
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In this paper, an optimized model for KNN was proposed, which
included exponential weighting and hyperbolic tangent techniques. These
techniques have increased the accuracy of the model, which indicates the
practical application of this model in the oil industry. The results of this
study showed that the use of weighting techniques in KNN improves the
accuracy of oil pipeline failure prediction. The KNN model with
exponential weighting performed better than the simple KNN, while the
hyperbolic tangent weighting was superior in some indicators such as
(Precision). In general, ensemble learning methods such as Random
Forest and XGBoost have the best performance compared to other
methods such as Logistic Regression, LDA and QDA, SVM, and KNN
with hyperbolic tangent has better accuracy in Precision because its
gentler weighting has increased the stability of the model. KNN with
exponential weighting performs better than simple KNN because closer
samples help more in decision making. Random Forest and XGBoost
methods have the highest accuracy because they use a combination of
multiple models to reduce variance. SVM performs better than simple
KNN but is weaker than ensemble learning models because it only
considers a linear decision boundary.

Considering that the research findings show that 80% of oil pipe
failures can be measured using the 8 variables under study, the remaining
20% can also be investigated and identified, in other words, it can be
found out what other variables can predict oil pipe failures and add them
to the existing list. Of course, this work should be done according to the
opinions of experts and specialists in the field under study and the final
variables should be extracted.

In laboratory conditions, each of the variables can be changed and its
effect on pipe failure can be further investigated. In addition, the subject
of the present study was only oil pipes, and other pipes such as gas
transmission pipes can also be examined and scrutinized according to the
existing variables.

The rate of pipe failure is among the issues that were not included in
the present study. In fact, the extent to which these variables can lead to
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pipe failure is the result obtained in the present study, but the level of
failure, type of failure, crack or corrosion can also be examined and
considered as a variable, which is included in the limitations of the
present study.

Therefore, suggestions for future research are as follows.

1- Investigate the combination of weighting methods with collective
learning and meta-heuristic optimization algorithms such as genetic
algorithms.

2- Consider the rate or severity of oil pipe failure.

3- Change each of the variables and examine their effect in laboratory
conditions on pipe failure.

4- Examine the effect of existing variables on other types of pipes such
as gas transmission pipes.
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Table 1: Model parameter

(+w)Parameter (4 ¢ $)Parameter type (ure Ol ge)Parameter title | &,
X1 input (W) Temperature 1
X2 input flow (ol JLid) 2
X3 input pipe diameter(4sl ki) 3
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(+w)Parameter (4 ¢ $)Parameter type (exe Ol ge)Parameter title | &,
X4 input penetration rate (34 &) 4
X5 input pump rate(ss ¢ %) 5
X6 input sludge (o)) 6
X7 input stickiness(cSisa) 7
X8 input soil percentage(<S& 1 ) 8
Y1 output (J ¢ cws)Pipe failure 9
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ol pslie 53 Ml 53 s gl (059) w2 Slke o 31, Jsls QLS DT Oy Bl e
Olea Wlis 3 a5 b 513 0L Ol 2l LI s o 2eS VL nslie s 5 i
5 e ml polie 53 U 5o e 6l (055) w0 ke 3, s QST i Bl @

Ssd o S YL slds 5



Ol 02 g Sloj Loy dese weipadle 6530 32 (oo SBGDg; (o) 2

Dy o P ey peSm k5 edd 2y Wb S T Ol L e

SO eXP ol @U jl,:@.@;wtanh @U JS 53358 eedalinla slgeianslis L @

b ol mle (g5luacg
sslial slad (g ot 5 GIaSS (gt Sla s Sl e bl ol (luang ok 4 e
bl e e B s S 13 bl s, e Kl il slis KNN 2, S 6l 5 o
o Weol alal a0 5 S eSS a0y Ml a0y cilte gla b, 5 (K=9)s 42
R ER WY
AP bl sy olad al b s ey o il iline gl S SVM (2, S s
23S 5 el 5, LS il ,slis RBF L5 (6l 5 LS alyly i S
e Gty sdoma s LS ) 2 Lt 3 e (gl il 3l Random Forest oz, S s
Ssd (6,8 gl i3l e U A Jlsl st s Gas gl
ol 0 lasl byl SG sl 5 55k 5 sl il ol XGBoost o, Sl s ke
30 5 s osls 25 sal La eyl e oS 5 o e b adibe dla el sl s (s 3latings ol 51 g
533 53 s BB s 4 e leane aldS bl il slajbae Sl eslinad b a0
s badoe =l

L asil

2l esls Sl sis eslizal 02l asl 5l Classification sls 2y, ¢ SIS 5 oas Slubis

B o Sl s s e gla o) S SGS 4 IS s g e A el

(¢0)



“‘H—°0.y.y4\i‘° }A{LU_VAL;'L‘A_J g b)wc“’ 0,92 539 0k SO0

)] 5B paS LS 5 1 cmdle (5,55 w9 dumlie 2 8,losd Jan
Table 2: Comparison of machine learning algorithms in terms of performance indicators

Method Accuracy Precision Recall F1-Score
X3 Cowo ods LY Oly G- 5Lzal
KNN classic
Sedts KNN 74.5% 68.2% 65.4% 66.7%
KNN weighted
hyperbolic tangent o o 0 0
3 k55 KNN 78.9% 74.1% 70.3% 71.2%
J,J,,,#u
KNN weighted
exponential 77.3% 73.0% 68.9% 70.9%
i gl A5 KNN
XGBoost 82.5% 81% 80.0% 79.1%
SVM
Dty Sfsp edle 76.5% 74.0% 72.0% 73.0%
Random Forest
81.2% 79.8% 78.5% 79.1%
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Table 3: Confusion matrix of KNN algorithm

XGBoost. Actual Positive Actual Negative

St S iy e s e
Predicted Positive 78 5
Predicted Negative 7 110
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