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This paper addresses split delivery in the multi-compartment vehicle routing problem in which the
possibility of splitting delivery depends on the product type. For certain product types, split delivery

is not allowed but for other ones is permitted under a certain condition. The arrival time consistency
is considered as split delivery condition. If the time difference between vehicle arrivals to the
customer does not exceed a certain limit, the consistency of arrival time is established and split
delivery is allowed. A mathematical model is developed to describe the proposed problem and used
to solve small sized instances. To solve large sized instances, an adaptive large neighborhood search
and a matheuristic based on fixing a part of customer to route assignment variables are developed.
Computational experiments are performed on the multi-compartment vehicle routing problem with
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1. Introduction

Transportation is one of the most important parts of logistics
systems. Since transportation costs comprise 10% of the
product’s total cost, saving transportation costs becomes a
competitive factor (Doan et al., 2021). Previous studies have
indicated how vehicle routing optimization can achieve
significant economic savings (about 5-30% or 5-20%)
(Cattaruzza et al., 2017). Therefore, the vehicle routing
problem (VRP), introduced by Dantzig & Ramser (1959), has
become one of the most studied optimization problems in
operation research and logistics (Konstantakopoulos et al.,
2022; Goli et al.,2018).

In the classical VRP, each customer is visited exactly once,
split delivery is not allowed. In VRP with split delivery
(VRPSD), the single-visit assumption is relaxed and each
customer may be served by more than one vehicle. A
customer’s demand may be split due to one of these reasons:
(1) the demand exceeds the vehicle capacity, in which case
demand splitting is unavoidable. (2) Splitting demand can
lead to significant cost savings (Toth & Vigo, 2014). By
allowing split deliveries, the traveled distance, the number of
vehicles, and their loading can be optimized (Kou et al.,
2024; Han & Chu, 2016; Gu et al., 2024). Therefore,
significant cost savings in logistics operations can be
achieved by split deliveries. From the customers’ viewpoint
in VRPSD, a customer has to wait more than once to receive
the total demand, which negatively affects customer
satisfaction. Therefore, split delivery is often not suitable for
products that customer prefers to receive all of them at once
(Gulczynski et al., 2010).

Each customer may order several types of products that have
to be transported separately due to their special transportation
requirements, such as different temperature and humidity
conditions. To distribute these incompatible products, multi-
compartment vehicles (MCVs) are used which enable
simultaneous transportation of the several non-mixable
product types in different compartments (Guo et al., 2021).
The multi-compartment vehicle routing problem (MCVRP)
is a generalization of the classical VRP in which the vehicle
capacity can be divided into several loading zones, i.e.,
compartments. Each compartment can be dedicated to only a
single product type (Gu et al., 2024).

When demands of several product types are considered, split
delivery is not that different product types can be delivered
by different vehicles; it is the fulfillment of a demand for a
single product type by more than one vehicle (Ostermeier et
al., 2021; Henke, 2018). The benefits of split delivery depend
on customer characteristics such as customers’ locations and
customers’ demand patterns (Archetti et al., 2008).

Split delivery may only be allowed for certain product types
and not for others (Alinaghian & Shokouhi, 2018).

For example, in companies such as FreshBox and Sysco,
which distribute both perishable and non-perishable
products, distribution strategies can vary depending on the
product type. Customers prefer to receive perishable products
at once, as repeatedly opening refrigeration units during
multiple deliveries cause temperature fluctuations that
accelerate spoilage. In contrast, split delivery is allowed in
non-perishable products distribution.
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Split delivery may only be beneficial under certain
conditions, which to the best of our knowledge has not been
studied so far.

This paper addresses the MCVRP with split delivery in which
the possibility of splitting delivery depends on the product
type. The split delivery of certain product types is not
possible and these products must be delivered to the customer
by only one vehicle. It is assumed that split delivery is
allowed for other product types if the time interval between
visits does not exceed a certain limit, which is called
consistent arrival time. In other words, the distribution
company can only achieve the benefits of splitting deliveries
when it guarantees consistency of arrival time. Considering
the NP-hardness of the proposed problem (Chen & Shi,
2019), a matheuristic and an adaptive large neighborhood
search (ALNS) is designed to solve large-scale instances.
The main contributions of this study are as follows. First, we
generalize an MCVRP by allowing product-oriented split
delivery. The generalization is motivated by the fact that
delivery modes depend on product type. For various reasons,
such as ensuring inventory level or customer preferences, the
split delivery of certain product types is not possible, while
demand of some products may be split because of the
dimensions, weight and availability of products. We propose
an MIP model that can solve small sized instances to
optimality. We also developed a matheuristic based on fixing
a part of customer-to-route assignment variables. For
comparison purpose, the performance of matheuristic is
compared against ALNS.

The remainder of the paper is organized as follows. Section
2 briefly reviews the existing literature on MCVRPs. In
Section 3, problem definition and mathematical model are
presented. The proposed solution approaches are described in
Section 4. The computational results are presented and
discussed in Section 5. Finally, conclusions and suggestions
for future studies are given in Section 6.

2. Literature Review

VRP, first introduced by Dantzig & Ramser (1959), is one of
the most challenging optimization problems in the field of
operation research, leading to extensive research in various
conditions and application areas. Different variants of VRPs
have appeared over the last decades (Elatar et al., 2023).

VRPSD is first introduced by Dror & Trudeau (1989), who
demonstrated that considerable cost savings can be achieved
by split delivery, both in terms of the total distance traveled
and number of vehicles used. The VRPSD is shown to be NP-
hard despite the relaxation of the single-visit assumption
(Dror & Trudeau, 1990). Archetti et al. (2008) showed that
the benefits of split delivery mainly depend on the
characteristics of the demand. Archetti & Speranza (2012)
provided a survey on the VRPSDs. Bortfeldt & Yi (2019)
studied VRPSD and tree-dimensional loading constraints.
They proposed a hybrid algorithm consisting of a local search
algorithm for routing optimization, a genetic algorithm and
several construction heuristics for packing. Lia et al. (2020)
studied a VRPSD in which synchronization constraint,
proportional service time and multiple time windows was
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considered. They proposed a branch-price-and-cut algorithm
to solve the problem. Wang et al. (2023) proposed a weighted
open VRPSD with iterated clustering to simultaneously
optimize the route of bus and passenger waking distance. To
solve the proposed problem, they developed a max-min ant
system algorithm by improving the decision mechanism for
node access of vehicles. Zhang et al. (2024) studied VRPSD,
multiple trips per vehicle and simultaneous pickup and
delivery arising in the ground baggage handling problem at
the airports. Other patricidal constraint such as time window,
baggage release and back times were also taken into account.
They developed ALNS using a two-stage solution evaluation
method to solve this problem.

