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Abstract 

This paper investigates the nonlinear radial breathing mode (RBM) vibration of single-walled carbon 

nanotubes (SWCNTs) based on numerical methods. A second order partial differential equation that 

governs the nonlinear RBM vibration for such nanotubes is derived using doublet mechanics (DM). This 

nonlinear equation is reduced to ordinary differential equation using Galerkin method and then solved using 

Homotopy perturbation method (HPM) to obtain the nonlinear natural frequency in nonlinear RBM 

vibration. It is the first time that DM is used to model the nonlinear RBM vibration of CNTs. It is shown 

that tube radius and the amplitude of vibration play significant role in the nonlinear RBM vibration response 

of SWCNTs. Increasing the vibration amplitude decreases the natural frequency of vibration compare to 

the predictions of the linear models. However, with increase in tube radius, the effect of vibration amplitude 

on the natural frequency decreases. To show the accuracy and capability of this method, the results obtained 

herein are compared with the numerical results and good agreement is observed. It is notable that the results 

generated herein are new and can be served as a benchmark for future works. 

Keywords: doublet mechanics, homotopy perturbation method, radial breathing mode vibration, single-

walled carbon nanotubes, nonlinear vibration. 

1- Introduction 

At nanoscale levels, the mechanical 

characteristics of nanostructures are often 

significantly different from their behavior at 

macroscopic scale due to the inherent size 

effects. Such characteristics greatly affect the 

performance of nanoscale materials or 

structures and nanoinstruments. In addition 

to mechanical properties, size effects can 

influence electronic, optical and other 

properties [1]. Classical continuum 

mechanics modeling assumptions are 

conducive to erroneous results, when applied 

to material domains where the typical 

microstructural dimension is comparable 
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with the structural ones [2]. Currently, 

various elegant modifications to continuum 

mechanics have been proposed to incorporate 

scale and microstructural features into the 

theory. These theories are introduced as 

generalized continuum mechanics [3- 7]. For 

example, Oveissi et al. analytically 

determined the nonlocal parameter to obtain 

one more accurate axial-buckling response of 

carbon nanoshells conveying nanofluids 

using four plates/shells’ classical theories 

incorporating Eringen’s nonlocal theory [7]. 

One particular theory that has recently been 

applied to materials with microstructure is 

doublet mechanics (DM). This theory 

originally developed by Granik (1978), has 

been applied to granular materials by Granik 

and Ferrari (1993) [2] and Ferrari et al. 

(1997) [8]. In DM micromechanical models, 

solids are represented as arrays of points, 

particles or nodes at finite distances. This 

theory has shown good promise in predicting 

observed behaviors that are not predictable 

using continuum mechanics. Such behaviors 

include the so-called Flamant paradox [8]. 

Some applications of DM has been given in 

[9- 17]. 

Single-walled carbon nanotubes (SWCNTs) 

are tiny cylinders made from carbon. A 

SWCNT can be described as a single layer of 

a graphite crystal that is rolled up into a 

seamless circular cylinder, one atom 

thickness, usually with a small number of 

carbon atoms along the circumference and a 

long length along the cylinder axis. SWCNTs 

have many unique, fascinating properties. 

They are very strong and have extremely 

light weight. They are excellent conductors 

of heat, and transport electrons easily. 

Because of these special properties, they 

might be used as the substantial parts of 

nanoelectronics, nanodevices, and 

nanocomposites. The properties of CNTs 

depend strongly on their microscopic 

structure [18]. Then, in recent years, 

considerable effort has been devoted to the 

problem of the vibration of these 

nanomaterials. One of the most modes of 

vibration for SWCNTs is radial breathing 

mode (RBM) vibration. This mode is the first 

and main mode in radial vibration of tubes. In 

fundamental studies, it is desired to know 

which nanotube is probed experimentally. 

The growth of CNTs with a predefined 

microscopic structure remains a major 

challenge. In principle, the chiral index of an 

individual tube can be determined by optical 

spectroscopy like photoluminescence and 

Raman scattering. However, the 

experimental error in the measurement of 

diameter and chiral angle leads to 

uncertainties in the assignment of the chiral 

index [18]. The RBM is the characteristic 

phonon mode of SWCNTs which leads to a 

periodic increase and decrease of the tube 

diameter [18]. In the RBM, all carbon atoms 

move coherently in the radial direction 

creating a breathing-like vibration of the 

entire tube [18, 19]. This feature is specific to 

CNTs and is not observed in other carbon 

systems such as graphite [19]. The RBM 

frequency is usually the strongest feature in 

SWCNT Raman spectra which plays a 

crucial role in the experimental determination 

of the geometrical properties of SWCNTs 

[19, 20]. RBM frequencies are very useful for 

identifying a given material containing 

SWCNTs, through the existence of RBM 

modes, and for characterizing the nanotube 

diameter distribution in the sample through 
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inverse proportionality of the RBM 

frequency to the tube diameter [20, 21]. 

Therefore, it is very important to know the 

behavior of RBM frequency of different 

nanotubes, precisely. 

However, most of the investigations 

conducted on the RBM vibration of CNTs 

have been restricted to the linear theory. As 

the best knowledge of the authors, the 

nonlinear radial vibration of nanotube is not 

investigated and the present paper tries to 

consider such effect. On the other hands, 

nonlinearity may affect the results, and then 

it is important to investigate the nonlinear 

RBM vibration. The HPM as a powerful 

analytical approach was first introduced by 

He [22- 32] for solving various linear and 

nonlinear initial and boundary value 

problems. The HPM in applied mathematics 

is widely studied now by most 

mathematicians. In this method, the solution 

is considered as the sum of an infinite series 

which converges rapidly to the exact 

solution. Usually, one or two iterations lead 

to high accuracy of the solution. The series 

used is a series of functions rather than terms 

as is in Taylor series. The method has 

recently been applied to a wide class of 

differential and integral equations, stochastic 

and deterministic problems, linear and non-

linear equations. The advantages of this 

method to other methods is more simplicity, 

give better results and with time saving 

because in this method convergence is 

especially rapid in the non-linear and 

nonhomogeneous equations [33]. The HPM 

was also studied by many mathematicians 

and engineers to investigate nonlinear 

equations arising in science and engineering. 

This simple method has been applied to solve 

linear and nonlinear equations in different 

fields of mechanics like heat transfer, fluid 

mechanics and so on [34- 42].  

Nonlinear RBM vibration analysis of 

nanotubes based on DM has not yet been 

investigated analytically and the present 

work attempts to consider such analysis. The 

present work is an extension of the authors’ 

previous work for free linear RBM vibration 

of SWCNTs with free boundary conditions 

[9]. The main idea of the paper is to obtain 

the nonlinear RBM frequency of vibration of 

SWCNTs which incorporates explicitly 

vibration amplitude and scale effects using 

HPM. First, after a brief review of nonlinear 

DM, doublet mechanical theory is applied to 

obtain the basic equations of motion for 

nonlinear RBM vibration of SWCNTs. Then, 

HPM is applied to solve the nonlinear 

governing equations to obtain the nonlinear 

frequency equation for nonlinear RBM 

vibration mode of SWCNTs. Another aim of 

this investigation is to show the effectiveness 

of HPM and the capability of this simple 

method and also handling the nonlinear RBM 

for obtaining the nonlinear natural frequency 

in RBM of SWCNTs. It is shown that the first 

approximate solution of New HPM admits a 

remarkable accuracy in comparison with the 

results obtained from the numerical method 

for the amplitude-frequency curves. 

