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Abstract 

This study presents a cost-minimization framework for energy procurement in large industrial consumers, 

incorporating alternative energy sources such as micro-turbines, bilateral contracts, power markets, and 

renewable energy systems—namely wind turbines and photovoltaic systems. Battery storage is integrated to 

enhance energy efficiency. Additionally, the impacts of real-time pricing demand response programs (RTP-DRP) 

and time-of-use demand response programs (TOU-DRP) on load profile smoothing and cost reduction are 

examined. A scenario-based probabilistic programming approach is employed to model uncertainties in 

electricity price fluctuations, consumer demand, wind speed variations, solar irradiation, and temperature 

changes. The optimization problem is formulated as a mixed-integer linear programming (MILP) model, 

ensuring global optimal solutions via GAMS software. Comparative analysis indicates that RTP-DRP achieves a 

12.33% reduction in energy procurement costs, while TOU-DRP leads to a 6.23% reduction, demonstrating the 

superior effectiveness of RTP-DRP in cost savings and load stabilization. 

Keywords: Energy Procurement, Large Industrial Consumers, Real-time Pricing, Time-Of-Use Pricing. 

 

1. Introduction 

In many electricity markets, consumers 

exert minimal influence over market 

design, with key decisions predominantly 

made by market entities such as producers, 

transmission operators, distribution 

companies, and retailers. One of the central 

objectives of power system restructuring is 

to enhance consumer monitoring 

capabilities, ensuring long-term benefits. 

Despite these efforts, most consumers 

remain passive participants in market 

dynamics due to a lack of economic 

incentives to engage in complex and time-

intensive transactions, except for large 

industrial consumers. These entities are 

often granted direct access to electricity 

procurement via pool markets, which 

operate either as centralized trading 

platforms or through bilateral contracts [1]. 

This study analyzes and compares the 

effects of RTP-DRP and TOU-DRP on 

industrial energy supply strategies. Several 

prior works have explored demand response 

programs, including [2], which propose 

methodologies for assessing participation 

impacts across different market structures. 

Market-clearing mechanisms that 

incorporate price-sensitive consumer 

bidding strategies have also been examined 

[3]. Furthermore, the challenge of cost-

optimal electricity procurement for large 

consumers—balancing shared facilities, 

bilateral contracts, and local generation 

while managing associated risks—has been 

addressed in [6]. Various demand response 

mechanisms, such as interruptible loads and 

capacity market programs, have been 

developed to enhance load characteristics 
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and consumer satisfaction [8]. 

Another optimization model [9] 

introduces a framework for adjusting 

consumers’ hourly load profiles in response 

to dynamic electricity prices while 

maximizing economic benefits. This model 

incorporates constraints on daily energy 

consumption, load variations, and 

production adjustments and utilizes robust 

optimization techniques to account for price 

uncertainty. A novel demand response 

exchange platform is presented in [10], 

where DR resources are traded between 

buyers and vendors as commodities. This 

market structure aims to enhance 

independent trading reliability while 

enabling vendors to adjust consumption in 

response to real-time system needs. The 

impacts of battery storage integration and 

TOU-DRP on large consumers' energy 

procurement have been separately 

examined in [11] and [12]. In contrast, this 

study extends previous research by 

analyzing both TOU-DRP and RTP-DRP, 

evaluating their combined effects on 

industrial load profiles and cost 

optimization. 

The organization of this paper is as 

follows: Section 2 formulates the problem 

of energy procurement for large industrial 

consumers with market access, 

incorporating distributed generation units 

such as wind turbines, photovoltaic 

systems, and battery storage alongside 

RTP-DRP and TOU-DRP frameworks. 

Section 3 presents numerical case studies 

exploring the performance of the proposed 

model across different operational 

scenarios, comparing the cost-saving 

potential of TOU-DRP and RTP-DRP 

strategies. Finally, Section 4 provides 

concluding remarks. 

2. Modeling the Proposed Problem 

This section details the formulation of 

energy procurement optimization for large 

industrial consumers, accounting for 

uncertainties in ambient temperature, solar 

irradiation, wind speed, electricity market 

prices, and demand variations. To ensure 

adaptability, decision variables are modeled 

as scenario-dependent functions, allowing 

robust procurement planning under diverse 

conditions. 