The aforementioned studies only consider the demand of one
product type, which is delivered by single-compartment
vehicles (SCVs). However, in practice, more than one
product type may be requested (Chen & Shi, 2019). Gu et al.
(2024) presented a survey on VRPs with multiple products in
which the VRPs have been classified into two categories:
VRP with compatible and incompatible products. The
MCVRP, which was raised for the first time in fuel
distribution, deals with the distribution of incompatible
products. Application of the MCVRP include the perishable
products distribution (J. Wang et al., 2023), waste collection
(Mohammadi et al., 2023), fuel distribution (L. Wang et al.,
2020), agricultural contexts (Polat & Topaloglu, 2020) and
etc.

Asawarungsaengkul et al. (2013) presented an MCVRP for
distribution of liquid products in which customer demand is
divided according to a predetermined pattern. The solution
procedures including the optimization approaches (CPLEX),
2-opt algorithm, and clustering technique is proposed.
Moshref-Javadi & Lee (2016) proposed an MCVRP with
split delivery which focuses on the reduction of the
customers' waiting time. A hybrid heuristic based on
simulated annealing (SA) and variable neighborhood search
(VNS) was designed to solve the problem. Urli & Kilby
(2017) studied a multi-compartment fleet size and mix rich
VRPSDs with time window and compatibility constraints
arising in the context of fuel delivery. They suggested a
constraint-based large neighborhood search (LNS) to solve
the proposed problem. Alinaghian & Shokouhi (2018)
introduced MCVRP with multi-depot in which split delivery
is allowed only for a set of product types. They developed a
hybrid solution approach that combines ALNS with VNS to
solve large-scale instances. Zbib & Laporte (2020) developed
a data-driven matheuristic for the commodity-split multi-
compartment capacitated arc routing problem arising in
recyclable waste collection. Wang et al. (2020) considered an
MCVRP with split delivery and multiple trips in the context
of fuel replenishment problem and proposed ALNS to solve
this problem. Polat & Topaloglu (2020) studied milk
collection problem as MCVRP with split delivery and time
limit in an uncertain environment. They implemented an
enhanced iterative local search (EILS) algorithm to solve the
proposed problem.

Although split delivery has received much attention in the
literature, few studies have addressed MCVRP with split
delivery. In the studied MCVRPs with split delivery, it is
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assumed that split delivery is always allowed and demand
splitting does not depend on specific conditions.

3. Problem Description and Model Formulation

The proposed problem is defined on a complete undirected
graph G = (V, E) where V = {0} U V' is the set of nodes and
E ={(i,)|i,j €V,i+#j} is the set of edges. The depot is
denoted by node 0 and the set V" = V \{0} contains all nodes
corresponding to customers. A nonnegative travel time ¢;; is
assigned to each edge (i,j) € E. It is assumed that all travel
times are deterministic and symmetric (t;; = t;;).

Let M ={1,...,M} be a set of incompatible products that
must be stored and transported separately. Each customer i €
V' has a demand d,,, > 0 for each product type m € M. The
depot has no demand (d,,, = 0). M; is a subset of products
that must be delivered to the customer i at once. The
unloading time of product m is denoted by tu,,.
Heterogeneous fleet K = {1, ..., K } of vehicles is available
at the depot, each equipped with a total capacity, Q, . The total
capacity of each vehicle k € K can be divided into a limited
number of compartments, denoted by L, = {1, ..., L }. The
size of each compartment is chosen arbitrarily between 0 and
Q, in such a way that the total capacity of the compartments
per vehicle does not exceed Q.. Due to products
incompatibility, each compartment of a vehicle is assigned to
a single product type. The demand of each customer for each
product type does not exceed Q.. The vehicle fleet is assumed
to be sufficiently large to satisfy all customer demands. Each
vehicle is used for one tour at most. All vehicles depart from
the depot at time 0and have to return to the depot after
visiting customers they serve. The transportation and
unloading cost per time unit for vehicle k are denoted by ct;,
and cuy, respectively.

It is assumed that the possibility of splitting delivery depends
on the product type. With respect to product type, two types
of delivery mode are considered. A demand of customer i €
V' for product type m € M; (certain product types for each
customer) must be delivered by only one vehicle. In other
words, split delivery of product m € M; is not allowed for
customer i € V'. However, split delivery of other product
types (m € M\M;) is allowed if the time interval between
visits does not exceed a certain limit (o). The threshold
reflects the maximum duration customers are willing to wait
between receiving one portion of an order and the next. In
this model, M is a sufficient large positive number. The
objective of proposed problem is to determine routing plan
that minimize total cost. To model the proposed problem, the
following decision variables are defined:

X;jx 1S @ binary variable which equals to 1 if the edge (i, /) €
E is travelled by vehicle k € K, and 0 otherwise.

