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Abstract 

Fuzzy Local Mean Discriminant Analysis (FLMDA) is a supervised dimensionality reduction 

method. FLMDA gathers local information for constructing between-class and within-class scatters. 

However, after feature transformation using FLMDA, the neighboring data points may differ. This fact 

may degrade the classification performance. In the proposed method, the feature extraction process is 

repeated based on the list of adjacent data after transformation, and this process continues until 

convergence. Therefore, it is supposed that the local information is preserved as much as possible and 

the local discrimination between the instances of different classes is increased. The experiments 

performed on different University of California, Irvine (UCI) datasets show the superiority of the 

proposed method compared to similar methods. 
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1- Introduction 

In machine learning tasks, dimensionality reduction leads to the discovery of the 

hidden structure of the data [1]. Dimensionality reduction methods are divided into two 

groups of methods namely feature selection [2-17] and feature extraction. In features 

extraction (FE) methods, each extracted feature is a linear or nonlinear combination of 

initial features. Therefore, FE methods are divided into linear [18, 19] and nonlinear 

approaches [20-29]. Principle Component Analysis (PCA) [19] and Linear Discriminant 

Analysis (LDA) [18] are among the most widely used linear feature transformation and 

extraction methods. Amon these approaches, LDA is a supervised feature transformation 

method. The purpose of LDA is to find features that make the data more separable and 

performs it by maximizing the between-class scatters and minimizing the within-class 

scatters. 

In LDA, the Euclidean measure or L2 norm is used to calculate the data distribution. 

Many papers have been presented based on the LDA method such as [30, 31]. Zhong et 

al. [32] introduced a noise resistant version of LDA called L1-LDA. In their model, 

instead of L2 norm, L1 norm is used for calculating scatterings. It is claimed that, L1 

norm has lower sensitivity to noise. Zhang et al. [33] also claimed that their proposed 

method unlike L1-norm that is sensitive to outliers, via integrating global and local 

structure information is robust to outliers. Yang et al. [34] proposed 2D-LDA 

methodology in 2005 for 2-dimensional data. In their method, there is no need to 

vectorize image data. It is claimed that the time complexity of the method is lower than 

the LDA method, and can sometimes lead to the extraction of more discriminative 

features. Li et al. [35] proposed L1-2DLDA, which combines the advantages of two 

previously introduced approaches, namely L1-LDA and 2D-LDA.  

In the LDA, new features are extracted so that the distance between each data of the 

same class is minimized and the distance between data from different classes is 

maximized. While, in particular, when classification methods such as k-nearest neighbor 

is supposed to be used to classify data, what is needed is to minimize the average distance 

of each data from the neighbors with the same class labels and maximize the average 

distance from the neighbors belonging other classes. This idea is developed in [36] and 

[37] which proposed the local LDA method. In [38] a Fuzzy-Gaussian two-directional 

inverse FDA is proposed which computes the fuzzy and Gaussian membership values to 

obtain the class-wise and global means. The Authors of [39] have proposed a new feature 

extraction method using entropy based fractional fuzzy in which uncertainty is 

incorporated into 2D-LDA. In this regard, a fuzzy logic-based feature extraction 
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technique, called fuzzy generalized two-dimensional FLDA is proposed in [42]. Also, a 

new collaborative representation-based fuzzy discriminant analysis is proposed in [43]. 

Similarly, some articles such as [40, 41, 44-46] use fuzzy set theory. Jie Xu et al. [36], 

using the theory of "fuzzy sets", introduced a new feature extraction algorithm in 2016, 

which they called Fuzzy Local Mean Discriminant Analysis (FLMDA). In this method, 

the new features are extracted so that the distance of each data point from the weighted 

average of the adjacent data of the same-class is minimized and the distance between 

each data point and the weighted average of adjacent other-class data is maximized. In 

FLMDA, if a data point is on the boundary of the two classes, less weight is given to it 

due to less certainty for the class label.  