2- Nonlinear equation of motion in DM 

DM is a micromechanical theory based on a 

discrete material model whereby solids are 

represented as arrays of points or nodes at 

finite distances. A pair of such nodes is 

referred to as a doublet, and the nodal spacing 

distances introduce length scales into the 

microstructural theory. Each node in the 
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array is allowed to have a translation and 

rotation, and increments of these variables 

are expanded in a Taylor series about the 

nodal point. The order at which the series is 

truncated defines the degree of 

approximation employed. The lowest order 

case using only a single term in the series will 

not contain any length scales, while using 

more than one term will produce a multi 

length scale theory. This allowable 

kinematics develops microstrains of 

elongation, shear and torsion (about the 

doublet axis). Through appropriate 

constitutive assumptions, these microstrains 

can be related to corresponding elongational, 

shear and torsional microstresses. 

Applications of this theory to geomechanics 

problems have been given by Granik and 

Ferrari (1993) [2] and Ferrari et al. (1997) [8]. 

For these applications, a granular 

interpretation of DM has been employed, in 

which the material is viewed as an assembly 

of circular or spherical particles. A pair of 

such particles represents a doublet as shown 

in Fig. 1.  

 

Fig. 1 doublet 

Corresponding to the doublet (A, B) there 

exists a doublet or branch vector 𝜻𝑎 

connecting the adjacent particle centers and 

defining the doublet axis. The magnitude of 

this vector 𝜂𝑎 = |𝜻𝑎|  is simply the particle 

diameter for particles in contact. However, in 

general the particles need not be in contact, 

and for this case the length scale 𝜂𝑎 could be 

used to represent a more general 

microstructural feature. For example, the 

internal characteristic scale for the crystal 

lattice parameter of carbon is 𝜂𝑎 = 1.421 𝑎 

[13]. 

As mentioned, the kinematics allow relative 

elongational, shearing and torsional motions 

between the particles, and this is used to 

develop an elongational microstress 𝑝𝑎, shear 

microstress𝑡𝑎 , and torsional microstress 𝑚𝑎 

as shown in Fig. 1. It should be pointed out 

that these microstresses are not second order 

tensors in the usual continuum mechanics 

sense. Rather, they are vector quantities that 

represent the elastic microforces and 

microcouples of interaction between doublet 

particles. Their directions are dependent on 

the doublet axes which are determined by the 

material microstructure. These microstresses 

are not continuously distributed but rather 

exist only at particular points in the medium 

being simulated by DM. 

From Fig. 2, suppose doublet ( 𝑎, 𝑏𝛼 ) 

transform to doublet ( �́�, �́�𝛼 ) as a result of 

kinematic translation. The superscript 0 for 

vectors indicates the initial configuration. 

 

Fig. 2  Translations of the doublet nodes a A , 

b B   
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If 𝒖(𝒙, 𝑡) is the displacement field coinciding 

with a particle displacement, then the 

incremental displacement is written as: 

∆𝒖𝛼 = 𝒖(𝒙 + 𝜻𝛼
0 , 𝑡) − 𝒖(𝒙, 𝑡)                  (1) 

where 𝒙 is the position vector of paricle. 

The incremental function in (1) could be 

expanded in a Taylor series as [8]: 

∆𝒖𝛼 = ∑
(𝜂𝛼)𝜒

𝜒!
(𝝉𝛼

0 . 𝜵)𝜒𝒖𝑀
𝜒=1                      (2) 

Where in 𝜵  is the Del operator in general 

coordinates and 𝜂  is the internal 

characteristic length scale. As mentioned 

above, the number of terms used in the series 

expansion of the local deformation field 

determines the order of the approximation in 

DM.  

Here, 𝛼 = 1, . . . , 𝑛 while n is referred to the 

numbers of doublets. For the problem under 

study, it is assumed that the shear and 

torsional micro-deformations and micro-

stresses are negligible and thus only 

extensional strains and stresses exist. 

The extensional micro-strain scalar measure 

𝜖𝛼, representing the axial deformation of the 

doublet vector, is defined as [8]: 

𝜖𝛼 =
𝝉𝛼.∆𝒖𝛼

𝜂𝛼
                                                 (3) 

From Fig. 1, it can be written that 

01

1


 

 

 
  

  

u
τ τ                              (4)                                                                                                          

As in linear elasticity, it is assumed that the 

relative displacement |∆𝒖𝛼|  is small 

compared to the doublet separation distance 

𝜂𝛼 (|∆𝒖𝛼| ≪ 𝜂𝛼) so that it may be assumed 

that 𝝉𝛼 = 𝝉𝛼
0 . 

Now, the nonlinear basis of DM in radial 

vibration is expanded with more details. In 

nonlinear elasticity 0

 τ τ and the following 

approximate relations between 𝝉𝛼 and 𝝉𝛼
0  are 

present 

 
2

0. cos 1
2


  


  τ τ                          (5) 

 0 sin     τ τ                                (6) 

wherein  is the angle between initial and 

current branch vectors. 

From (4)- (6), 2

  can be obtained as follow 

 
   2 0 0

2 2

1
.

1 2
    

  




    
 

u τ u τ     (7) 

If 2

  obtained from (7) is substituted in (3), 

it can be concluded that 

(∆𝒖𝛼×𝝉𝛼
𝟎).(∆𝒖𝛼×𝝉𝛼

𝟎)

𝜂𝛼
2(1+2𝜖𝛼+𝜖𝛼

2)
= 2 −

2

1+𝜖𝛼
(1 +

∆𝒖𝛼.𝝉𝛼
𝟎

𝜂𝛼
)(8) 

With solving this equation, the microstrain 

for nonlinear approximation can be obtained. 

It is clear that for linear approximation that 
0 0   u τ  and then the linear 

approximation can be obtained. 

Multiplication both side of (8) with 

 21 2
1

2
   yields 

1

2𝜂𝛼
2 (∆𝒖𝛼 × 𝝉𝛼

𝟎). (∆𝒖𝛼 × 𝝉𝛼
𝟎) + (1 +

𝜖𝛼) (1 +
∆𝒖𝛼.𝝉𝛼

𝟎

𝜂𝛼
) = 1 + 2𝜖𝛼 + 𝜖𝛼

2      

 

(9) 
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In Eq. (9), ignoring 2


 in comparison with 

  and 
0

i iu 









 in comparison with

0

i iu 








, gives the following approximate 

nonlinear microstrain-displacements 

equation as 

   
0

0 0

2

. 1
.

2

 
    

  


     

u τ
u τ u τ   (10) 

We may write 𝝉𝛼
0 = 𝜏𝛼𝑗

0 𝒆𝑗 where 𝜏𝛼𝑗
0  are the 

cosines of the angles between the directions 

of micro-stress and the coordinates and 𝒆𝑖 is 

the unit vector in Cartesian coordinate. 

Setting 0 0  , i i i iu      τ e u e  in (10), it is 

concluded that 

𝜖𝛼 =
1

2𝜂𝛼
2
(∆𝑢𝛼𝑖∆𝑢𝛼𝑖𝜏𝛼𝑗

0 𝜏𝛼𝑗
0

− ∆𝑢𝛼𝑖∆𝑢𝛼𝑗𝜏𝛼𝑖
0 𝜏𝛼𝑗

0 )

+
∆𝑢𝛼𝑖𝜏𝛼𝑖

0

𝜂𝛼
 

 

 

(11) 

 

In DM under such assumptions and 

neglecting temperature effect, the relation 

between microstrain and microstress is 

written in the below [8]. 