Vimk 1S @ binary variable which equals to 1 if customer i € V
receive product m € M from vehicle k € K, and 0 otherwise.
Wpur 1S @ binary variable which equals to 1 if product m € M
is assigned to compartment [ € [, of vehicle k € K, and 0
otherwise.
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Zimk € [0, 1] is a non-negative continuous variable indicating
the proportion of product m € M that is delivered by vehicle
k € K to customer i € V.

six = 0 is a non-negative continuous variable indicating the
arrival time of vehicle k € K at customer i € V" and sq;, = 0.
The mathematical model formulation is as follows:

Min

Z Z Z XijrtijCly + z z z Zimk Aim tUm Uy (1)

i€V JEV kek iEV mEM kEK
i
z:zimk=1 VieV,meM,d, >0 (2
keK
Z Xije =1 VieV, k€K ©)
JEV,j#i
Z Z Zimk@im < Qk vk e K ()
iev meM
Zimk Syimk VlEV',mEM,kEK (5)
Vimke < Mz VieV,meMkeK (6)
Yimk < Z Wik vievV,meMkeK (7)
lELy
z Winike < Z Xoj Vk €EK,L€ Ly (8)
meM jev’
Z Xijk = Z Yjiik  VieV, k€K 9)
JEV,j#i JEV,j#i
Sik + Z Zimk Aim U + t; — MI(1 = x;5) < Sj
& , (10
VieV,jeV,keK
Sik + Z Zimkdimfum + tij + M(l — xijk) = Sjk
meM i (11)
VieV,jeV,keK
S = M z Yjmk VieV,kek (12)
meM
Sok =0 VkeK (13)
Vimk < injk VieV,meMkeK (14)
i
Z Vime <1 VjeV,meM; (15)
keK
Vk,k' €K k#k,jEV,meM;

xl-]-k € {0,1} Vl,] € V,k EK
Vimk € {0,1} VvieV,meMkekK
Wk € {0,1} vmeM,leL,keK (17)
Zimk € [0,1] VieEV,meMkeK
SL'RZO VlEV,kEK

The objective function (1) minimizes the total cost including
transportation and delivery costs. Constraints (2) ensure that
each customer’s demand for each product type must be
satisfied. Constraints (3) guarantee that each vehicle
performs at most one tour. Constraints (4) limit the vehicle
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capacity to Q. Constraints (5) and (6) link variables z;,,; and
Yimk- They set v = 1if a proportion of product m € M is
delivered to customer i € V' by vehicle k € K. Constraints
(7) states that customer i € V'can receive product m €
M from vehicle k € K if at least one compartment of this
vehicle is assigned to the corresponding product. Constraints
(8) ensure that each compartment of each vehicle leaving the
depot is dedicated to only one product type. Constraints (9)
is the flow conservation, generating that a vehicle that visits
a certain node must leave it. Constraints (10) and (11)
determine the vehicle arrival times to all customers in which
waiting time between deliveries is not allowed. For customer
j € V" who is not receiving any product from vehicle k € K,
constraints (12) set s;; = 0. Constraints (13) guarantees that
each vehicle departure from the depot at time zero.
Constraints (14) link variables yj,,, and x;j,. Constraints
(15) ensure that eaph demand of product m € M; is delivered
to customer j € V' by exactly one vehicle. Constraints (16)
ensure that split/delivery of product m € M\M]f is allowed for
customer j € V if the time interval between visits does not
exceed a certain limit. Finally, constraints (17) define the
domains of the decision variables.

4. Solution Approaches
4.1. Matheuristic

Matheuristics are hybrid optimization methods that make use
of mathematical programming techniques in metaheuristics
to the solution approach customization (Ngoo et al., 2024).
To solve the problem, we propose a fix-and-optimize based
matheuristic that iteratively selects a subset of variables to be
fixed at their current values, while remaining sub problem is
exactly or heuristically optimized (Dumez et al., 2023).

In the proposed matheuristic, three strategies are used to fix
a part of the solution, all of which are based on fixing
customers to route assignment variables. The type of fixing
strategy is denoted by r (r € {1,2,3}). In the first strategy, the
demand of all product types (m € M) of the certain
customers is fixed in the routes. For each certain customer, in
the second strategy only the demand of product type m € M;-
and in the third strategy only the demand of product type m €
M\M'j is fixed in the routes. The pseudo-code of the
developed matheuristic is given in Algorithm 1.

The algorithm starts with initializing the parameters (lines 1-
3). The selection probability of each fixing strategy will
depend on its weight. Initially, all fixing strategies have the
same weight (line 4), i.e., the probability of selection is equal
for all fixing strategies. The solution approach is initialized
with a feasible initial solution (S;,;) obtained through a
constructive heuristic (Section 4.3). The best solution (Sy.s:)
set equal to the initial solution (lines 5-6). A set of customers
(V*) is randomly selected (lines 7-8). The main loop of the
algorithm is then started and repeated until a predetermined
termination criterion is met (lines 9-29). In each iteration, a
fixing strategy is chosen by the roulette wheel selection
method (line 13). The selected customers (i € V*) are free to
be assigned to any route while the assignment variables of
other ones (i & V*) are fixed at their current value according
to the selected strategy (lines 14-19). After applying the
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fixing strategy, the mathematical model (sub problem) is run
with a short time limit TL (line 20). The best solution found
is kept as an incumbent solution (S). Then, the best solution
and the weight of the selected strategy are updated. The
weight of the selected strategy is increased by § if it finds a
new best solution. If S is not improved, the counter of non-

improving iterations (nolmp) is updated (lines 21-29) and
other customers are selected randomly (lines 10-12). The
algorithm stops when one of the predefined termination
criteria is met. These criteria are the maximum number of
iterations (iter;,q,) OF maximum number of iterations
without any improvement (nolmp,q»)-

Algorithm 1 Matheuristic
1 Set parameters itetygy, NOIMPygy, V, TL, M, M;
2 nolmp«<0
3 iter < 0
4 Set initial weights of fixing strategy r equal to one (w? = 1).
5  Generate a feasible initial solution S;,;
6 Sbest < Sini
7 N < generate a random number € [1,|V])
8  V* « Select N customers randomly as free customers.
9  whileiter < iter,,, Or nolmp < nolmp,,,, do
10 if nolmp > 0 then
11 N « generate a random number € [1, |V )
12 Select N customers randomly as free customers
13 Select a fixing strategy using roulette wheel selection method based on previously weights.
14 if fixing strategy r = 1 is selected then
15 YVimk =Yimr LEV . MEMk €K
16 elif fixing strategy r = 2 is selected then
17 Vimk = Vimk L&V ,m €M,k €K
18 else
19 Vimie = Vime 1 €V, m € M\M;, k € K
20 Run the model with TL and keep the best solution found so far (S).
21 if S is better than S,,,, then
22 nolmp « 0
23 iter « iter +1
24 Sbest < S
25 wjiter « witer=1 4 § (Update the weights of the fixing strategy)
26 else
27 nolmp < nolmp +1
28 iter « iter +1
29  end while

4.2. ALNS

The ALNS is a metaheuristic introduced by Ropke &
Pisinger (2006) as an extension of LNS. Similar to LNS,
ALNS is also based on the ruin and recreate principle.
However, in contrast to LNS, several destroy and insertion
operators are allowed to be used in the ALNS. The ALNS has
been used successfully to solve different variants of the VRPs
(Voigt, 2024). The pseudo-code of the ALNS is provided in
Algorithm 2.