After performing FLMDA, the data adjacencies may change, which may in turn causes 

that the previous adjacencies for which the scatterings are calculated are not valid 

anymore which may lead to performance degradation. Therefore, in the proposed 

method, the feature extraction process is iterated based on the FLMDA method and the 

new list of adjacent data, and this process continues until convergence. Using this 

approach, we expect that the classification accuracy is enhanced while clearly the 

complexity of feature mapping may increase. The rest of this paper is organized as 

follows. In Section 2, the FLMDA approach is described with more detail. The proposed 

method is explained in Section 3. In Section 4, the results of the experiments are 

discussed and Section 5 includes the conclusions and direction for future work. 

2- Fuzzy Local Mean Discriminant Analysis (FLMDA) 

 A single label training data belongs to just one class. In other words, the degree of 

membership of a training data to a class is equal to one and the degree of its membership 

to other classes is zero. Suppose 𝑢𝑖(𝑥𝑗) is the predefined degree of membership of the 

training data 𝑥𝑗 to the ith class. Equation (1) shows how to calculate the degree of 

membership of this training data to the class. 

 

�̃�𝑖(𝑥𝑗) =  {
0.51 + 0.49

𝑚𝑖𝑗

𝑘
,   𝑢𝑖(𝑥𝑗) = 1;

0.49
𝑚𝑖𝑗

𝑘
,    𝑢𝑖(𝑥𝑗) = 0;

 

(1) 

 
 
 



Im
p

r
o
v
e
d

 F
u

z
z
y
 L

o
c
a
l 

M
e
a

n
 D

is
cr

im
in

a
n

t 
A

n
a

ly
si

s 
v

ia
 I

te
r
a

ti
v
e
 O

p
ti

m
iz

a
ti

o
n

 f
o

r 
F

e
a
tu

r
e 

T
r
a
n

sf
o
r
m

a
ti

o
n

 a
n

d
 C

la
ss

if
ic

a
ti

o
n

 

 
 

  

 3 

In which ui(xj)  and ũi(xj) are the crisp and fuzzy membership degrees, respectively. 

In Eq. (1), k is a hyper-parameter of the fuzzy k nearest neighbor method, and 𝑚𝑖𝑗is the 

number of nearest neighbors of xjwhich have the same label as i. The higher themij, the 

higher becomes the membership degree of the xjto the ith class. In fact, based on this 

equation, if a training data of a particular class is located at the center of the class, its 

membership to that class is almost preserved, and if it is located on the boundary of the 

two classes, its degree of membership to its original class is reduced and the degree of its 

membership to other classes is increased slightly so that the uncertainty about the label 

of the data can be exploited at a later stage. According to Eq. (1), the degree of 

membership of a data point labeled as i to the ith class changes in the range of [0.51, 1], 

and its membership degree to other classes is at least 0 and at most 0.49. Hence, even 

after modifying the degrees of membership of the data points in accordance with equation 

(1), this data has still higher membership of original class. 

Suppose {𝑥1, 𝑥2, . . . , 𝑥𝑁} is the training data of c different classes and the set 

{𝑥𝑖1
𝑠 , . . . , 𝑥

𝑖𝑘
𝑠 } is the k nearest neighbors of xi which belong to different classes 

𝑠 ∈ {1,2, . . . , 𝑐} and 𝛤𝑖
𝑠 = {𝑖1, . . . , 𝑖𝑘} is the set of indices of these neighbors. The 

weighted average of these k nearest neighbors of xi, belonging to class s is defined as: 

 

𝑚𝑖
𝑠 =

∑ �̃�𝑖(𝑥𝑗)𝑥𝑗𝑗∈𝛤𝑖
𝑠

∑ �̃�𝑖(𝑥𝑗)𝑗∈𝛤𝑖
𝑠

 
(2) 

 

In the FLMDA method, data are transmitted using a linear transformation to a new 

space with a lower number of dimensions where the ratio of the local between-class 

scattering and the local within-class scattering is maximized. Local within-class 

scattering is the sum of distances of each data from the weighted average of its same-

class neighboring data, while local between-class scattering is the sum of distances of 

each data from the weighted average of its other-class neighboring data. More precisely, 

if the data is M-dimensional, the orthogonal transformation matrix 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑀) 

is determined in such a way that the following target function is minimized: 

