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Abstract: 
Excitation of surface plasmon polariton (SPP) in Sub-

wavelength dielectric/metal structures is a key to enhance 

the light absorption of thin film solar cells (TFSCs). We 

design a SiO2/Ag nanostructured grooves geometry at the 

rear-side of a Si-based TFSC to excite SPPs. This 

geometry scatters light inside absorber layer in many 

directions resulting in absorption enhancement. In 

addition, we consider SiO2 corrugated strip geometry at 

the top of the absorber layer as light trapping technique. 

The height and width of the SiO2 strips are 60 nm and the 

height and width of the grooves are 30 nm. We apply this 

technique in the Si-based TFSC that contains Ag/graphene 

nanoparticles (NP-TFSC) in absorber layer as localized 

plasmon resonance elements. The thickness of absorber 

layer is 800 nm. We simulate this TFSC utilizing FDTD 

method. Results of simulations reveal a 21.36% absorption 

enhancement, a 16.39% Jsc increment and a 3.9% in 

conversion efficiency improvement. 
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INTRODUCTION  

Solar cells are promising eco-friendly energy source to decrease fossil fuels 

consumption [1]. Solar cells on basis of crystal silicon (Si) have been 

commercialized widely due to the great abundance of Si and the well-developed 

process [2, 3]. Although crystal Si-based solar cells hold the world record in 

efficiency, researchers have focused on thin film solar cells (TFSCs) as suitable 

replacements with lower production cost [4]. TFSCs enable reduced cost by 

replacing the bulk substrate with 1-2μm thin film layers. But this thin film 

results in ineffective light absorption due to the short light pathway [5]. 

Several techniques have been proposed by pioneer researchers to boost the 

light absorption of TFSCs including using of anti-reflection coatings, window 

grids, photonic crystals, and plasmonic nanoparticles [6-8]. Plasmonic 

nanoparticles that are embedded inside of the absorber layer, scatter light in 

many directions resulting in electrical field enhancement and more electron-hole 

pair generation [9, 10]. This is because of the fluctuation of their free electrons 

under irradiation of the incident light. If the frequency of the incident light is the 

same as the fluctuation frequency of nanoparticle free electrons, the localized 

surface plasmon resonance (LSPR) will occur [11].In our pervious study, we 

have introduced a core/shell silver (Ag)/graphene plasmonic nanoparticle related 

to this category. In that study, we embedded the Ag/graphene nanoparticle 

inside the active layer of a Si-based TFSC resulting in a 20.6% increase in 

absorption and a 7.3% rise in short-circuit current density [12]. 

Along abovementioned techniques, subwavelength plasmonic structures have a 

great potential to increase the light absorption in TFSCs. The increased 

absorption is possible through excitation of surface plasmon polaritons (SPPs) 

in corrugated subwavelength structures [13]. SPP arises from the interaction 

between the incident light and fluctuations of free electrons in subwavelength 

structures [14, 15]. Nanostructured grooves at the rear-side of a TFSC excite 

SPP modes resulting in light scattering and internal electrical field enhancement 

[16]. 

Cao et al. have used a nanostructured metal layer based on Ag at the rear-side 

of an a-Si TFSC to facilitate an increased optical path length within absorber 

layer. They have reported a power conversion equal to 7.26%  [17]. Awal et al. 

have proposed a Si-TFSC with strips on the top and grooves on the back contact 

layer. The grooves on the back contact both scatter the incident light and help 

couple to the photonic modes and resonant SPP. They have achieved an increase 

of 46% in light absorption compared to a planar TFSC [13] 
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 Sidharthan et al. have designed a Si-TFSC with nanostructured grating at the 

rear-side as SPP element and Ag nanoparticles inside absorber layer as LSPR 

elements. They have reported a 14.4% increment in short circuit current density 

(Jsc) compared to the planar solar cell [18]. Prabhathan et al have proposed a 

SPP waveguide at the rear-side of a Si-TFSC to light absorption enhancement. 

Absorption enhancement of 153% was observed for a Si-TFSC with the 

thickness of 220 nm for absorber layer in the solar spectral range of 400nm to 

1000nm  [16].  

In this study, we propose a light absorption enhancement technique using 

combination of SPP and LSPR effects for TFSC applications. We utilize 

nanostructured grooves in the interface of back metal contact and a dielectric at 

the rear-side of a Si-TFSC to excite SPP effect. At the top of the TFSC, we 

design corrugated strip geometry for light trapping. We embed Ag/graphene 

nanoparticles inside the absorber layer of the TFSC to excite LSPR. We design 

and simulate the TFSC through finite-difference time-domain (FDTD) method 

using Lumerical software while the permittivity of Ag/graphene nanoparticle is 

computed numerically through Kubo formalism. 