The ALNS starts with the construction of a feasible initial
solution (S;,;) and initializing the relevant parameters (lines
1-4). The set of removal and insertion operators are denoted
by Q™ and QF, respectively. All operators (i € Q™ U Q")
initially have the same weight (w;) and the probability to be
selected. All scores (m;) are equal to zero (line 5). In the
beginning of the algorithm, the best solution (S,.s;) and
current solution (S*t) are equal to S;,,; (line 6). The main loop
of the algorithm is then started (lines 7-26) and repeated until
a termination criterion is met. In each iteration, a removal and
insertion operators are selected using the roulette wheel
selection (line 8). The selected removal and insertion
operators are successively applied to destroy the current
solution and then repair it to generate a new solution S (line
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11). The new solution is accepted as the current solution
depending on an acceptance criterion (Section 4.2.1). Then,
the best solution is updated. If S, IS not improved, the
counter of non-improving iterations (nolmp) is updated and
another removal and insertion operators are selected using
roulette wheel selection based on previously obtained scores
(lines 9-10). For every y iterations, the weight of each
operator is updated according to their performance (lines 24-
25) (Section 4.2.3). The algorithm terminates when either a
maximum number of iterations (iter,,q,) OF mMmaximum
number of iterations without improvement (noImp,,,,) has
been reached.

4.2.1. Acceptance criterion

The acceptance criterions are implemented in different ways
to decide whether a new solution should become the current
solution or not. The simplest acceptance criterion is to only
accept improving solution. In the proposed ALNS,
acceptance criterion is based on SA, in which a new solution
with objective value 0bj(S) is always accepted if it improves
the current solution with objective value 0bj(SY), i.e.,
0bj(S) < 0bj(S*). Otherwise, a new solution is accepted

. . _ 0bj($)-0bj(sH) .
with probability of e 7 ). T >0 is the current
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temperature. Initially, T is set to a value that non-improving
solution are always accepted. Then, it is decreased by a

cooling factor (7) in each iteration where 0 < 7 < 1 (Zhang
etal., 2024)

Algorithm 2 ALNS
Generate a feasible initial solution, S;,,;
Set parameters itet, .y, NOIMD,, 0y
iter « 0
nolmp < 0

Shoct < S ¢ Simi
while iter < itet,,.» OF nolmp < nolmp,,,., do

if noImp > 0 then

1

2

3

4

5

6

7

8

9

10

11

12 if S isaccepted then

13 Stes

14 if S is better than Sy, then
15 Shoct < S

16 nolmp < 0

17 iter « iter +1
18 else

19 iter « iter +1
20 nolmp < nolmp + 1
21 else

22 iter « iter +1

23 nolmp < nolmp + 1
24 if mod (iter, y) = 0 then
25

26 end while

Set w; = 1 and 7; = 0 for each operator (i € Q™ U Q")
Select a removal and insertion operator using roulette wheel selection based on previously obtained scores

Select a removal and insertion operator using roulette wheel selection based on previously obtained scores
S « Apply selected removal and insertion operators to generate a new solution

Update the weights of operators and reset scores

4.2.2. Removal and reinsert operations

The removal operator removes a number of customers (p)
from the current solution and the insertion operator reinserts
the removed customers. To ensure feasibility, first all
customers who are visited more than once are selected, then
the number of customers who are visited only once are
selected based on the removal operator. The following
operators are used in the proposed ALNS.

Random removal: The random removal operator selects p
customers randomly and removes them from the current
solution.

Vehicle removal (Route destruction): A vehicle k is
randomly selected. The customers served by vehicle k are
selected until the number of customers is equal to p. If all
customers served by vehicle k have been selected and the
number of selected customers is less than p, another vehicle
is selected. This process continues until p customers are
selected (Mancini, 2016).

Shaw removal: The idea of removing customers based on
their similarities was first proposed by Shaw (1998). The
first customer is chosen randomly. In the subsequent
iterations, Shaw removal removes the customer that is most
similar to the customer removed in the preceding iteration.
The procedure is repeated until p customers are removed. In
this paper, the similarity between two customers i and j is
expressed by R;; based on travel time and demand by Eg.
(18).

_ (p) |Zm dim - Zm djm|

dmax

(18)

Ri]' = (pt— + (1
max

Where t,, ., indicate the maximum travel time between any

pair of customers and d,,, iS the maximum demand
Cmdim)- @ € [0,1] is a relative weight of each term.

Greedy insertion: For each removed customer (i.e.,

unassigned customer), all feasible positions in the fleet are

determined. The customer with the lowest insertion cost is
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then selected and inserted in its lowest-cost position. Then,
the insertion costs of the remaining customers are updated
and this procedure is repeated until all customers have been
reinserted.

Random insertion: For each removed customer, all feasible
positions in the fleet are determined. A customer is selected
randomly and inserted in its random feasible position. The
feasible positions of the remaining customers are determined
and this procedure is repeated until all customers have been
reinserted.

4.2.3. Adaptive weight adjustment

For every vy iteration (i.e., time segment j), the weight of each
operator is updated according to their performance by Eq.
(19).

T
Wijsr = (1= Dwy; + lj (19)
14

Where 4 € [0,1] is a parameter that controls how the weights
are influenced by the historical performance. 6; is the number
of times that operator i was called in the last y iteration. m; is
the current score of the operator i. The parameters v;, v, and
v are used to update the operator’ score by Eq. (20), where
v, > v, > vy (Friedrich & Elbert, 2022).