 

𝑑𝑒𝑡(
1

𝑁
∑(𝑝𝑇 𝑥𝑖 − 𝑝𝑇 𝑚𝑖

𝑙𝑖) (𝑝𝑇 𝑥𝑖 − 𝑝𝑇 𝑚𝑖
𝑙𝑖)𝑇) =

𝑁

𝑖=1

 

𝑑𝑒𝑡( 𝑝𝑇 [
1

𝑁
∑(𝑥𝑖 − 𝑚𝑖

𝑙𝑖) (𝑥𝑖 − 𝑚𝑖
𝑙𝑖)𝑇]𝑝) = det (𝑝𝑇𝑆𝑤𝑝)

𝑁

𝑖=1

 

(3) 

 

And the following target function is maximized: 
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𝑑𝑒𝑡(
1

𝑁(𝑐 − 1)
∑ ∑ (𝑝𝑇 𝑥𝑖 − 𝑝𝑇 𝑚𝑖

𝑠) (𝑝𝑇 𝑥𝑖 − 𝑝𝑇 𝑚𝑖
𝑠)𝑇)

𝑐

𝑠=1,𝑠≠𝑙𝑖

=

𝑁

𝑖=1

 

𝑑𝑒𝑡( 𝑝𝑇 [
1

𝑁(𝑐 − 1)
∑ ∑ (𝑥𝑖 − 𝑚𝑖

𝑠) (𝑥𝑖 − 𝑚𝑖
𝑠)𝑇]𝑝) = det (𝑝𝑇𝑆𝑏𝑝)

𝑐

𝑠=1,𝑠≠𝑙𝑖

𝑁

𝑖=1

 

(4) 

 

Where 𝑙𝑖 is the label of xiand 

 

𝑠𝑤 =
1

𝑁
∑(𝑥𝑖 − 𝑚𝑖

𝑙𝑖)(𝑥𝑖 − 𝑚𝑖
𝑙𝑖)𝑇 ,

𝑁

𝑖=1

 

(5) 

 

𝑠𝑏 =
1

𝑁(𝑐 − 1)
∑ ∑ (𝑥𝑖 − 𝑚𝑖

𝑠)(𝑥𝑖 − 𝑚𝑖
𝑠)𝑇

𝐶

𝑠=1,𝑠≠𝑙𝑖

,

𝑁

𝑖=1

 

(6) 

 

𝑆𝑤 and Sb are called fuzzy local within-class and between-class scatterings, 

respectively. To obtain an orthogonal matrix p, it is sufficient to solve the following 

model: 

maxp

det( pTSbp)

det( pTSwp)
 

 

s. t.   pT p = I 

(7) 

 

It can be shown that the optimal values of the orthogonal matrix, p, Eq. (7) are the 

eigenvector of Sw
-1Sb[47]. 

 

3- The Proposed Method  

In the FLMDA method, data are mapped using a linear transformation to a new space 

with a lower dimensionality, where the ratio of the local between-class scattering and the 

local within-class scattering is maximized. However, these scatterings are calculated in 

original space which means that it is not necessarily the same as the new space. In the 

other word, after finding new feature space using the FLMDA method, the adjacent 

points of each data may change. Therefore, in the proposed method, the FLMDA feature 

extraction process is iterated and, in each iteration, the new list of adjacent data is 

populated. This process continues until convergence. 