𝑝𝛼 = ∑ 𝐴𝛼𝛽𝜖𝛽
𝑛
𝛽=1                                     (12) 

Where in 𝑝𝛼  is axial micro stress along 

doublet axes. An example of the axial micro-

stress is the interatomic forces between atoms 

or molecules located at the nodes of a general 

array such as a crystalline lattice. In the case 

of linear and homogeneous inter nodal 

central interactions. (12) can be interpreted as 

the constitutive equation in the linear and 

homogeneous DM and 𝐴𝛼𝛽 is the matrix of 

the micromodules of the doublet. 

In the homogeneous and isotropic media with 

local interaction the above relation is 

simplified as below [8]: 

𝑝𝛼 = 𝐴0𝜖𝛼                                               (13) 

The relation between microstresses and 

macrostresses is [8]: 

𝝈(𝑀) =

∑ 𝝉𝛼
0𝝉𝛼

0 ∑
(−𝜂𝛼)𝜒−1

𝜒!
(𝝉𝛼

0 . 𝜵)𝜒−1𝑝𝛼
𝑀
𝜒=1

𝑛
𝛼=1   (14) 

Substituting (11) into (13) and the result into 

(14) and neglecting scale effect yields 

𝜎𝑚𝑛

= 𝐴0𝜏𝛼𝑚
0 𝜏𝛼𝑛

0 [
∆𝑢𝛼𝑖. 𝜏𝛼𝑖

0

𝜂𝛼

+
1

2𝜂𝛼
2 (∆𝑢𝛼𝑖∆𝑢𝛼𝑖𝜏𝛼𝑗

0 𝜏𝛼𝑗
0

− ∆𝑢𝛼𝑖∆𝑢𝛼𝑗𝜏𝛼𝑖
0 𝜏𝛼𝑗

0 )] 

 

 

 

 

 

(15) 

This equation is the relation between 

macrostresses and displacements in nonlinear 

regime.  

The three dimensional equation of motion in 

DM is given by [8]: 

𝜵. 𝝈(𝑀) + 𝐹𝑖 = 𝜌
𝜕2𝑢𝑖

𝜕𝑡2
                               (16) 

where in 𝜌  is the mass density, 𝒖  is the 

displacement vector and t is the time. 

Superscript (M) refers to the generalized 

macro stresses which incorporate scale 

effects. 
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Now, the form of matrix  A  in (4) 

containing elastic macroconstant for plane 

problem (two-dimensional) is obtained. For 

this reason, consider Fig. 3. According to Fig. 

3, in the 1 2x x  plane, there are only three 

doublets with equal angels between them. 

The solution for the scale-less condition can 

be calculated directly from the associated 

continuum mechanics problem for an 

isotropic material. 

 

Fig. 3 Three doublets with equal angle 1200 between 

them 

Now the matrix A in (4) containing elastic 

macro constant in plane problem (two 

dimensional) is obtained. A plane problem 

with three doublets in the plane is considered 

under scale less conditions (𝑀 = 1), and the 

result obtained in DM is expected to coincide 

with the continuum mechanics result. For the 

plane problems in the homogeneous media, 

 A  is a symmetric matrix of order 3 with the 

most general form [8] 

𝐴 = [
𝑎 𝑏 𝑏
𝑏 𝑎 𝑏
𝑏 𝑏 𝑎

]                                       (17) 

According to Fig. 3, in the 𝑥1 − 𝑥2  plane 

there are only three doublets with equal 

angels between them. Then the solution can 

be calculated directly from the associated 

continuum mechanics problem in the scale 

less condition with an isotropic material.  

It can be shown [16] that for any 𝜃, if  (17) is 

substituted into (12), and (16) for plane stress 

is used, the coefficients 𝑎 and 𝑏 in matrix A 

are found to be: 

𝑎 =
4

9
𝜇

7𝜆+10𝜇

𝜆+2𝜇
 , 𝑏 =

4

9
𝜇

𝜆−2𝜇

𝜆+2𝜇
                  (18) 

Where 𝜆 , 𝜇 are Lame constants and can be 

written in term of elasticity modulus E, 

Poisson ratio 𝜈  and shear modulus G as 

below 

𝜆 =
𝜈𝐸

(1+𝜈)(1−2𝜈)
 , 𝜇 = 𝐺 =

𝐸

2(1+𝜈)
            (19) 

One could use 𝑏 = 0as a quantitative guide 

to the applicability of the simpler constitutive 

relations such as (13). If 𝜆 = 2𝜇 (or 𝜈 =
1

3
) in 

plane stress condition from (18), it is 

concluded that 𝑏 = 0 and 

𝑎 = 𝐴0 =
8𝜇

3
= 𝐸                                    (20) 

3- Modeling of nonlinear RBM vibration 

using DM 

Specific applications of DM have been 

developed for two-dimensional problems 

with regular particle packing microstructures. 

In particular, the two-dimensional hexagonal 

packing microstructure without internal 

atoms establishes three doublet axes at 1200 

angles as shown in Fig. 3.  
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Fig. 4 A nanotube in cylindrical coordinate. 

Now, consider a SWCNT of length L, mean 

radius R, Young’s modulus E, Poisson’s ratio 

𝜈  and mass density 𝜌 as shown in Fig. 4. 

Wherein 𝑢𝑟 , 𝑢𝜃 and 𝑢𝑧 are the displacements 

of the tube in radial, circumferential and axial 

directions in the cylindrical coordinates, 

respectively. 

The equations of motion for SWCNTs In the 

cylindrical coordinates are as follow [9, 17] 

𝜕𝑁𝑧𝑧

𝜕𝑧
+

1

𝑟

𝜕𝑁𝜃𝑧

𝜕𝜃
+ 𝜌𝑓𝑧 = 𝜌

𝜕2𝑢𝑧

𝜕𝑡2                    (21) 

𝜕𝑁𝑧𝜃

𝜕𝑧
+

1

𝑟

𝜕𝑁𝜃𝜃

𝜕𝜃
+

𝑁𝜃𝑟

𝑟
+ 𝜌𝑓𝜃 = 𝜌

𝜕2𝑢𝜃

𝜕𝑡2         (22) 

𝜕𝑁𝑧𝑟

𝜕𝑧
+

1

𝑟

𝜕𝑁𝜃𝑟

𝜕𝜃
−

𝑁𝜃𝜃

𝑟
+ 𝜌𝑓𝑟 = 𝜌

𝜕2𝑢𝑟

𝜕𝑡2          (23) 

𝜕𝑀𝑧𝑧

𝜕𝑧
+

1

𝑟

𝜕𝑀𝜃𝑧

𝜕𝜃
+ 𝜌𝑙�̅� = 𝑁𝑧𝑟                      (24) 

𝜕𝑀𝑧𝜃

𝜕𝑧
+

1

𝑟

𝜕𝑀𝜃𝜃

𝜕𝜃
+

1

𝑟
𝑀𝜃𝑟 + 𝜌𝑙�̅� = 𝑁𝜃𝑟       (25) 

𝑀𝑧𝑟

𝜕𝑧
+

1

𝑟

𝑀𝜃𝑟

𝜕𝜃
−

𝑀𝜃𝜃

𝑟
+ 𝜌𝑙�̅� = 𝑁𝑟𝑟               (26) 

which are the equations of motion of a thin 

shell in the cylindrical coordinates. 