V4 If new best solution has been found.
+1 .
nl}/ = nl}/ +- v, Ifnewsolution is accepted but worse

. (20)
than best solution.

VU3 Ifnew solution is rejected.

4.3. Initial Solution

A feasible initial solution is generated through a constructive
algorithm. If the customer’s demand exceeds the capacity of
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a vehicle, it is splitting into several customers, each of which
requests only one product type. With a such splitting, each
customer can be assigned to each vehicle. First, a customer
is randomly selected and assigned to a randomly selected
vehicle to generate a feasible route. Then, unassigned
customers are inserted by Greedy insertion heuristic
(Section 4.2.2). If insertion is not possible anymore due to
capacity constraints, a new vehicle is selected and this
procedure is repeated until all customers have been inserted.

5. Numerical experiments

This section presents numerical experiments to investigate
the efficiency of the proposed model and solution
approaches. The experiments are implemented in Python,
utilizing Gurobi optimizer, version 10.0.3 as the
optimization solver with a time limit of 14400 seconds. All
computational experiments are performed on a laptop with
16 GB RAM and 2.8 GHz Intel Corei5-3210M processor
running Windows 10.

5.1. Test instances

The computational results are based on instances derived
from Martins et al. (2019), which includes 50 customers who
order incompatible products in several time periods. In this
data set, the capacity of all vehicle is identical, at 33 units
and the time required to unload each product type is 2 units
(tuy, = 2).

We generate two sets of small and large sized instances
based on Martins et al. (2019). The small sized instances are
generated by randomly extracting up to 15 customers with
up to 3 product types from each instances in Martins et al.
(2019). On the other hand, 20 to 50 customers with up to 3
product types are extracted as large sized instances. For each
combination of customer and product type, 5 instances are
generated (60 instances in total) which is indicated in
column “EX” in detailed Table Al in Appendix. The
proposed problem is a single-period MCVRP in which the
arrival time consistency of several vehicles is studied;
therefore, the computational experiments are conducted over
a single period (The first period was randomly selected.).

It is assumed that the fleet is sufficiently large to serve all
demand. The maximum number of compartments per vehicle
is equal to the number of products, i.e., M = L, for k € K.
Transportation and unloading costs of vehicles per time unit
are set to 10 and 3.75 units, respectively. Each instance was
solved with and without considering customer requirement in
term of splitting delivery (product-oriented split delivery or
general split delivery). These instances are described as n —
M — Gsplit/Psplit, where n is the maximum number of
customers, M is the number of product types and the last
field Gsplit/Psplit refers to customer requirement in term
of splitting delivery. In the case of product-oriented split
delivery (Psplit), the demand of each customer for given
product types cannot be split (m € M; fori € V), but split
delivery of other product types is allowed under certain
condition. In Gsplit, split delivery is allowed for all product
types. It is assumed that the demand of first product type
cannot be split in product-oriented split delivery mode (M; =
{1} fori € V).

The maximum allowed arrival time difference is assumed to
be 1 hour. Note that the proposed model contains a large
positive number M. The upper bound of M can be calculated
by Eq. (21).

M2) > i+ ) ) dmtun 21)

iev jev’ jev' meM

Since the proposed solution approaches has a random
component, each algorithm has been run 5 times on each
instance. The best and average objective function value over
5 runs, denoted as Obj,es; and Objg,, respectively, are
reported. The average computational times, denoted as
Tqvg, are presented. The adaptive weights are updated every
5 iterations. All parameters are tuned experimentally to
achieve a reasonable balance between effectiveness and
computational time. An overview of the parameters used in
the solution approaches is provided in Tables 1 and 2.

Table 1
The parameters of matheuristic
Notation Description Value
iteTmax Maximum number of iterations 50
nolmp,,., | Maximum number of non-improving iterations 5
TL Time limit (in seconds) 10
6 Score used in updating the weight of fixing strategy 0.1
Table 2
The parameters of ALNS
Notation Description Value
itelmax Maximum number of iterations 300
nolmp,,., | Maximum number of non-improving iterations 100
Initial temperature in SA 0.4
T Cooling factor in SA 0.9994
1] Shaw parameter 0.5
y Number of iterations per segment 5
A The parameter is used to weight adjustment 0.3
A The parameter is used to update the operator’ score if a new best solution is found. 20
v, The parameter is used to update the operator’ score if a new solution is accepted. 10
V3 The parameter is used to update the operator’ score if a new solution is rejected. 1




Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 137-149
Mahnaz Shoeib & et al. / Product-oriented split delivery in the multi-compartment...

5.2. Computational results

This section presents the computational results using the
solution approaches described in Section 4. We solve the
small sized instances with ALNS and matheuristic and
compare the results with optimal solution obtained by
Gurobi. Table Al in Appendix presents the computational
results of the small sized instances in detail. The large sized
instances are solved by ALNS and matheuristic, since
Gurobi is not able to find a solution when the number of
customers or product types grows up to 20 and 3,
respectively. Tables 3 and 4 present the average
computational results of the small and large sized instances,
where each row represents the average results of five
instances with the same combination of customer and
product.

These tables are organized as follows. First column indicates
the name of instance, which is composed of the number of
customers, the number of products, and finally splitting
mode (Gsplit/Psplit). Under the Gurobi header, optimal
objective function value (Obj*), computational time (T') and
optimality gap (Gap™) are reported. The optimality gap is the
percentage gap between Obj* and lower bound reported by
Gurobi. Under the ALNS and matheuristic headers, the best
and average objective function value over five runs is
reported, denoted as Obj,,;, and Obj respectively. The
corresponding computational times are denoted as Ty,;,, and
T respectively. The relative gap (Gap) is measured with
respect to Gurobi given by (Obj — Obj*)/0bj*. The relative
improvement of the matheuristic compared to ALNS is also
reported in column “ITmp”, which is the percentage gap
between Obj in matheuristic and Obj in ALNS. The average
results over all instances are given in the last row of each
table.