The proposed model is similar to the FLMDA model and the objective function is the 
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 5 

same as Eq. 7 and as follows: 

 

𝑚𝑎𝑥𝑝

𝑑𝑒𝑡( 𝑝𝑇𝑆𝑏𝑝)

𝑑𝑒𝑡( 𝑝𝑇𝑆𝑤𝑝)
 

 

𝑠. 𝑡.   𝑝𝑇 𝑝 = 𝐼 

(8) 

 

in which 𝑆𝑤 and Sb are calculated as stated in Equations 5 and 6, and having 

transformation 𝑝, The weighted average of these k nearest neighbors of xi, belonging to 

class s is defined as: 

 

𝑚𝑖
𝑠 =

∑ �̃�𝑖(𝑝𝑇 𝑥𝑗) 𝑝𝑇 𝑥𝑗𝑗∈𝛤𝑖,𝑝
𝑠

∑ �̃�𝑖(𝑝𝑇 𝑥𝑗)𝑗∈𝛤𝑖,𝑝
𝑠

 
(9) 

 

In which, in the mapping space  , the set {𝑝𝑇 𝑥𝑖1
𝑠 , . . . , 𝑝𝑇 𝑥

𝑖𝑘
𝑠 } is the k nearest neighbors 

of the data 𝑝𝑇𝑥𝑖in class 𝑠 and 𝛤𝑖,𝑝
𝑠 = {𝑖1, . . . , 𝑖𝑘} is the set of indices of these k neighbors. 

𝑝𝑇𝑥𝑖denotes the identical xi training data after a round of mapping. 

As mentioned before, unlike the FLMDA model, in the proposed model, the local 

mean vector of ith training data, namely 𝑚𝑖
𝑠, is variable and dependent on transformation 

matrix p which should be determined in each iteration of the optimization process. Given 

that mi
s  is variable, the solution of Eq. (8) is difficult. Therefore, an iterative 

approximation method is used to solve it. In this iterative method, assuming p to be 

constant, the values of mi
s are determined according to Eq. (9), and then, with the 

assumption of mi
s being constant, Eq. (8) is solved. Obviously, when mi

s are assumed to 

be constant, problem (8) changes to the FLMDA problem. After solving the FLMDA 

problem and obtaining the optimal value of the matrix p, mi
s are again determined 

according to Eq. (9) and the previous process is repeated until convergence. The proposed 

algorithm is summarized in the following: 

 

The proposed algorithm 

Input: The training dataset {x1, x2 , . . . , xN} and their corresponding labels 

          d: final dimension,       thr: threshold value 

Output: The final projection matrix, p 

Step 1: initialize p=I 
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Step 2: feature extraction: for each i compute xi = pTxi 

Step 3: Compute mi
susing Eq. 9. 

Step 4: Fixing mi
s compute Eq. 8. Set p as the r best Eigen vectors of Sw

-1Sb 

Step 5: If the Frobenius norm of two consecutive values of P the higher than thr go to step 2 else the 

algorithm is terminated. 

 

4- Experiments  

In this section, the proposed method and other methods such as LDA and FLMDA are 

evaluated using nine real data sets from UCI repository, namely Wine, Glass, Parkinson, 

Sonar, Yeast, Breast Tissue, Haberman's Survival, Iris and Ecoli. Each time using one of 

the three mentioned methods, the feature extraction takes place, and then, using the KNN 

method, the data is classified in the transformation space. 10-fold Cross Validation is 

used to evaluate the classification accuracy. 

Table 1 shows the highest accuracy obtained, the rank of each method among the three 

methods, the value of optimal parameters and the runtime of each method. The optimal 

value of the k at the stage of feature extraction and classification is selected from the set 

of {1, 5, 10, 15, 20, 25, 30}and the optimal value for the number of extracted features or 

the dimension of the data after the feature reduction, namely r, is chosen from the set of 

{1, 2, …, M}.  

We first select the optimal value of k from the set {1, 2, 3,…, 30} and then repeat the 

experiments with less values of k,  from the set of {1, 5, 10, 15, 20, 25, 30} and we 

compared the results. We saw that the results of the experiments converged for both sets, 

and both sets of k had almost similar results. It can be inferred that the proposed method 

has a higher accuracy for the set of different values of k than the other two methods. 

Therefore, we considered the results for convenience in the set of {1, 5, 10, 15, 20, 25, 

30}. 