2.1.Objective function 

The optimization framework considers 

eight distinct energy sources for industrial 

procurement under various scenarios: 

power grid supply, bilateral contracts, 

micro-turbines, wind turbines, photovoltaic 

systems, and battery storage. Additionally, 

RTP-DRP and TOU-DRP are incorporated 

as virtual power sources to enhance cost 

efficiency. The objective function, given in 

Equation (1), seeks to minimize 

procurement costs while ensuring 

compliance with technical and operational 

constraints across multiple scenarios. 

𝑂. 𝐹.= 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝜆𝑙,𝑡𝑃𝑙,𝑡
𝐵𝐶𝑇

𝑡=1
𝐵
𝑙=1   

+∑∑𝑃𝑠

𝑁𝑠

𝑠=1

𝑇

𝑡=1

×

{
  
 

  
 
𝜆𝑡,𝑠𝑃𝑡,𝑠

𝑝 +∑∑𝑆𝑗,ℎ
𝑀𝑇𝑃𝑗,ℎ,𝑡,𝑠

𝑀𝑇

𝑁ℎ

ℎ=1

𝑁𝑗

𝑗=1

+𝐶𝑡
𝐵 × (𝜒 × 𝑃𝑡,𝑠

𝑐ℎ 𝑎𝑟𝑔𝑒
+
𝑃𝑡,𝑠
𝑑𝑖𝑠𝑐

𝜂
)

+𝐶𝑡
𝑤𝑖𝑛𝑑 × 𝑃𝑡,𝑠

𝑤𝑖𝑛𝑑 + 𝐶𝑡
𝑃𝑉 × 𝑃𝑡,𝑠

𝑃𝑉}
  
 

  
 

 

(1) 

The proposed objective function is 

designed to optimize the energy 

procurement strategy for large industrial 

consumers by considering multiple cost 

components. The first segment of the 

function models the procurement cost 
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associated with bilateral contracts, ensuring 

economic feasibility in long-term 

agreements. The second segment 

incorporates the costs of electricity 

acquisition from the upstream grid, as well 

as the operational expenditures of 

distributed energy resources, including 

micro-turbines, battery storage systems, 

wind turbines, and photovoltaic arrays. 

To ensure an accurate representation of 

micro-turbine operational costs, a triplex 

piecewise linear function is implemented 

within a linear optimization framework, 

enabling optimal response determination. 

Additionally, uncertainties in key 

parameters—such as electricity market 

prices, consumer demand, and 

environmental variables (wind speed, 

ambient temperature, and solar 

irradiation)—are integrated into the model 

to dynamically assess wind and 

photovoltaic generation outputs [11, 12]. 

The objective function is designed for 

minimization, subject to a range of 

technical and physical constraints, which 

are further detailed in the following 

sections. 

2.2.Constraint of power balancing 

The objective function is designed to be 

minimized while ensuring that the power 

balance constraint is maintained under 

varying operational conditions and across 

different scenarios at each time interval. 

This constraint, represented in Equation (2), 

mandates that the total power supply, 

comprising electricity procured from the 

upstream grid, bilateral contracts, micro-

turbines, wind turbines, photovoltaic 

systems, and the discharge capacity of 

battery storage, must equal the adjusted 

load of the large industrial consumer. 

In this study, the adjusted consumer load 

accounts for standard consumption patterns 

and modifications introduced by demand 

response programs. Specifically, it 

incorporates RTP-DRP and TOU-DRP, 

influencing load variations. Additionally, 

the power allocated for battery charging is 

factored into the load equation, ensuring 

accurate representation of energy storage 

dynamics within the procurement model. 

∑𝑃𝑙,𝑡
𝐵𝐶

𝐵

𝑙=1

+ 𝑃𝑡,𝑠
𝑝

+∑∑𝑃𝑗,ℎ,𝑡,𝑠
𝑀𝑇

𝑁ℎ

ℎ=1

𝑁𝑗

𝑗=1

+ 𝑃𝑡,𝑠
𝑤𝑖𝑛𝑑 

+𝑃𝑡,𝑠
𝑃𝑉 + 𝑃𝑡,𝑠

𝑑𝑖𝑠𝑐 =

𝑙𝑜𝑎𝑑𝑡,𝑠 + 𝑃𝑡,𝑠
𝑐ℎ 𝑎𝑟𝑔 𝑒

   

(2) 

2.3.Constraints of bilateral contracts 

The procurement of electricity through 

bilateral contracts is subject to predefined 

limitations to ensure contractual 

compliance and economic feasibility. 