Also, assuming that the shell-like body is 

thin, (27) and (28) may be used to write the 

physical components 𝑁𝑖𝑗 and 𝑀𝑖𝑗 as: 

𝑁𝑖𝑗 = ∫ 𝜎𝑖𝑗
(𝑀)

𝑑𝑧
ℎ

2

−
ℎ

2

 , 𝑖, 𝑗 = 1,2,3                (27) 

𝑀𝑖𝑗 = ∫ 𝑧𝜎𝑖𝑗
(𝑀)

𝑑𝑧
ℎ

2

−
ℎ

2

 , 𝑖, 𝑗 = 1,2,3             (28) 

Now, the equation of motion for nonlinear 

RBM is derived. To this end, the following 

assumptions, known as Love’s first 

approximation, for cylindrical shells are 

made [9]: 

1. All points that lie on a normal to the 

middle surface before deformation do 

the same after the deformation. Then 

the transverse shear stresses𝜎𝑟𝑧
(𝑀)

and 

𝜎𝜃𝑧
(𝑀)

are assumed to be negligible. 

2.  Displacements are small compared 

to the shell thickness. 

3. The normal stresses in the thickness 

direction (𝜎𝑟𝑟
(𝑀)

) are negligible 

(planar state of stress). 

As mentioned before, in the RBM, all carbon 

atoms move coherently in the radial direction 

creating a breathing-like vibration of the 

entire tube. This feature is specific to CNTs 

and is not observed in other carbon systems 

such as graphite [20]. Therefore, RBM 

frequencies are very useful for identifying 

whether a given material contains CNTs, 

through the presence of RBM modes. The 

force needed for a radial deformation of a 

nanotube increases as the diameter (and 

hence the circumference) decreases [9]. 

Small nonradial component of the atomic 

displacement arises from mixing with the 

fully symmetric high-energy phonons. If the 

nanotube is approximated by a homogeneous 

cylinder, the frequency of the radial vibration 

is linear with the inverse tube diameter [18]. 

Thus, with assumptions of axisymmetric and 

homogeneity for the entire tube in the RBM 
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vibration, this implies that 
∂

∂θ
= 0,

∂

∂z
= 0 

and 𝑢𝑧 = 0, 𝑢𝜃 = 0.  

With the following assumptions in mind, 

from (11), the microstrains can be written in 

cylindrical coordinates as (see Appendix A): 

𝜖𝛼 =
1

𝑟
(𝜏𝛼𝜃

0 )
2
𝑢𝑟 +

1

2𝑟2 (𝜏𝛼𝜃
0 )

2
(𝜏𝛼𝑧

0 )2𝑢𝑟
2  (29) 

It is further assumed that all doublets 

originating from a common node have the 

same magnitudes; i.e. 𝜂𝑎 = 𝜂 (𝑎 =

1,2, … , 𝑛)  and the interactions are purely 

axial (no shear or torsional microstresses is 

present). For local interaction in the plane, 

there will be two micromoduli 𝑎 , 𝑏 and the 

constitutive relationship between elongation 

microstress and microstrain is expressed by 

(4). If 𝜈 =
1

3
, then matrix [𝑨] will be diagonal 

and there will be one micromodulus𝐴0  and 

the constitutive relationship between 

elongation microstress and microstrain is 

expressed by (5). In this paper, (4) is used. 

If (29) is substituted into (13) and the result 

into (14), the macrostress-displacement 

relations in the cylindrical coordinates may 

be written as: 

𝜎𝑖𝑗 = ∑ 𝜏𝛼𝑖
0 𝜏𝛼𝑗

0 ∑ 𝐴𝛼𝛽 [
1

𝑟
(𝜏𝛼𝜃

0 )
2
𝑢𝑟 +3

𝛽=1
3
𝛼=1

1

2𝑟2 (𝜏𝛼𝜃
0 )

2
(𝜏𝛼𝑧

0 )2𝑢𝑟
2]                                (30) 

This equation is the relation between the 

macrostresses and the displacements. 

Considering such assumptions and 

neglecting body forces, (21)- (26) reduce to 

1

𝑅
𝑁𝜃𝜃 = 𝜌ℎ

𝜕2𝑢𝑟

𝜕𝑡2                                        (31) 

Setting 𝑖 and 𝑗  equal to 𝜃  in (50), the 

following equation for the normal stress 𝜎𝜃𝜃
(𝑀)

 

is found 

𝜎𝜃𝜃
(𝑀)

=

∑ (𝜏𝛼𝜃
0 )

2
∑ 𝐴𝛼𝛽 [

1

𝑟
(𝜏𝛼𝜃

0 )
2
𝑢𝑟 +3

𝛽=1
3
𝛼=1

1

2𝑟2 (𝜏𝛼𝜃
0 )

2
(𝜏𝛼𝑧

0 )2𝑢𝑟
2]                                (32) 

If (51) is substituted into (38) and then 

integrated along the tube thickness, the 

following equation is obtained  

𝑁𝜃𝜃 =

ℎ ∑ (𝜏𝛼𝜃
0 )

2
∑ 𝐴𝛼𝛽 [

1

𝑟
(𝜏𝛼𝜃

0 )
2
𝑢𝑟 +3

𝛽=1
3
𝛼=1

1

2𝑟2 (𝜏𝛼𝜃
0 )

2
(𝜏𝛼𝑧

0 )2𝑢𝑟
2]                                (33) 

Substituting (17) into (33) and taking note 

that the nanotube in RBM vibration can be 

considered to be in the state of plane stress, 

from (18), (33) can be simplified to 

𝑁𝜃𝜃 =
𝐸

1−𝜈2 ℎ ∑ [
1

𝑅
(𝜏𝛼𝜃

0 )
4
𝑢𝑟 +3

𝛼=1

1

2𝑅2 (𝜏𝛼𝜃
0 )

4
(𝜏𝛼𝑧

0 )2𝑢𝑟
2]                                (34) 

Inserting (34) into (31), the following 

equation is obtained.  

−
1

𝑅

𝐴0

1−𝜈2 ℎ ∑ [
1

𝑅
(𝜏𝛼𝜃

0 )
4
𝑢𝑟 +3

𝛼=1

1

2𝑅2 (𝜏𝛼𝜃
0 )

4
(𝜏𝛼𝑧

0 )2𝑢𝑟
2] = 𝜌ℎ

𝜕2𝑢𝑟

𝜕𝑡2                (35) 

According to (31) a second-order nonlinear 

governing equation is obtained. However, the 

governing equation derived from the DM 

principle turns out to be an infinite order 

differential equation in terms of 𝜂. Because it 

is almost impossible to solve the infinite 

order differential equation, only terms of 
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order and lower in the infinite series in (10) 

and (14) are retained. 

 

Fig. 5 A Zigzag SWCNT 

As mentioned above, a SWCNT is 

constructed from three doublets having equal 

lengths and angles between them, an example 

of which is a Zigzag SWCNT (𝜃 = 0 in Fig. 

3) shown in Fig. 5. 

Considering Fig. 5, the director vectors in 

cylindrical coordinates can be expressed as: 

𝜏1𝑟
0 = 0 , 𝜏2𝑟

0 = 0 , 𝜏3𝑟
0 = 0                      (36) 

𝜏1𝜃
0 = 0 , 𝜏2𝜃

0 = −𝑐𝑜𝑠30 , 𝜏3𝜃
0 = 𝑐𝑜𝑠30  (37) 

𝜏1𝑧
0 = −1 , 𝜏2𝑧

0 = −𝑐𝑜𝑠60 , 𝜏3𝑧
0 = −𝑐𝑜𝑠60   (38) 

where 𝑧 is in the axial direction and 𝑟 and 𝜃 

are in the radial and circumferential 

directions of the nanotube, respectively. 