As illustrated in Table 3, Gurobi only solves instances up to
15 customers and 2 product types within a time limit of 4
hours. As shown in Table Al in Appendix, in 12 out of 15
instances, Gurobi found the same optimal solution in both

splitting delivery modes (Gsplit/Psplit). This means that in
the most small sized instances it is possible to meet customer
requirements in term of demand splitting without additional
costs. In the remaining three instances, the proposed model
in the product-oriented split delivery mode costs more than
the general mode.

As the problem size increase, the computational time of
Gurobi increases exponentially. In all small sized instances,
both proposed algorithms find near optimal solutions within
very short computational times. The ALNS is able to find
high quality solutions with an average relative gap of 0.5%
in less than 10 seconds per small sized instance. The
matheuristic obtains near optimal solution with an average
gap of only 0.12% within an average run time of 25.6
seconds. The proposed matheuristic on an average achieve
improvement of 0.38%, when compared to the proposed
ALNS. There are no significant differences in computational
times across the two algorithms.

Note that although the Gurobi computational time is affected
by the mode of demand splitting, it does not have a
significant effect on the proposed algorithms computational
time.

In Table 4, we evaluate the performance of the matheuristic
by comparing its results to the results of ALNS in the large
sized instances. Table 4 shows that although the size of
problem increases, both algorithms can obtain a solution in
relatively short time. Based on the computational results
provided in Table 4, the proposed matheuristic perform
better than ALNS on all instances with an average
improvement of 7.7%. Matheuristic are efficient, reducing
up to nearly 20% ((141.9-178.2)/178.2) of computational
time on average. Allowing product-oriented split delivery
mode in MCVRP may lead to an increase in the number of
vehicles needed or affect routing decisions and travelled
distance. Therefore, as expected, the route generated in
product-oriented mode are costly than the general mode in
the large sized instances.

Table 3
Small sized instances
Gurobi ALNS_ _ Matheu@c _ Tmp
. : T ) — ; . — ;

Instance | Obj* (’;O“/S © | Obmn OB C(;(,‘/‘()’)’ T(";)" (75") Objpn OB fo‘/?)’ T(ms)" (78") %)
10-2- Gsplit | 12488.4 0.00 1383 | 12488.4 125527 0.43 7.4 73 | 124884 124887 0.00 17.8 20.4 | -0.43
10-2- Psplit | 12488.4  0.00 542 | 12488.4 124884 0.00 47 57 | 12490.1 12490.1 001 89 91 | 0.01
10-3- Gsplit | 15196.5 0.00  436.7 | 15253.7 152885 054 12.0 12.0 | 151965 152179 0.3 212 26.0 | -0.40
10-3- Psplit | 15196.5 0.00  749.1 | 151965 152639 040 57 6.8 | 151965 152162 0.1 168 21.8 | -0.29
15-2- Gsplit | 18484.6 0.00 8993.3 | 18484.6 18631 0.79 135 143 | 184846 185145 0.17 382 446 | -0.62
15-2- Psplit | 185975 0.00 4909.9 | 18669.6 18750.9 0.82 9.7 11.3 | 18615.7 18651 027 274 319 | -0.54

average 0.00 2546.9 050 8.8 9.6 012 217 256 -0.38
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Fig.1 Comparison of MCVRP in two modes: Gsplit and Psplit

Table 4
Large sized instances
ALNS Matheuristic S
. Nh, Tmin T . Nha Tmin T Tonp
Instance Objpin 0bj ) ) Objmin Obj ) s) (%)

20-2- Gsplit | 28527.9 | 291925 | 50.0 | 484 | 279159 | 28163.0 | 125.8 | 114.4 -3.53
20-2- Psplit | 28921.0 | 293809 | 33.7 | 35.0 | 281346 | 282951 | 56.6 | 524 -3.70
30-2- Gsplit | 474711 | 492655 | 93.8 | 100.6 | 42488.7 | 430545 | 139.2 | 136.6 -12.61
30-2- Psplit | 443675 | 448344 | 788 | 759 | 43463.0 | 437208 | 59.8 | 64.0 -2.48
40-2- Gsplit | 65862.2 | 67102.7 | 142.2 | 153.0 | 59969.1 | 60883.6 | 214.6 | 236.5 -9.27
40-2- Psplit | 62346.0 | 62837.3 | 101.6 | 109.1 | 61598.4 | 620744 | 67.4 | 64.6 -1.21
50-2- Gsplit | 88933.0 | 90066.5 | 300.6 | 246.1 | 802552 | 82188.4 | 302.2 | 321.7 -8.75
50-2- Psplit | 833134 | 841949 | 209.6 | 235.1 | 822945 | 83096.4 | 58.2 | 57.4 -1.30
15-3- Gsplit | 28676.1 | 29537.9 | 39.8 | 43.2 | 249432 | 25170.0 | 62.2 | 76.7 -14.79
15-3- Psplit | 27886.5 | 27604.2 | 33.6 | 319 | 255283 | 25988.3 | 544 | 57.6 -5.85
20-3- Gsplit | 38184.6 | 39059.2 | 1184 | 117.6 | 341414 | 345448 | 142.2 | 145.6 -11.56
20-3- Psplit | 36238.8 | 37004.1 | 738 | 67.60 | 345380 | 35223.1 | 532 | 56.8 -4.81
30-3- Gsplit | 58421.1 | 594247 | 178.4 | 178.2 50179 51835.5 185 | 203.2 -12.77
30-3- Psplit | 65999.4 | 677929 | 146.2 | 144.1 | 64603.8 | 65289.1 | 61.6 | 73.0 -3.69
40-3- Gsplit | 88046.5 | 894049 | 2134 | 211.7 73824 75856.5 | 376.4 | 368.6 -15.15
40-3- Psplit | 101664.5 | 104640.6 | 387.6 | 415.8 | 100183.6 | 100183.5 | 67.0 | 80.6 -4.26
50-3- Gsplit | 132402.6 | 134806.4 | 550.2 | 454.5 | 110355.2 | 114164.3 | 392.0 | 368.9 -15.31
50-3- Psplit | 140470.4 | 1422416 | 569.2 | 539.6 | 131556.7 | 131762.2 | 83.4 | 76.1 -7.37
average 1845 1782 139.0 1419 -1.7
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Fig.2. The effect of vehicle capacity on splitting delivery in MCVRP with product-oriented split delivery
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In Fig.1, the number of customers (n) is shown along the x-
axis, whereas the vertical axis corresponds to the differences
between MCVRP with product-oriented split delivery
(Psplit mode) and general MCVRP (Gsplit mode). The
differences are explained in terms of three factors: the
number of vehicles, the travelled distance and the ratio of
split demands to total splitable demands (SD/TD). Fig. 1
illustrates how solutions are affected when product-oriented
split delivery mode is taken into account. As expected, the
average distance travelled and the number of vehicles
required in MCVRP with product-oriented split delivery
increase compared to the general MCVRP. On average, the
number of vehicles is more affected by the mode of demand
splitting than distance travelled. The SD/TD in Fig.1 shows
that the demand splitting decreases with the increase in the
number of customers. In other words, as the number of
customers increases, the proposed model approaches the
MCVRP without split delivery.