Constraint (3) establishes an upper limit on 

the energy procured from each individual 

bilateral contract, preventing 

overcommitment beyond agreed thresholds. 

Additionally, Constraint (4) represents the 

cumulative power purchased across all 

bilateral agreements, ensuring that the total 

contracted energy remains within the 

allowable range dictated by procurement 

strategies and operational requirements. 

These constraints play a critical role in 

optimizing energy sourcing while 

maintaining financial efficiency and 

operational stability within the industrial 

consumer’s energy portfolio. 

𝑃𝑙,𝑡
𝑚𝑖𝑛𝑙𝑙,𝑡

𝐵𝐶
𝑙,𝑡

𝑚𝑎𝑥𝑙

 (3) 
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𝑃𝑡
𝐵𝐶 =∑𝑃𝑙,𝑡

𝐵𝐶

𝑁𝑙

𝑙=1

 

      

(4) 

 

2.4.Constraints of micro-turbine models 

To model the operational cost of micro-

turbines, a triplex piecewise linear cost 

function is formulated, as represented in 

Equation (5). This function enables precise 

cost evaluation while maintaining 

computational efficiency within the 

optimization framework. Equations (6)–

(11) define the key technical constraints 

governing micro-turbine operation: 

 Capacity Constraints (Equations 6 & 7): 

These equations impose upper limits on the 

power dispatch from micro-turbines, 

ensuring that generation remains within the 

predefined capacity of the system’s available 

blocks. 

 Ramp Rate Constraints (Equations 8 & 

9): These constraints regulate the 

permissible rates of increase and decrease in 

micro-turbine generation, maintaining 

operational stability and preventing abrupt 

power fluctuations. 

 Minimum On/Off Time Constraints 

(Equation 10): The operational duration of 

each micro-turbine unit must satisfy 

predefined minimum on and off time 

requirements, preventing inefficient cycling 

and optimizing resource utilization. 

 Auxiliary Variable Definitions (Equation 

11): The auxiliary variables 

Up
i,j

,Dni,jintroduced in Equation (10) are 

formally defined in Equation (11), ensuring 

accurate linear modeling of minimum 

uptime and downtime constraints. 

By integrating these constraints, the 

optimization model ensures reliable micro-

turbine operation while maintaining 

economic and technical feasibility under 

varying energy procurement scenarios [13-

15]. 

𝐶𝑜𝑠𝑡𝑀𝑇

=∑∑∑∑𝑃𝑠

𝑁𝑠

𝑠=1

𝑁ℎ

ℎ=1

𝑁𝑗

𝑗=1

𝑇

𝑡=1

× 𝑆𝑗,ℎ
𝑀𝑇𝑃𝑗,ℎ,𝑡,𝑠

𝑀𝑇  

(5) 

0 ≤ 𝑃𝑗,ℎ,𝑡,𝑠
𝑀𝑇 ≤ (𝑃𝑗,ℎ

𝑀𝐴𝑋

− 𝑃𝑗,ℎ−1
𝑀𝐴𝑋 )

× 𝑈𝑗,𝑡
𝑀𝑇 

  (6) 

0 ≤ 𝑃𝑗,1,𝑡,𝑠
𝑀𝑇 ≤ 𝑃𝑗,1

𝑀𝐴𝑋

× 𝑈𝑗,𝑡
𝑀𝑇 

(7) 

∑𝑃𝑗,ℎ,𝑡
𝑀𝑇

𝑁ℎ

ℎ=1

−∑𝑃𝑗,ℎ,𝑡−1
𝑀𝑇

𝑁ℎ

ℎ=1

≤ 𝑅𝑗
𝑢𝑝

× 𝑈𝑗,𝑡
𝑀𝑇 

(8) 

∑𝑃𝑗,ℎ,𝑡−1
𝑀𝑇

𝑁ℎ

ℎ=1

−∑𝑃𝑗,ℎ,𝑡
𝑀𝑇

𝑁ℎ

ℎ=1

≤ 𝑅𝑗
𝑑𝑜𝑤𝑛

× 𝑈𝑗,𝑡−1
𝑀𝑇  

(9) 