If (36) - (38) are substituted into (35), the 

equation of motion for Zigzag nanotubes are 

obtained in nonlinear RBM vibration as 

−
1

𝑅2

𝐸

1−𝜈2 [𝑢𝑟 +
1

8

1

𝑅
𝑢𝑟

2] = 𝜌
𝜕2𝑢𝑟

𝜕𝑡2               (39) 

The above is the expression for the nonlinear 

RBM frequency of an Armchair SWCNT 

with scale effects. 

The advantage of these simple expressions is 

that they show the dependency of the RBM 

frequency on the mechanical and geometrical 

properties of the SWCNT. In particular, the 

expressions show that by increasing the 

Young’s modulus (𝐸) and the Poisson’s ratio 

(𝜈 ) of the SWCNT, their RBM frequency 

increases; however by increasing the mass 

density (𝜌), the scale parameter (𝜂) and the 

radius (𝑟), their RBM frequency decreases. 

In the linear condition where 𝑢𝑟
2 = 0, from 

the above equations, it is found that 

−
1

𝑅2

𝐸

1−𝜈2
𝑢𝑟 = 𝜌

𝜕2𝑢𝑟

𝜕𝑡2
                               (40) 

which is in exact agreement with the 

expression for the linear RBM equation of 

motion in the scale less condition [9]. 

4- Application of HPM for solving nonlinear 

RBM vibrations of SWCNTs 

Now, the nonlinear equation of motion is 

solved to obtain the nonlinear natural 

frequency in RBM. Assuming 𝑢𝑟(𝑥, 𝑡) =

𝜑(𝑥)𝑈(𝑡)  where 𝜑(𝑥) is the eigenmode of 

the tube satisfying the kinematic boundary 

conditions and is the time-dependent 

deflection parameter of the nanotube and 

applying the Galerkin method, the governing 

equations of motion are obtained as follows: 

−
1

𝑅2

𝐸

1−𝜈2
[𝑎1𝑈 +

1

8

1

𝑅
𝑎2𝑈

2] = 𝜌𝑎1
𝜕2𝑈

𝜕𝑡2
    (41) 

The above equations are the differential 

equations of motion governing the nonlinear 

RBM vibrations of CNTs subjected to the 

following initial conditions: 

𝑈(0) = 𝑈𝑚𝑎𝑥 ,
𝑑𝑈

𝑑𝑡
(0) = 0                       (42) 

where 𝑈𝑚𝑎𝑥  denotes the maximum 

amplitude of oscillation. In (41), 𝑎1  and 𝑎2 

are defined as follows: 

𝑎1 = ∫ 𝜑2(𝑥)𝑑𝑥
𝐿

0
, 𝑎2 = ∫ 𝜑3(𝑥)𝑑𝑥

𝐿

0
     (43) 



71 
 

Z.Azimzadeh & A.Fatahi-Vajari/ Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 16 (2024) 0061~0077 

 

 

 
 

Under the transformations 𝑟 = √
𝐼

𝐴
, 𝜏 = 𝜔𝑡, 

and 𝑤 =
𝑈

𝑟
, (41) can be transformed to the 

following nonlinear equation:  

𝜔2 𝑑2𝑊

𝜕𝜏2
+ 𝐴𝑊 + 𝐵𝑊2 = 0                     (44) 

wherein 

𝐴 =
1

𝑅2𝜌

𝐸

1−𝜈2 = 𝜔𝐿
2                                  (45) 

𝐵 =
1

𝑅2𝜌

𝐸

1−𝜈2
√

𝐼

𝐴

1

8

1

𝑅

𝑎2

𝑎1
                              (46) 

In (45), 𝜔𝐿 = √𝐴 is the linear, free vibration 

frequency in the RBM. In (44), the unknown 

angular frequency has to be determined. To 

this end, HPM is applied to seek the solution 

of (44). The following homotopy with 𝜔0 as 

the initial approximation for the angular 

frequency is constructed 

(1 − 𝑝)𝜔0
2 (

𝑑2𝑈

𝜕𝜏2 + 𝐴𝑈) + 𝑝 (𝜔2 𝑑2𝑈

𝜕𝜏2 +

𝐴𝑈 + 𝐵𝑈2) = 0                                      (47) 

Here 𝑝  is a parameter, 𝑊 = 𝑊(𝜏, 𝑝)  and 

𝜔 = 𝜔(𝑝) . Obviously, when 𝑝 = 0 , (47) 

yields the following linear harmonic equation 

𝑑2𝑊

𝜕𝜏2 + 𝑊 = 0 ,𝑊(0) = 𝑊𝑚𝑎𝑥 ,
𝑑𝑊(0)

𝜕𝜏
= 0   (48) 

It is notable that for 𝑝 = 1 , it results the 

nonlinear Eq. (44). As embedding parameter 

𝑝  varied from 0 to 1, the solutions 𝑊 =

𝑊(𝜏, 𝑝) and 𝜔 = 𝜔(𝑝) of the homotopy (47) 

change from their initial approximations 

𝑊0(𝜏)  and 𝜔0  to the required solutions 

𝑊(𝜏)  and 𝜔  of Eq. (44). Suppose the 

solution of Eq. (44) to be in the following 

form: 

𝑊(𝜏) = 𝑊0(𝜏) + 𝑝𝑊1(𝜏) + ⋯               (49) 

𝜔 = 𝜔0 + 𝑝𝜔1 + ⋯                                (50) 

Substituting the above relations into the (47) 

and equaling the coefficients of the terms 

with same powers of 𝑝, the following linear 

differential equations are obtained 

 

𝑝0 : 
𝑑2𝑊0

𝜕𝜏2
+ 𝑊0 = 0 ,𝑊0(0) = 0 ,

𝑑𝑊0(0)

𝜕𝜏
= 𝑊𝑚𝑎𝑥                                                              

𝑝1: 𝜔0
2 (

𝑑2𝑊1

𝜕𝜏2
+ 𝑊1) + (

𝑑2𝑊0

𝜕𝜏2
+ 𝐴𝑊0 + 𝐵𝑊0

2) = 0 ,𝑊1(0) = 0 ,
𝑑𝑊1(0)

𝜕𝜏
= 0

⋮

 

(51) 

The solution of the initial zeroth 

approximation is simply obtained by 

𝑊0(𝜏) = 𝑊𝑚𝑎𝑥𝑐𝑜𝑠(𝜏)                             (52) 

Substituting (52) into the first approximation 

(51), it is obtained 

𝜔0
2 (

𝑑2𝑊1

𝜕𝜏2 + 𝑊1) + [−𝜔0
2𝑊𝑚𝑎𝑥𝑐𝑜𝑠(𝜏) +

𝐴𝑊𝑚𝑎𝑥𝑐𝑜𝑠(𝜏) + 𝐵𝑊𝑚𝑎𝑥
2 𝑐𝑜𝑠2(𝜏)] = 0   (53) 

Expanding 𝑐𝑜𝑠2(𝜏) in its first period using 

Fourier sine series yields 

𝑐𝑜𝑠2(𝜏) ≅
4

3𝜋
𝑠𝑖𝑛(𝜏) −

28

15𝜋
𝑠𝑖𝑛(3𝜏)        (54) 

Substituting (54) into (53) and letting the 

coefficient of 𝑠𝑖𝑛(𝜏) to be zero in order to 

eliminate the secular terms, it is found that 

𝜔0 = √𝐴 −
4

3𝜋
𝐵𝑊𝑚𝑎𝑥                            (55) 

It was shown that the nonlinear natural 

frequency in RBM is dependent to many key 

factors. A fishbone diagram is depicted to 
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better understanding the effective factors for 

determining the nonlinear radial frequency. 