 

Table 1: performance comparison of different feature extraction methods 

Dataset 
Feature 

extraction 

method 

Accuracy (%) 
Training 

run time 

(s) 

Value of k in 

classification 

Value of k in 

feature 

extraction 

Final 

dimension 

Wine LDA 5828.89  (1) 0..139 5 - 2 
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FLMDA 97.0588  (2) 1.2038 1 20 13 

Proposed 98.8235  (1) ..5011 5 30 13 

Iris 

LDA 98  (1) 0..240 10 - 3 

FLMDA 97.3333 (2) 0.8855 10 30 3 

Proposed 98  (1) 2.8897 1 25 3 

Glass 

LDA 47.1429  (3) 0..557 5 - 8 

FLMDA 52.3810  (1) 2.1108 1 1 8 

Proposed 49.5238  (2) 5.7013 5 5 6 

Sonar 

LDA 63  (3) 0..653 5 - 1 

FLMDA 70.500  (2) 1.9798 25 5 1 

Proposed 72  (1) 5.9143 20 15 1 

Parkinson 

LDA 82.6316  (3) 0..217 5 - 1 

FLMDA 87.3684  (2) 1.1802 10 20 1 

Proposed 88.4211  (1) 3.0388 20 25 2 

 

Haberman’s 

Survival 

LDA 76.6667  (3) 0..289 30 - 3 

FLMDA 77.3333  (2) 2..224 15 5 3 

Proposed .87 3333  (1) 3.8312 15 30 3 

Yeast 

LDA 56.6216  (3) 0.5.21 .9 - 8 

FLMDA 57.9054  (2) 63.4307 88 29 7 

Proposed 58.1081  (1) 118.9897 88 29 7 

Breast Tissue 

LDA 54  (2) 0.2867 2 - 2 

FLMDA 52  (3) 0.8142 2 2 7 

Proposed 58  (1) 3.4471 1 2 7 
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Ecoli 

LDA 74.8485  (2) 0.2554 5 - 2 

FLMDA 74.8485  (2) 4.3023 9 28 7 

Proposed 76.0606  (1) 7.2212 5 .9 9 

 

The results of Table 1 show that the proposed method, except in one case (i.e. average 

accuracy on glass data set), has higher accuracy compared to LDA and FLMDA methods. 

The lowest rate of accuracy using each of the three LDA, FLMDA and proposed methods 

was on glass dataset. This may denote that the proposed approach degrades on highly 

complex datasets and on datasets with medium complexity, the approach outperforms 

similar approaches. Also as denoted in Table 1, LDA has comparable results as the 

original FLMDA method and in 3 out of 9 experiments has outperformed FLMDA while 

for one dataset the results were actually the same. Also except for one dataset (i.e. Wine), 

the best dimensionality which has resulted the best KNN classification accuracy is almost 

the same for all three approaches, which is due to the same objective and metric used in 

these methods.   

According to Table 1, the execution time of the LDA algorithm is lower than that of 

FLMDA. To justify it, it should be said that although in both methods the 𝑆𝑤
−1𝑆𝑏matrix 

is calculated, but calculating Sband Sw in the FLMDA method requires more time. Since 

in each iteration of the proposed algorithm, a problem similar to the FLMDA problem is 

solved once, the time complexity time of the proposed method is more than the 

complexity of FLMDA and LDA methods. As seen in Table 1, the implementation time 

of the proposed method is almost twice as the FLMDA method. 

To test the significance of the proposed approach compared with the two other 

methods, we applied the Wilcoxon ranked sum test with the following hypothesis: 

H0: “There is no significant difference between approaches”. 

H1: “There is significant difference between approaches”. 
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Table 2: Outputs of Wilcoxon ranked sum test for the evaluated approaches. 

Algorithm LDA FLMDA Proposed 

LDA - 20 0 

FLMDA  - 6 

Proposed   - 

 

Having 9 experiments for each approach, the Wilcoxon critical value for two-tails test 

with α=0.05 level of significance, is 6. The output of the mentioned test is showed in 

Table 2. Bold numbers show the test for which the output of the Wilcoxon test is equal 

to or lower than the critical value and the H0 hypothesis cannot be rejected which means 

that there is a significant difference between the approaches.  