𝑈𝑗,𝑡
𝑀𝑇 − 𝑈𝑗,𝑡−1

𝑀𝑇 ≤ 𝑈𝑗,𝑡+𝑈𝑝𝑗,𝑖
𝑀𝑇  

𝑈𝑗,𝑡−1
𝑀𝑇 − 𝑈𝑗,𝑡

𝑀𝑇 ≤ 1 −

𝑈𝑗,𝑡+𝐷𝑛𝑗,𝑖
𝑀𝑇                                                                                                                

Up
j,i
= {

𝑖𝑖 ≤ MUT𝑗

0𝑖 > MUT𝑗
} 

(10) 

Dnj,i = {
𝑖𝑖 ≤ MDT𝑗

0𝑖 > MDT𝑗
} (11) 

2.5.Constraints of wind turbine models 

The amount of power generated by the 

wind turbine can be expressed by Equation 

(12) at any time and for any scenario [16]. 

𝑃𝑡,𝑠

𝑤𝑖𝑛𝑑,𝑚𝑎𝑥

{
 
 

 
 
0       𝑉t,s

𝑤<𝑉𝑐𝑖

𝑝𝑟×(
𝑉t,s
𝑤−𝑉𝑐𝑖
𝑉𝑟−𝑉𝑐𝑖

)   V𝑐𝑖<𝑉t,s
𝑤<𝑉𝑐𝑟

𝑝𝑟       𝑉𝑟<𝑉t,s
𝑤<𝑉𝑐0

0         𝑉t,s
𝑤>𝑉𝑐0

    

 

(12) 

The power drawn from wind turbines by 

the industrial consumer is subject to 

predefined limits to ensure efficient 
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utilization and system reliability. At any 

given time and across all scenarios, the 

maximum allowable power consumption 

from wind turbines must satisfy the 

constraint outlined in Equation (13). This 

condition accounts for variations in wind 

energy generation while maintaining a 

balanced and optimized energy 

procurement strategy. 

𝑃𝑡,𝑠
𝑤𝑖𝑛𝑑 ≤ 𝑃𝑡,𝑠

𝑤𝑖𝑛𝑑,𝑚𝑎𝑥
 (13) 

2.6.Constraints of photovoltaic system 

models 

PV systems directly convert solar energy 

into electricity, and their generated power is 

fully utilized by consumers to maximize 

efficiency. In this study, uncertainties 

related to ambient temperature and solar 

irradiation are incorporated into the model 

using a normal distribution function. 

Various operational scenarios are generated 

based on this probabilistic framework, 

ensuring a realistic representation of 

fluctuating environmental conditions. 

Consequently, the available power from PV 

systems at any given time and across 

different scenarios is mathematically 

formulated in Equation (14) [17]. 

𝑃𝑡,𝑠

𝑀,𝑚𝑎𝑥
𝐺𝑡,𝑠
𝑎

𝐺𝑎0
{𝑃𝑀𝑎𝑥,0

𝑀 +𝜇 𝑡,𝑠
𝑎
𝑡,𝑠

𝑎 𝑁𝑂𝐶𝑇−20
800 𝑀,0𝑃𝑚𝑎𝑥

{}}

 
(14) 

The consumption of electricity generated 

by PV systems is subject to predefined 

constraints to ensure operational feasibility 

and efficiency. At any given time and 

across all scenarios, the industrial 

consumer’s maximum allowable utilization 

of PV-generated power must comply with 

the limitations established in Equation (15). 

This constraint is designed to maintain 

energy procurement within technical and 

operational boundaries while accounting for 

fluctuations in solar energy generation. 

𝑃𝑡,𝑠
𝑃𝑉 ≤ 𝑃𝑡,𝑠

𝑀,𝑚𝑎𝑥
   (15) 

2.7.Constraints of battery storage 

models 

The battery storage system is governed by 

a series of equations that define its 

operational constraints and dynamic 

behavior. 

 Initial Energy Condition (Equation 16): 

Establishes the battery’s initial state of 

charge, serving as a reference for subsequent 

calculations. 

 Charge and Discharge Constraints 

(Equations 17 & 18): These equations 

impose limits on the charging and 

discharging power, ensuring the battery 

operates within its physical and technical 

capabilities. 