This diagram is given in Fig. 6. 

 

Fig. 6 A fishbone like diagram for effective factors in 

nonlinear radial frequency 

Therefore, the ratio of the nonlinear 

frequency (𝜔 = 𝜔0) to the linear frequency 

(𝜔𝐿) becomes 

𝐹. 𝑅.=
𝜔0

𝜔𝐿
= √1 −

4

3𝜋

𝐵

𝐴
𝑊𝑚𝑎𝑥                 (56) 

Then, the solution of (53) can be obtained as 

𝑊1(𝑡) = −
14

15

𝐵𝑊𝑚𝑎𝑥
2

3𝜋𝐴−4𝐵𝑊𝑚𝑎𝑥
[𝑐𝑜𝑠(𝜏) −

𝑐𝑜𝑠(3𝜏)]                                                  (57) 

Thus, the first approximate solution of (44) 

can be written as follows: 

𝑊(𝜏) = 𝑊0(𝜏) + 𝑊1(𝜏) = 𝑊𝑚𝑎𝑥𝑐𝑜𝑠(𝜏) −
14

15

𝐵𝑊𝑚𝑎𝑥
2

3𝜋𝐴−4𝐵𝑊𝑚𝑎𝑥
[𝑐𝑜𝑠(𝜏) − 𝑐𝑜𝑠(3𝜏)]         (58) 

4- Results and discussion 

In this section, comparison between the 

results obtained herein using DM and the 

available theoretical and experimental results 

are presented. Throughout this paper, the 

material properties of SWCNT are taken to 

be: Young’s modulus 𝐸 = 1 𝑇𝑃𝑎 , mass 

density 𝜌 = 2300 
𝑘𝑔

𝑚3  and Poisson's ratio 

𝜈 = 0.2 [9, 21]. In the DM model, the scale 

parameter used is the carbon-carbon bond 

length 𝜂 = 0.1421 𝑛𝑚 [8]. 

Table 1: Comparison between RBM frequencies of 

different Zigzag SWCNTs ( 𝑐𝑚−1 ) with different 

methods. 

tube 

(n, m)   

Tube 

diameter 

 )
0A( 

Experimental 

result [21] 

DM 

result 

(6,0) 4.698 475.7 471.3 

(7,0) 5.481 407.8 406.4 

(8,0) 6.264 356.8 356.1 

(9,0) 7.047 317.2 317.5 

(10,0) 7.830 285.4 285.9 

(11,0) 8.613 259.5 260.1 

(12,0) 9.397 237.8 238.8 

(13,0) 10.180 219.5 220.1 

(14,0) 10.963 203.9 204.7 

(15,0) 11.746 190.3 191.1 

(16,0) 12.529 178.4 179.0 

(17,0) 13.312 167.9 168.7 

(18,0) 14.095 158.6 159.0 

(19,0) 14.878 150.2 151.2 

(20,0) 15.661 142.7 144.1 

Table 2: Comparison between RBM frequencies of 

different Armchair SWCNT (𝑐𝑚−1 ) with different 

methods. 

tube 

(n, m)   

Tube diameter 

 )
0A( 

Experimen

tal result 

[21] 

DM 

result 

(3,3) 4.069 549.3 540.2 

(4,4) 5.425 412.0 409.9 

(5,5) 6.781 329.6 329.1 

(6,6) 8.138 274.6 275.0 

(7,7) 9.494 235.4 236.1 

(8,8) 10.850 206.0 207.1 

(9,9) 12.206 183.1 183.9 

(10,10) 13.563 164.8 165.5 

(11,11) 14.919 149.8 150.8 
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In Tables 1 and 2, the radial frequency of 

different Zigzag and Armchair SWCNTs are 

shown based on the result presented here 

along with the available experimental results 

reported with 𝑐𝑚−1 [21]. From Tables 1 and 

2, we can see that DM predicts the nonlinear 

radial frequency of different SWCNTs with 

good agreement with the available 

experimental result. 

Another comparison are done between the 

results obtained using present method and the 

available numerical results to validate the 

presented method. Experimentally, the RBM 

natural frequency is related to angular 

frequency 𝜔 via 𝑅𝐵𝑀 𝑓 =
𝑤 

2𝜋
.  

To demonstrate the accuracy of the obtained 

analytical results, the variations of 

nondimensional amplitude vibration are 

calculated versus nondimensional time for 

(12, 0) Zigzag tube using present method and 

numerical method. The numerical method 

used is fourth-order Runge-Kutta method. 

From Fig. 7, it can be seen that the result of 

the present method are in good agreement 

with the forth-ordered Runge-Kuta numerical 

results. 

 

Fig. 7  The nondimensional vibration amplitude of 

nonlinear RBM (𝑇𝐻𝑧) versus nondimensional time for 

𝑈𝑚𝑎𝑥 = 0.5. 

Fig. 8 shows the nonlinear natural frequency 

versus nondimensional amplitude ratio for 

two Armchair (10, 10) and Zigzag (12, 0) 

nanotubes. As can be seen from this figure, in 

contrast to linear systems, the nonlinear 

frequency is a function of amplitude so that 

the larger the amplitude, the more 

pronounced the discrepancy between the 

linear and nonlinear frequencies becomes. In 

fact, with increasing the maximum 

amplitude, the nonlinear frequency 

decreases. This decreasing is more apparent 

in higher amplitudes. It should be noted that 

in the case 𝐵 = 0  the results are in an 

excellent agreement with those obtained via 

linear method according to the formulations 

presented in [9]. 

  

Fig. 8 Nonlinear natural frequency versus 

nondimensional maximum amplitude of SWNTs for 

Armchair (10, 10) and Zigzag (12, 0) 
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Fig. 9 Variation of nonlinear natural frequency with 

tube diameter for SWCNTs for different maximum 

amplitude vibration 

Fig. 9 illustrates the nonlinear frequency 

variation against to diameter of a SWCNT 

under different maximum amplitude 

vibrations. It can be observed that with the 

increase of the tube diameter, the nonlinear 

vibration frequencies of SWCNTs decrease. 

This increase is more apparent for lower 

diameter. As is expected, as the diameter of 

the tube increaser, the nonlinear frequencies 

tend to converge to the same value. It is also 

seen that for the tubes with same diameters, 

as the maximum amplitude increases, the 

nonlinear frequencies decreases. 

5- Conclusion 

In this paper, a detailed investigation of the 

NRBM frequency of the SWCNT based on 

DM has been presented. The equation of 

motion for nonlinear RBM vibration of the 

SWCNT based on DM is derived. To obtain 

the nonlinear frequency equation in NRBM 

vibration, the HPM has been used to 

investigate the nonlinear vibration analysis of 

SWCNTs with free end conditions. The 

significant dependency of this oscillation to 

tube radius and the amplitude of vibration are 

observed. The nonlinear vibration frequency 

of nanotubes rises rapidly with increasing the 

amplitude especially when the radius of the 

tube is relatively small. It has been shown 

that with the increase of the aspect ratio of the 

nanotubes, the nonlinear vibration 

frequencies of SWNCTs decrease. It is 

notable that HPM is straightforward and 

powerful, and it is a promising technique for 

solving strong nonlinear partial differential 

equations like NRBM vibration of SWCNTs. 