Figure 1 illustrates the accuracy of three feature extraction methods across varying 

values of k, paired with the designated classifier, while Figure 2 depicts their accuracy in 

relation to the final latent space dimension. Across both figures, the overall trends of the 

three methods remain consistent, displaying similar curve shapes for all datasets. This 

indicates that the sensitivity of these approaches to k (or the latent space dimension) is 

comparable, highlighting the importance of selecting an appropriate value for k to 

optimize performance. The uniformity in curve shapes suggests that all methods share a 

common dependency on this hyperparameter, making its careful tuning a critical aspect 

of achieving optimal results. 

Moreover, despite the similarities in trend, the proposed approach demonstrates a 

notable advantage in terms of area under the curve (AUC) when compared to the other 

two methods. This superiority is evident across most datasets, with the Glass dataset 

being a notable exception. The higher AUC values for the proposed approach suggest its 

robustness and effectiveness, particularly when the optimal k or latent space dimension 

is determined. These findings underline the importance of the proposed method as a more 

reliable option for feature extraction, further emphasizing its potential benefits in 

applications requiring high sensitivity and accuracy. 
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a)Wine dataset 

 

b)Iris dataset 

 

c) Glass dataset 

 

d) Sonar dataset 

 

e) Parkinson dataset 

 

f) Haberman’s Survival dataset 
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g) Yeast dataset 

 

h) Breast tissue dataset 

 

i) Ecoli dataset 

Fig. 1: The effect of the parameter k on the accuracy of the methods for various data sets 

The experiments illustrated in Figure 1 reveal that the value of k significantly 

influences the performance and accuracy of all three approaches. For datasets such as 

Wine, Iris, Glass, Breast Tissue, and Ecoli, lower values of k generally yield better 

results, suggesting that reduced dimensionality enhances performance for these datasets. 

Conversely, for datasets like Yeast and Parkinson, higher k values improve accuracy, 

indicating that retaining more dimensions is beneficial in these cases. This variation can 

be attributed to dataset characteristics, including the size of the dataset and the degree of 

class imbalance, which affect the suitability of specific k values. 

From these observations, it can be concluded that the optimal choice of k is dataset-

dependent. When dealing with balanced datasets with a relatively small number of 

samples, lower k values are advantageous, as they simplify the feature space without 
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sacrificing critical information. On the other hand, for larger datasets with significant 

class imbalance, higher k values may preserve more information from the latent space, 

leading to improved performance. These findings emphasize the importance of tailoring 

the k parameter to the specific characteristics of the dataset to achieve optimal results. 

 

 

a)Wine dataset 

 

b)Iris dataset 

 

c) Glass dataset 

 

d) Sonar dataset 
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e) Parkinson dataset 

 

f) Haberman’s Survival dataset 

 

g) Yeast dataset 

 

h) Breast tissue dataset 
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i) Ecoli dataset 

Fig. 2: The effect of changing the dimensionality on the accuracy of the methods for different data sets 

 

Figure 2 highlights the impact of dimensionality on the performance of the three 

feature extraction approaches, with the experimented dimensions varying according to 

the size of the original feature space. The proposed method demonstrates superior 

performance compared to the other two approaches in most cases, with the exception of 

the Glass dataset, previously discussed, and the Iris dataset, where the LDA approach 

achieves a better area under the curve (AUC). Notably, the performance of the proposed 

method generally improves as the dimensionality of the mapping space increases, 

suggesting its robustness and adaptability to higher-dimensional feature transformations. 

However, two notable exceptions are observed with the Sonar and Parkinson datasets, 

where performance degrades as the dimensionality increases. This decline may stem from 

the smaller latent dimensionality in these datasets, which limits the effectiveness of 

mapping to higher dimensions. These findings indicate that while the proposed approach 

excels in most cases, the relationship between dimensionality and performance is not 

universal and depends on dataset-specific characteristics. It underscores the importance 

of carefully selecting the dimensionality of the transformation space to optimize results, 

particularly for datasets with unique feature distributions. 