 State-of-Charge Representation 

(Equation 19): Defines the battery’s state-

of-charge (SOC), tracking energy levels 

throughout the optimization process. 

 Charge-Discharge Exclusivity Constraint 

(Equation 20): Prevents simultaneous 

charging and discharging operations, 

enforcing a logical operational constraint to 

maintain system integrity. 

 Dynamic Energy Model (Equation 21): 

Describes the evolution of stored energy 

over time as a function of previous SOC, 

charging power, and discharging power, 

ensuring accurate modeling of battery 

behavior. 

𝑋𝑡0
𝑏 = 𝑋0

𝑏 (16) 

𝑃𝑡,𝑠
𝑐ℎ 𝑎𝑟𝑔𝑒

≤ 𝑃𝑐ℎ 𝑎𝑟𝑔 𝑒
𝑚𝑎𝑥𝑡,𝑠

𝑐ℎ𝑎𝑟𝑔 𝑒

 

   (17) 

𝑃𝑡,𝑠
𝑑𝑖𝑠𝑐 ≤ 𝑃

𝑑𝑖𝑠𝑐

𝑚𝑎𝑥𝑡,𝑠
𝑑𝑖𝑠𝑐

 (18) 

𝑋𝑏
𝑚𝑖𝑛𝑡,𝑠

𝑏
𝑏

𝑚𝑎𝑥

    (19) 
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𝑈𝑡,𝑠
𝑐ℎ 𝑎𝑟𝑔𝑒

+ 𝑈𝑡,𝑠
𝑑𝑖𝑠𝑐 ≤ 1     (20) 

𝑋𝑡,𝑠
𝑏

= 𝑋𝑡−1,𝑠
𝑏 + 𝜒

× 𝑃𝑡,𝑠
𝑐ℎ 𝑎𝑟𝑔 𝑒

−
𝑃𝑡,𝑠
𝑑𝑖𝑠𝑐

𝜂
 

   (21) 

2.8.TOU-DRP model 

The primary objective of TOU-DRP is to 

enhance load curve stability by shifting 

electricity consumption from peak hours to 

off-peak periods, thereby reducing overall 

operational costs [19-21]. Given its 

structure, TOU-DRP allows only partial 

load transfer, meaning that certain segments 

of demand can be rescheduled while 

maintaining system reliability. The 

mathematical representation of this load 

shift mechanism is formulated in Equation 

(22) [22]. Additionally, the technical 

constraints governing the load response 

program—including limitations on 

transferable loads, scheduling boundaries, 

and consumer participation conditions—are 

formally defined in Equations (23) through 

(26) [23]. 

𝑙𝑜𝑎𝑑𝑡,𝑠
= (1 − 𝐷𝑅𝑡,𝑠). 𝑙𝑜𝑎𝑑𝑡,𝑠

0

+ 𝑙𝑑𝑟𝑡,𝑠 

(22) 

∑𝑙𝑑𝑟𝑡,𝑠

𝑇

𝑡=1

=∑𝐷𝑅𝑡,𝑠. 𝑙𝑜𝑎𝑑𝑡,𝑠
0

𝑇

𝑡=1

 

(23) 

𝑙𝑜𝑎𝑑𝑡,𝑠
𝑖𝑛𝑐 ≤ 𝑖𝑛𝑐𝑡,𝑠. 𝑙𝑜𝑎𝑑𝑡,𝑠

0    (24) 

𝐷𝑅𝑡,𝑠 ≤ 𝐷𝑅𝑚𝑎𝑥 (25) 

𝑖𝑛𝑐𝑡,𝑠 ≤ 𝑖𝑛𝑐𝑚𝑎𝑥   (26) 

Equation (23) establishes the fundamental 

principle of load shifting under the time-of-

use demand response program (TOU-DRP), 

ensuring that total energy consumption 

remains unchanged. Rather than reducing 

or increasing overall load, consumption is 

redistributed from peak periods to off-peak 

times, maintaining system balance. This 

means that the decrease in load during peak 

hours must be precisely offset by an 

equivalent increase in other periods. 