The generated results obtained have been 

compared with those available in open 

literature, and excellent correlation has been 

achieved. The following points are 

particularly noted. Firstly, the NRBM 

frequency of vibration of the SWCNT 

depends on the geometric (radius) and 

mechanical properties (Young's modulus, 

density and Poisson's ratio) of the nanotube. 

Finally, the frequency of the NRBM 

vibration of the Zigzag SWCNT is slightly 

higher than that of the Armchair. 

References 

[1] Fatahi-Vajari, A., & Imam, A. (2016). Lateral 

Vibrations of Single-Layered Graphene Sheets Using 

Doublet Mechanics. Journal of Solid Mechanics, 8(4), 

875-894. 

[2] Granik, V.T., & Ferrari, M. (1993). 

Microstructural mechanics of granular media, 

Mechanics of Materials, 15, 301-322.  

[3] Rinaldi, A. & Placidi, L. (2013). A microscale 

second gradient Approximation of the Damage 

Parameter of Quasi-Brittle Heterogeneous Lattices, 

ZAMM. 94(10), 862–877. 

[4] Forest, S., & Trinh, D. K. (2011). Generalized 

Continua and Non- Homogeneous Boundary 

Conditions in Homogenisation Methods, ZAMM, 

91(2), 90–109. 

http://www.jsm-iau-arak.com/
http://www.google.com/url?url=http://onlinelibrary.wiley.com/doi/10.1002/zamm.201300028/abstract&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwiWoKaE4vfLAhVLCiwKHUGvAa8QFggZMAA&usg=AFQjCNEldPGJz4uAP0W4nVHb8iiiIUUXsw
http://www.google.com/url?url=http://onlinelibrary.wiley.com/doi/10.1002/zamm.201300028/abstract&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwiWoKaE4vfLAhVLCiwKHUGvAa8QFggZMAA&usg=AFQjCNEldPGJz4uAP0W4nVHb8iiiIUUXsw


75 
 

Z.Azimzadeh & A.Fatahi-Vajari/ Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 16 (2024) 0061~0077 

 

 

 
 

[5] Eremeyev, V.A., & Lebedev, L.P. (2011). 

Existence Theorems in the Linear Theory of 

Micropolar Shells, ZAMM. 91(6), 468–476.  

[6] Ferretti, M., Madeo, A., Dell’Isola, F., & Boisse, 

P. (2014). Modeling the onset of shear boundary layers 

in fibrous composite reinforcements by second-

gradient theory, ZAMP, 65(3), 587–612  

[7] Oveissi, S., Ghassemi, A., Salehi, M., Eftekhari, S. 

A. & Ziaei-Rad, S. (2023). Analytical determination 

of non-local parameter value to investigate the axial 

buckling of nanoshells affected by the passing 

nanofluids and their velocities considering various 

modified cylindrical shell theories, Chinese Physics B, 

32(4), 046201.1-046201.18.  

[8] M. Ferrari, V.T. Granik, A. Imam, & J. Nadeau, 

Advances in Doublet Mechanics (Springer-Verlag, 

Berlin, 1997 

[9] Fatahi-Vajari, A. & Imam, A. (2016). Analysis of 

radial breathing mode vibration of single-walled 

carbon nanotubes via doublet mechanics, ZAMM. 

96(9), 1020-1032. 

[10] Xin, J., Zhou, L.X., & Ru, W.J. (2009). 

Ultrasound attenuation in biological tissue predicted 

by the modified doublet mechanics model, Chinese 

Physics Letters, 26(7), 074301.1-074301.4. 

[11] Torkan, E., Pirmoradian, M., & Hashemian, M. 

(2019). Dynamic instability analysis of moderately 

thick rectangular plates influenced by an orbiting mass 

based on the first-order shear deformation 

theory. Modares Mechanical Engineering, 19(9), 

2203-2213.  

[12] Torkan, E., & Pirmoradian, M. (2019). Efficient 

higher-order shear deformation theories for instability 

analysis of plates carrying a mass moving on an 

elliptical path. Journal of Solid Mechanics, 11(4).  

[13] Fatahi-Vajari A., & Imam, A. (2016). Torsional 

vibration of single-walled carbon nanotubes using 

doublet mechanics, ZAMP. 67(4), 1-22. 

[14] Gentile, F., Sakamoto, J., Righetti, R., Decuzzi, 

P., & Ferrari, M. (2011). A doublet mechanics model 

for the ultrasound characterization of malignant 

tissues, Journal of Biomedical Science and 

Engineering. 4, 362-374.  

[15] Fang, J.Y., Jue, Z., Jing, F., & Ferrari, M. (2004). 

Dispersion analysis of wave propagation in cubic-

tetrahedral assembly by doublet mechanics, Chinese 

Physics Letters. 21(8),1562-1565. 

[16] Fatahi-Vajari A., & Imam, A. (2016). Axial 

vibration of single-walled carbon nanotubes using 

doublet mechanics, Indian Journal of Physics, 90(4), 

447–455. 

[17] A. Fatahi-Vajari,: A new method for evaluating 

the natural frequency in radial breathing like mode 

vibration of double-walled carbon nanotubes, ZAMM. 

10.1002/zamm.201600234 

[18] Maultzsch, J., Telg, H., Reich, S., & Thomsen, C. 

(2005). Radial breathing mode of single-walled carbon 

nanotubes: Optical transition energies and chiral-index 

assignment, Physical Review B, 72, 205438.1-

205438.16. 

[19] Basirjafari, S., EsmaeilzadehKhadem, S., & 

Malekfar, R. (2013). Radial breathing mode 

frequencies of carbon nanotubes for determination of 

their diameters, Current Applied Physics, 13, 599-609.  

[20] Basirjafari, S., EsmaielzadehKhadem, S., & 

Malekfar, R. (2013). Validation of shell theory for 

modeling the radial breathing mode of a single-walled 

carbon nanotube, IJE TRANSACTIONS A. 26(4), 447-

454. 

[21] Bachilo, S. M., Strano, M.S., Kittrell, C., Hauge, 

R. H., (2002). Smalley, R. E., & Weisman, R. B. 

Structure-assigned optical spectra of single-walled 

carbon nanotubes, Science, 298, 2361–2366.  

[22] He, J. H., (2005). Application of homotopy 

perturbation method to nonlinear wave equations, 

Chaos, Solitons & Fractals. 26(3), 695–700. 

[23] He, J. H. (2006). Homotopy perturbation method 

for solving boundary value problems, Physics Letters, 

Section A, 350(1-2), 87–88. 

[24] J. H. He, Limit cycle and bifurcation of nonlinear 

problems, Chaos, Solitons & Fractals. 26(3), 827–833 

(2005). 

[25] He, J. H. (1999). Homotopy perturbation 

technique, Computer Methods in Applied Mechanics 

and Engineering. 178(3-4), 257–262. 

[26] He, J.H. (2005). Homotopy perturbation method 

for bifurcation of nonlinear problems, International 

Journal of Nonlinear Sciences and Numerical 

Simulation. 6, 207-208. 



76 
 

Z.Azimzadeh & A.Fatahi-Vajari/ Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 16 (2024) 0061~0077 

 

 

 

[27] He, J. H. (2000). Coupling method of a homotopy 

technique and a perturbation technique for non-linear 

problems, International Journal of Non-Linear 

Mechanics, 35(1), 37–43. 

[28] He, J. H. (2004). Comparison of homotopy 

perturbation method and homotopy analysis method, 

Applied Mathematics and Computation, 156(2), 527–

539. 