On the other hand, as shown in Figure 2, the LDA approach has outperformed the 

other two methods in several instances, particularly for datasets like Iris. LDA's superior 

performance on the Iris dataset can be attributed to its simplicity and effectiveness in 

handling datasets with well-defined class separations. The linear nature of LDA makes it 

particularly suitable for such cases, where more complex methods such as FLMDA may 

not provide significant additional benefits. This suggests that, in scenarios with clear 

class boundaries and lower-dimensional feature spaces, simpler techniques like LDA can 

be more effective and computationally efficient than more intricate methods. 

Furthermore, success of the proposed approach in many cases highlights its robustness 

and efficiency in scenarios where the complexity of the data does not require the added 

sophistication of more advanced techniques. While more complex approaches might 

offer better results in some cases, the Iris dataset exemplifies situations where LDA's 

simplicity and low computational cost provide an optimal balance between performance 

and efficiency. This underscores the importance of choosing the right method based on 

the complexity of the dataset and the specific characteristics of the problem at hand. 
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5- Conclusion 

In the FLMDA method, the data is transmitted using a linear transformation to a new 

space with a lower dimensionality, so that the ration between local between-class scatters 

and the local within-class scatters in that space is maximized. Local within-class scatters 

are the total distance of each data from the weighted average of the neighboring same-

class data, while local between-class scatters is the total distance of each data from the 

weighted average of the neighboring other-class data. After feature transformation using 

FLMDA method, the data adjacencies may change. Therefore, in the proposed method, 

the feature extraction process is iterated based on the FLMDA method and the lists of 

new adjacent data are generated, and this trend continued until convergence. Experiments 

are performed on 9 real UCI repository datasets showed that the feature extraction using 

the proposed method can increase the classification accuracy compared to the LDA and 

FLMDA. More precisely, the proposed method is more accurate compared to LDA and 

FLMDA, except in one case, i.e. the glass dataset. The results show that the average 

accuracy of the proposed method increased by 2.837% compared to LDA and 1.171% 

compared to FLMDA and by 0.68% compared to the maximum of the two methods. 

Meanwhile, the implementation time of the proposed method is approximately twice as 

long as the original FLMDA method . 

Even though the trials indicate modest gains in accuracy and computing complexity, 

it is still worthwhile to talk about how the suggested approach will affect real-world uses. 

Numerous fields could gain from the enhancements in feature transformation and 

classification accuracy, including : 

• Medical Diagnosis: By increasing the accuracy of disease classification in high-

dimensional medical datasets such as gene expression profiles, EEG, and ECG, the 

technique may make it possible to develop more accurate diagnostic instruments for 

cardiac and neurological conditions. 

• Image Recognition: Especially for noisy or overlapping datasets, the technique 

may improve recognition rates in satellite imaging, object detection, and facial 

recognition . 

• Text and Document Classification: By enhancing text feature representation, the 

technique may improve natural language processing applications such as topic modelling, 

spam detection, and sentiment analysis. 

• Recommendation Systems: By better classifying user preferences and product 

categories, the method may improve recommendation systems . 
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• Financial Data Analysis: By correcting class imbalances and overlapping data, the 

technique may improve predictive reliability in financial forecasts and fraud detection . 

Since a main issue of the proposed approach is the selection of k value, finding a 

metric for determining the best value of k is crucial as a direction for future works. Grid 

search can be used to systematically test a range of k values and identify the one with the 

best performance metric. Alternatively, data-driven methods like the Elbow Method 

analyze the trade-off between within-class scatter and between-class scatter as k varies. 

Heuristic approaches based on domain knowledge can also guide the selection of k. 

Finally, optimization-based methods, such as using genetic algorithms or Bayesian 

optimization, can automate and refine the k selection process. 

Also, due to considerable complexity of the proposed approach, more efficient 

implementation of the method is necessary for the applicability of the proposed method. 

Also, we can study on the applicability of the proposed speedup on the recently published 

approaches such as [38, 39, 42, and 43]. 
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