Fig. 2 shows the effect of vehicle capacity on the splitting
delivery in three instances (Instance 1: n = 10 and M = 2,
Instance 2: n=15 and M =2, Instance 3: n =10
and M = 3). The SD/TD is shown along the y-axis, whereas
the horizontal axis corresponds to the capacity of vehicles.
Obviously, as the capacity of vehicles increases, the number
of vehicles decreases or does not change. At first, the
capacity of vehicles is very small compared to the customers'
demand, therefore a large part of the orders is delivered in
split delivery mode. As vehicle capacity increases, each
vehicle can fully serve more customers, thus reducing split
deliveries. By further increasing the capacity of vehicles,
although each vehicle can visit more customers, it does not
fully meet all the demands and again splitting delivery mode
increases. Therefore, as the capacity of vehicles increases, a

Table 5

decreasing and then increasing trend in the SD/TD is
repeated.

After analyzing the effect of the vehicle capacity on the
delivery mode, the influence of the maximum number of
compartments (£, for k € K), which determines the number
of product types per vehicle, is examined in three instances.
Table 5 summarizes the effect of decreasing £, on the
number of vehicles, travelled distance and splitting delivery
mode (SD/TD).

Each SCV (L, =1 for k € K) carries only one type of
product, while a MCV (£, > 1 for k € K) enables joint
delivery of several product types. Therefore, if MCVs are
considered, customers' demands can be met with less (or
equal) number of vehicles. As stated in instance 3, if SCVs
are used instead of 3-compartment vehicles, the number of
vehicles required will be 14.29% more. As expected,
restricting the value of £, leads to increased travelled
distance. As stated in instance 3, reducing the number of
compartments from 3 to 2 leads to 24.8% increase in the
travelled distance, while a further reduction from 3 to 1 lead
to a further distance increase of 73.43%.

The last column of Table 5 shows the SD/TD in each
instance. In MCVs, the vehicle capacity is divided into
several compartments; each compartment is assigned to one
type of product, while the total capacity of each SCV is
assigned to one type of product. As shown in Table 5, split
delivery in MCVs is more than SCVs in instance 1. However,
it is observed that in instance 3, split delivery in SCVs is more
than MCVs. Therefore, it can be conducted that there is no
significant relationship between the number of compartments
and demand splitting. In addition to the number of
compartments and the amount of each customer demand, the
number of customers who are visited in each tour also affect
the delivery mode.

The influence of the number of compartments on the delivery mode

Changes in the number of vehicles Changes in the travelled distance o
Instance | | M| Ly compared to £, = M (%) compared to £, = M (%) SDITD (%)
2 28.57
1 10 | 2
1 20 41.97 14.29
2 10
2 15| 2
1 0 32.11 10
3 0
3 10 | 3 2 0 24.80 0
1 14.29 73.43 7.14

6. Conclusion and future research

This paper addressed an MCVRP with split delivery in
which the possibility of splitting delivery depends on the
product type. Each customer's demand for certain types of
products cannot be split, but split delivery of other types of
products is permitted if the time interval between vehicles
arrival times does not exceed a certain limit. We developed
a MIP model that can used to solve small sized instances
optimality with the Gurobi optimizer. In order to tackle
larger instances, a matheuristic based on fixing a part of

146

customer-to-route assignment variables and an ALNS was
proposed.

The proposed algorithms are employed to solve MCVRP
with product-oriented split delivery and general MCVRP in
which split delivery is allowed for all product types.
Computational experiments indicated that in most small sized
instances, Gurobi found the same optimal solution in both
splitting delivery mode (Gsplit/Psplit), indicating that
customers' requirements in term of splitting delivery can be
implemented without additional costs. Although the delivery
mode has an effect on the Gurobi computational time, it does
not affect the computational time of the proposed algorithms.
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As the problem size increase, the computational time of
Gurobi increases exponentially. Both algorithms find near
optimal solutions within very short computational times. In
the large sized instances, the proposed matheuristic performs
better than ALNS with an average improvement of 7.7% and
reducing up to nearly 20% of computational time on
average. In large sized instances, the product-oriented split
delivery in MCVRP may lead to an increase in the number
of vehicles needed or affect routing decision and travelled
distances. Therefore, the route generated in product-oriented
mode are costly than general mode.

Our sensitivity analysis revealed that, on average, the
number of vehicles is more affected by delivery mode than
distance travelled. Furthermore, the computational results
showed that as the number of customer increases, the split
delivery decreases and the proposed model approaches the
MCVRP without split delivery. However, vehicle capacity,
the number of compartments and number of customers in
each tour are factors affecting the delivery mode.