[29] He, J. H. (2003). Homotopy perturbation method: 

a new nonlinear analytical technique, Applied 

Mathematics and Computation, 135(1), 73–79  

[30] He, J. H. (2004). The homotopy perturbation 

method for nonlinear oscillators with discontinuities, 

Applied Mathematics and Computation, 151(1), 287–

292. 

[31] He, J. H. (2004). Comparison of homotopy 

perturbation method and homotopy analysis method, 

Applied Mathematics and Computation, 156, 527-539.  

[32] He, J. H. (2006). Some asymptotic methods for 

strongly nonlinear equations, International Journal of 

Modern Physics B, 20(10), 1141–1199. 

[33] Ghasemia, M., & Tavassoli Kajani, M. (2010). 

Application of He’s homotopy perturbation method to 

solve a diffusion-convection problem, Mathematical 

Sciences, 4(2), 171-186.  

[34] Aminikhah, H., & Hemmatnezhad, M. (2011). 

Nonlinear Vibrations of Multiwalled Carbon 

Nanotubes under Various Boundary Conditions, 

International journal of differential equations, DOI: 

10.1155/2011/343576. 

[35] Ghasemi, M., Tavassoli Kajani, M., & Davari, A. 

(2007). Numerical solution of two dimensional 

nonlinear differential equation by homotopy 

perturbation method, Applied Mathematics and 

Computation, 189, 341-345. 

[36] Ganji, D. D., (2006). The application of He’s 

homotopy perturbation method to nonlinear equations 

arising in heat transfer, Physics Letters, 355(4-5), 

337–341. 

[37] Rajabi, A., Ganji, D. D., & Taherian, H. (2007). 

Application of homotopy perturbation method in 

nonlinear heat conduction and convection equations, 

Physics Letters. 360(4-5), 570–573.  

[38] Abbasbandy, S., (2007). A numerical solution of 

Blasius equation by Adomian’s decomposition 

method and comparison with homotopy perturbation 

method, Chaos, Solitons & Fractals, 31(1), 257– 260  

[39] Biazar J., & Ghazvini, H. (2007). Exact solutions 

for non-linear Schrodinger equations by He’s 

homotopy perturbation method, Physics Letters A, 

366(1-2), 79–84. 

[40] Cveticanin, L. (2009). Application of homotopy-

perturbation to non-linear partial differential 

equations, Chaos, Solitons & Fractals. 40(1), 221–

228.  

[41] Leung, A. Y. T., & Guo, Z. (2009). Homotopy 

perturbation for conservative Helmholtz-Duffing 

oscillators, Journal of Sound and Vibration, 325(1-2), 

287–296. 

[42] Abbasbandy, S. (2006). Numerical solutions of 

the integral equations: homotopy perturbation method 

and Adomian’s decomposition method, 

AppliedMathematics and Computation, 173(1), 493–

500.  

[43] Ansari, R., Hemmatnezhad, M., & 

Ramezannezhad, H. (2010). Application of HPM to 

the nonlinear vibrations ofmultiwalled carbon 

nanotubes, Numerical Methods for Partial Differential 

Equations.  26, 490–500. 

[44] Rajabi, A. (2007). Homotopy perturbation 

method for fin efficiency of convective straight fins 

with temperature dependent thermal conductivity, 

Physics Letters A, 364(1), 33–37. 

[45] Raftari, B., & Yildirim, A. (2010). The 

application of homotopy perturbation method for 

MHD flows of UCM fluids above porous stretching 

sheet, Computers & Mathematics with Applications, 

59(10), 3328–3337. 

Appendix A 

Considering scale effects, the relation 

between the microstrains and displacements 

up to three terms in the expansion can be 

written as: 

𝜖𝛼 =
1

2𝜂𝛼
2 (∆𝑢𝛼𝑖∆𝑢𝛼𝑖𝜏𝛼𝑗

0 𝜏𝛼𝑗
0 −

∆𝑢𝛼𝑖∆𝑢𝛼𝑗𝜏𝛼𝑖
0 𝜏𝛼𝑗

0 ) +
∆𝑢𝛼𝑖𝜏𝛼𝑖

0

𝜂𝛼
, ∆𝒖𝛼 =

1

𝜂𝛼
𝝉𝛼

0 . 𝛁𝑢𝛼                     (A.1) 
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The expressions for 𝜵 , 𝜵𝒖  and 𝝉𝛼
0  can be 

written in the cylindrical coordinates as: 

𝜵 =

[
 
 
 
 

𝜕

𝜕𝑟
1

𝑟

𝜕

𝜕𝜃
𝜕

𝜕𝑧 ]
 
 
 
 

, 𝜵𝒖 =

[
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𝜕𝑢𝜃

𝜕𝑧
𝜕𝑢𝑧

𝜕𝑟

1

𝑟

𝜕𝑢𝑧

𝜕𝜃

𝜕𝑢𝑧

𝜕𝑧 ]
 
 
 
 

, 𝝉𝛼
0 = [

𝜏𝛼𝑟
0

𝜏𝛼𝜃
0

𝜏𝛼𝑧
0

](A.2) 

As a result of the assumptions mentioned in 

section 3, the gradient operator and the 

displacement vector are simplified to: 

 𝜵 =
𝜕

𝜕𝑟
𝒆𝑟 , 𝒖 = 𝑢𝑟(𝑟)𝒆𝑟                       (A.3) 

Then, in the problem considered here, (A.2) 

are reduced to 

𝜵 = [

𝜕

𝜕𝑟

0
0

] , 𝜵𝒖 = [

𝜕𝑢𝑟

𝜕𝑟
0 0

0
1

𝑟
𝑢𝑟 0

0 0 0

] , 𝝉𝛼
0 =

[

0
𝜏𝛼𝜃

0

𝜏𝛼𝑧
0

]                                                      (A.4) 

From (A.4), 𝝉𝛼
0 . 𝜵𝒖 can be written as: 

𝝉𝛼
0 . 𝜵𝒖 = [

0
1

𝑟
𝜏𝛼𝜃

0 𝑢𝑟

0

] , 𝝉𝛼
0 . (𝝉𝛼

0 . 𝜵𝒖) =

1

𝑟
(𝜏𝛼𝜃

0 )
2
𝑢𝑟                                             (A.5) 

Then, from (A.1), ∆𝒖 is obtained as 

∆𝒖 = [

0
1

𝑟
𝜏𝛼𝜃

0 𝑢𝑟

0

]                                     (A.6) 

Similarly, the following expressions can be 

calculated 

1

2𝜂𝛼
2 (∆𝒖. ∆𝒖𝝉𝛼

0 . 𝝉𝛼
0 ) =

1

2𝑟2 (𝜏𝛼𝜃
0 )

2
[(𝜏𝛼𝜃

0 )
2
+

(𝜏𝛼𝑧
0 )2] 𝑢𝑟

2                                              (A.7) 

1

2𝜂𝛼
2 (𝝉𝛼

0 . ∆𝒖𝝉𝛼
0 . ∆𝒖) =

1

2𝑟2
(𝜏𝛼𝜃

0 )
4
𝑢𝑟

2       (A.8) 

If (A.6-8) are substituted into (A.1), the 

following equation for microstrain is 

obtained 

𝜖𝛼 =
1

𝑟
(𝜏𝛼𝜃

0 )
2
𝑢𝑟 +

1

2𝑟2 (𝜏𝛼𝜃
0 )

2
(𝜏𝛼𝑧

0 )2𝑢𝑟
2(A.9) 