Furthermore, Equation (24) constrains the 

maximum permissible incremental load, 

limiting it to a specific percentage of the 

base load to prevent excessive shifts that 

may disrupt operational stability. Equations 

(25) and (26) impose additional restrictions 

on load variation, ensuring that percentage 

changes remain within predefined 

boundaries. For this study, the allowable 

percentage for load reduction and increase 

is set at 20% [17], maintaining feasibility 

while optimizing cost efficiency. 

2.9.RTP-DRP model 

This study employs the proposed RTP-

DRP model [18] to analyze its impact on 

load curve smoothing and cost reductions in 

comparison to TOU-DRP. The RTP-DRP 

framework follows a systematic approach: 

1. Average Daily Load Calculation 

(Equation 27): The baseline energy 

consumption is computed to establish a 

reference for demand responsiveness. 

2. Real-Time Pricing Determination 

(Equation 28): The RTP is dynamically 

adjusted based on TOU rates, the average 

load, and real-time demand fluctuations at 

each time interval. 

3. New Load Curve Adjustment (Equation 

29): The updated load profile is derived by 

integrating RTP-DRP effects, optimizing 

consumer response to price signals. 

Additionally, the load elasticity parameter 

E is set to −0.5 [24], capturing the 

sensitivity of demand changes in response 

to real-time pricing variations. This 
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formulation ensures a realistic and effective 

demand response strategy while enhancing 

cost efficiency and load stability. 

𝑃𝑎𝑣,𝑠 =
∑ 𝑙𝑜𝑎𝑑𝑡,𝑠

024
𝑡=1

24
   (27) 

𝜆𝑅𝑇𝑃
𝑡 =

𝑙𝑜𝑎𝑑𝑡,𝑠
0

𝑃𝑎𝑣
. 𝜆𝑇𝑂𝑈
𝑡  (28) 

𝑙𝑜𝑎𝑑𝑡,𝑠
𝑅𝑇𝑃

= 𝑙𝑜𝑎𝑑𝑡,𝑠
0 + 𝐸 × 𝑙𝑜𝑎𝑑𝑡,𝑠

0

× (
𝜆𝑅𝑇𝑃
𝑡 − 𝜆𝑇𝑂𝑈

𝑡

𝜆𝑇𝑂𝑈
𝑡 ) 

(29) 

3. Numerical Studies 

In this section, the proposed model is 

evaluated through multiple scenarios within 

a case study framework, where results 

under different operational modes are 

systematically presented and compared. 

The optimization problem is formulated as 

an MILP model, ensuring computational 

efficiency and global optimality. To solve 

the model, the CPLEX solver [25] is 

employed within the GAMS environment 

[26], enabling precise numerical analysis 

and scenario-based assessments. 

3.1.Data 

The daily load profile is structured over a 

24-hour period, encompassing peak, 

medium, and low consumption intervals, as 

described in [11]. The dataset includes 

information on bilateral contracts, covering 

12 distinct agreements, each specifying 

minimum and maximum power limits along 

with corresponding prices [12]. 

Additionally, operational details of the 

industrial consumer’s micro-turbine units 

are provided in [12], offering insights into 

local generation capacities. Environmental 

parameters—including daily solar 

irradiation, air temperature, and wind speed 

forecasts—are presented for a sample day 

in [11], facilitating scenario-based 

modeling of renewable energy generation. 

Moreover, the technical specifications for 

wind turbines, PV systems, and battery 

storage technologies are outlined in [12], 

ensuring accurate representation within the 

optimization framework. The projected 

consumer load profile is reported in [11], 

while the upstream grid price curve for the 

studied hours is illustrated in Figure 1. 

Lastly, the generated power from wind 

turbines and PV systems is depicted within 

the third scenario [12], providing a 

comparative assessment of renewable 

integration under varying conditions. 

 
Fig.1. TOU and RTP for upstream grid 

4. Comparing the results in three 

different models 

To evaluate the effects of different energy 

sources and demand response programs 

(DRPs) on industrial energy procurement, 

three distinct operational modes are 

examined: 

 Mode 1: Energy supply without any DRP, 

serving as a baseline scenario. 

 Mode 2: Energy supply incorporating time-

of-use demand response (TOU-DRP) to 

assess its influence on load curve 

stabilization and cost reduction. 