An interesting avenue for future research is to consider a
heterogeneous fleet composed of various vehicles with
different characteristics and costs. In addition, split delivery
could be investigated in a fleet of electric or hybrid vehicles.
Another aspect for future research could be considering
uncertainty in certain parameters (e.g., demand and travel
time), which brings the problem closer to real-life
conditions. In terms of arrival time consistency, future work
could assess the implications of varying the consistency
threshold. From the solution approaches perspective, the
proposed matheuristic could be developed in future studies.
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Appendix: Detailed results of small sized instances

Table Al
The detailed results of small sized instances

Gurobi ALNS Matheuristic o

Gap* T —  Gap Ty T — Cap Taa| T | P

Y Instance 0bj* (o/f) ©) Objmin 0bj (%7)7 Z’;S" ©) Objin 0bj (%2)0 (Slsn © (%)
1 10-2- Gsplit | 7977.7 0.00 4.7 7977.7 7977.7 0.00 3 3.6 7977.7 7977.7 0.00 10.0 104 | 0.00
10-2- Psplit | 7977.7 0.00 6.7 7977.7 7977.7 0.00 4 4.4 7977.7 7977.7 0.00 6.0 8.9 0.00

2 10-2- Gsplit | 10562.5 0.00 7.4 10562.5 10562.5 0.00 5 7 10562.5 10562.5 0.00 13.0 174 | 0.00
10-2- Psplit | 10562.5 0.00 6.4 10562.5 10562.5 0.00 4.7 4.7 10562.5 10562.5 0.00 8.4 10 0.00
3 10-2- Gsplit | 15386.9 0.00 516.1 15386.9 15546.9 1.04 10 10.4 | 15386.9 15386.9 0.00 23.0 254 | -1.03
10-2- Psplit | 15386.9  0.00 117.6 15386.9 15386.9 0.00 5.2 7.1 | 15386.9 15386.9 0.00 100 44 0.00
4 10-2- Gsplit | 14146.4 0.00 33.8 14146.4  14188.7 0.30 10 8.6 | 14146.4 14146.4 0.00 20.0 210 | -0.30
10-2- Psplit | 14146.4 0.00 24.8 14146.4 14146.4 0.00 5.2 6.3 14146.4 14146.4 0.00 10.0 12.0 | 0.00
5 10-2- Gsplit | 14368.5 0.00 129.7 14368.5 14487.6 0.83 9 7 14368.5 14370.2 0.01 230 278 | -0.81
10-2- Psplit | 14368.5 0.00 115.3 14368.5 14368.5 0.00 4.6 5.9 | 14376.9 14376.9 0.06 10.0 10 0.06

1 10-3- Gsplit | 8105.2 0.00 18 8105.2 8105.2 0.00 6 7 8105.2 8105.2 0.00 9.0 9.4 0.00
10-3- Psplit | 8105.2 0.00 35 8105.2 8105.2 0.00 4.2 5.2 8105.2 8105.2 0.00 4.0 5.6 0.00
2 10-3- Gsplit | 16403.4 0.00 296.4 16526.2 16542.4 0.85 11 10.8 | 16403.4 16403.4 0.00 23.0 300 | -0.84
10-3- Psplit | 16403.4 0.00 621.6 16403.4 16419.6 0.10 5.3 7.9 | 16403.4 16403.4 0.00 20.0 26.0 | -0.10
3 10-3- Gsplit | 18036.9 0.00 536.4 18036.9 18206.9 0.94 12 15 18036.9 18036.9 0.00 30.0 38.0 | -0.93
10-3- Psplit | 18036.9  0.00 557.5 18036.9 18186.0 0.83 6.5 6.8 | 18036.9 18126.6 0.50 20.0 248 | -0.33
4 10-3- Gsplit | 17377.9  0.00 458.8 17541.1 174432 0.38 13 11.2 | 173779 173779 0.00 23.0 282 | -0.37
10-3- Psplit | 173779 0.00 21319 | 173779 17391.3 0.08 6.3 6.5 | 173779 17386.9 0.05 20.0 324 | -0.03

5 10-3- Gsplit | 16059.0 0.00 890.1 16059.0 16144.8 0.53 18 16 16059.0 16165.9 0.67 21.0 242 | 0.13
10-3- Psplit | 16059.0 0.00 430.8 16059.0 16217.4 0.99 6 7.7 | 16059.0 16059.0 0.00 20.0 20.0 | -0.98

1 15-2- Gsplit | 17892.7 0.00 12764.1 | 17892.7 17996.9 0.58 14 12.7 | 17892.7 18001.0 0.61 30.0 358 | 0.02
15-2- Psplit | 184135 0.00 11617.9 | 184135 18434.9 0.12 7.5 8.4 184135 184135 0.00 21.0 23.0 | -0.12
2 15-2- Gsplit | 20675.1  0.00 5096.8 | 20675.1 20878.6 0.98 13.8 15.7 | 20675.1 20697.1 0.11 67.0 68.2 | -0.87
15-2- Psplit | 20682.3  0.00 2289.8 20979.5 20979.5 144 8.2 12.3 | 20773.1 20850.7 0.81 31.0 372 | -0.61
3 15-2- Gsplit | 16899.5 0.00 3229.0 | 16899.5 17044.5 0.86 12.8 154 | 16899.5 16914.1 0.09 31.0 324 | -0.77
15-2- Psplit | 16935.9 0.00 808.2 16999.1 17130.3 1.15 12 13.3 | 169359 16958.5 0.13 340 422 | -1.00
4 15-2- Gsplit | 18691.5 0.00 23814.4 | 18691.5 18843.5 0.81 14 15.3 | 186915 18696.2 0.03 31.0 36.4 | -0.78
15-2- Psplit | 18691.5 0.00 9796.3 | 186915 18818.4 0.68 10 10.9 | 186915 18710.0 0.10 20.0 27.2 | -0.58
5 15-2- Gsplit | 18264.3  0.00 62.2 18264.3 18391.3 0.70 13 12.6 | 18264.3 18264.3 0.00 32.0 502 | -0.69
15-2- Psplit | 18264.3  0.00 37.3 18264.3 18391.3 0.70 11 11.7 | 18264.3 18322.5 0.32 31.0 29.8 | -0.37
average 0.00 2546.9 0.50 8.8 9.6 0.12 21.7 256 | -0.38
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