 Mode 3: Energy supply optimized through 
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the proposed real-time pricing demand 

response (RTP-DRP) to evaluate its impact 

on load curve dynamics and total 

procurement costs. 

The comparative results, presented in Table 1, 

illustrate the financial benefits associated with 

DRP implementation: 

 In Mode 1, where no DRP is applied, the 

total procurement cost is $39,907. 

 In Mode 2, incorporating TOU-DRP, the 

total cost is $38,461, demonstrating a cost 

reduction of $1,446, equivalent to 6.23% 

savings. 

 Mode 3, which integrates RTP-DRP, is 

expected to yield further cost advantages, 

though its detailed impact remains to be 

discussed in subsequent results. 

Table.1. Comparison of operation costs for 

large industrial consumer 

Parameters 
Case 

1 

Case 

2 

Case 

3 

Purchased cost 

from power 

market ($) 

15922 13831 8747 

Purchased cost 

from bilateral 

contracts ($) 

9322 9322 9322 

Purchased cost 

from micro-

turbines ($) 

14664 15308 16914 

Total cost ($) 39907 38461 34983 

Reduced total cost 

(%) 
0 3.62 12.33 

The observed cost reduction is primarily 

attributed to the implementation of TOU-

DRP, which redistributes electricity 

consumption from peak to off-peak periods, 

thereby minimizing purchases from the 

upstream grid during high-priced intervals. 

To further demonstrate the benefits of RTP-

DRP, the proposed model was applied in 

Mode 3, where RTP-based load 

management was introduced. The results 

indicate a total energy procurement cost of 

$34,983, reflecting a $4,924 reduction 

compared to Mode 1—equivalent to a 

12.33% cost savings. This improvement 

stems from the dynamic optimization of 

consumer load responses through RTP-

DRP, enabling real-time adjustments based 

on market fluctuations. 

 

 
Fig.2. Consumer's load curve 

 

 
Fig.3. Power supplied from the upstream grid in 

the third scenario and three different modes 

A key distinction between Mode 2 (TOU-

DRP) and Mode 3 (RTP-DRP) lies in the 

level of load curve smoothing achieved. As 

depicted in Figure 2, RTP-DRP facilitates a 

more substantial shift in consumption away 

from peak hours, further enhancing curve 

stabilization compared to TOU-DRP. 

Additionally, the influence of RTP-DRP on 
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grid electricity procurement is illustrated in 

Figure 3, demonstrating a significant 

reduction in peak-hour purchases relative to 

Modes 1 and 2. This reduction in reliance 

on high-cost grid power directly contributes 

to greater overall cost efficiency in Mode 3. 

5. Conclusion 

This study presents a comprehensive 

energy procurement model aimed at 

ensuring a sustainable and stable electricity 

supply for large industrial consumers. The 

framework integrates multiple energy 

sources—including the upstream grid, 

bilateral contracts, micro-turbines, wind 

turbines, photovoltaic systems, and battery 

storage—while incorporating TOU-DRP 

and RTP-DRP. To account for uncertainties 

in electricity prices, consumer demand, and 

environmental conditions (such as wind 

speed, solar irradiation, and ambient 

temperature), a scenario-based probabilistic 

approach is employed. The model 

differentiates between bilateral contract 

variables, which remain deterministic, and 

other decision variables, which adapt 

dynamically across scenarios. The 

effectiveness of the proposed framework is 

demonstrated through three comparative 

operational modes: 

 Mode 1: Standard energy procurement 

without demand response programs. 

 Mode 2: Implementation of TOU-DRP to 

assess its impact on load curve smoothing 

and cost reduction. 

 Mode 3: Application of RTP-DRP to 

evaluate its enhanced capabilities in 

optimizing energy costs and stability. 

Results indicate that Mode 3 achieves the 

most significant cost reduction, with a 

12.33% decrease compared to Mode 1, 

attributed to dynamic load management and 

efficient battery storage utilization. 

Additionally, RTP-DRP facilitates greater 

load curve smoothing than TOU-DRP, 

further stabilizing energy consumption 

patterns and optimizing procurement 

strategies. Ultimately, Mode 3 proves to be 

the most effective approach, demonstrating 

superior economic and operational 

performance. These findings highlight the 

efficiency of RTP-DRP in reducing energy 

costs and ensuring a stable, optimized 

power supply for industrial consumers. 
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