2. MATERIAL AND METHOD 

Figure 1 depicts the proposed TFSC configuration. This configuration consists 

of corrugated strips of SiO2 with the thickness of 60 nm and width of 60 nm, a 

Si absorber layer with the thickness of 800 nm, and a Ag back contact with the 

thickness of 150 nm. We locate a dielectric/metal SiO2/Ag nanostructured 

grooves geometry at the rare-side of the TFSC to excite SPP effect. Both 

thickness and width of the grooves are 30 nm. We embed the Ag/graphene 

nanoparticles inside the absorber layer with the distance of 100 nm from the top 

of the cell to excite the LSPR effect. These cylindrical nanoparticles consist of 

an Ag core with the diameter of 50 nm and height of 50 nm that is covered with 

a graphene layer with the thickness of 0.8 nm. The whole of structure is doped 

by p-type impurity with the concentration of 2×1016 1/cm3 and a n-type 

impurity is considered at the back of cell with the thickness of 100 nm while 

beneath of the emitter is doped by a p++ impurity with the concentration of 

2×1020 1/cm3 and thickness of 50 nm. The structure of the Si-TFSC is irradiated by 

a source of plane wave in the spectral range of 400 nm to 1000 nm in the 

direction of Z. We set the periodic boundary conditions along X and Y 

directions and PML boundary condition along Z direction. Finally, we 

use the “solar generation rate solver” for optical simulation. 
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Fig. 1. The proposed Si-TFSC configuration 

We calculate the dielectric permittivity of the Ag/graphene nanoparticle 

through  1np eq G Agf f      , where ɛnp is the dielectric permittivity of 

nanoparticle, f is the volume fraction of graphene and εAg is the dielectric 

constant of silver based on Johnston-Christy model. ɛeq-G is the 

permittivity of graphene and is computed through 

 0.83 0.66(2.5 / 0.8 )
eq G

i   


   , where ω is the frequency of incident 

light and  σ(ω) is the surface conductivity of the graphene layer [12, 19]. 

σ(ω) is obtained by interband and interaband terms [20] based on Kubo 

formalism through: 
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Where, e, kB, ℏ, T, Ef, τG are the electron charge, the constant of Boltzmann, 

the reduced constant of Planck, the temperature, the graphene Fermi level, and 

the graphene carrier relaxation time (1fs) respectively [21-23].  

Base on Poynting Theory, the solar cell absorption is calculated through 

equation:  

 
2

0.5        absP E img  
                                                                             (2) 

Where ω, |E| and img (ε) are angular frequency, the intensity of electric field, 

and the imaginary part of the permittivity, respectively [24, 25]. We run our 

simulation under standard normalized spectrum AM 1.5. So the solar generation 

rate (G) and short circuit current density (JJ) are obtained via following 

equations: 
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 where, h is  constant of Plank, c is the light speed, λ is wavelength, Pin is the 

irradiated light power, and IAM1.5 is AM 1.5 solar spectrum [25-27]. 

3. Results and discussion 

In our pervious study, we have reported a 20.6% increment in overall absorption 

at the spectral range of 400-1000 nm and a 7.3% rise in Jsc for TFSC with 

Ag/graphene nanoparticle (NP-TFSC). These improvements have been obtained 

in comparison with the same TFSC without Ag/graphene nanoparticles [12]. 

The gap between nanoparticles is 100 nm that was optimized based on Jsc. Fig.2 

depicts the variation of Jsc versus the gap between nanoparticles. When there is a 

less than 100 nm gap, due to the shadow effect as a result of the increase of 

density of nanoparticles, Jsc decreases. On the other hand, for gaps more than 

100 nm there is a performance deterioration because of weakening of the aspects 

of plasmonic effect such as near-field enhancement. 
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Fig. 2. Variation of Jsc versus the gap between nanoparticles 

In order to perform a comparative analysis of absorption and Jsc, we compare 

the TFSC of this study with the NP-TFSC. Figure 3, compares the absorption 

profile of NP-TFSC and TFSC with nanoparticle and strips and grooves 

geometry (SG-NP-TFSC). The integration process was performed on both 

curves depicted in Fig.3 through the utilization of Origin software. The 

computed integrals for NP-TFSC and SG-NP-TFSC amounted to 19651 and 

23850 respectively. So the absorption of TFSC improves 21.36% utilizing strips 

and grooves geometry. 



 

 

 
Journal of Optoelectronical Nanostructures. 2025; 10(2): 59- 70               65 

Light Absorption Improvement in Si Thin Film Solar Cells Using Combination of … 
 

 
Fig. 3. The absorption profile of TFSC with Ag/graphene nanoparticle and TFSC with 

strips and grooves geometry 

 

Jsc of the SG-NP-TFSC is computed 22.70 mA/cm2. In comparison with NP-

TFSC with Jsc of 19.503 mA/cm2, Jsc improves 16.39% due to excitation of SPP. 

Figure 4 presents the voltage-current diagram and figure 5 presents voltage-

power diagram for NP-TFSC and SG-NP-TFSC. Based on the outcomes that are 

achieved from this diagram the conversion efficiency of NP-TFSC and SG-NP-

TFSC are computed 12.1% and 16% respectively. It means that the applying of 

the strip and grooves geometry enhance the conversion efficiency 3.9% due to 

excitation of SPP. 
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Fig. 4. Voltage-current diagram for NP-TFSC and SG-NP-TFSC 

 

 
Fig. 5. Voltage-power diagram for NP-TFSC and SG-NP-TFSC 

Table 1 provides a reference for comparison of the output of our study with 

other similar researches. It should be noted that the enhancements that are 

reported in Tab. 1 are in compared with the base cell without nanoparticles, 

groves and strips. For our study the Jsc
 of base cell is 15.11 mA/cm2. 
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Table.1. Comparison of the outputs of our study with similar researches 

Solar cell absorber 

layer/nanoparticle 

Jsc 

(mA/cm2) 

Enhancement   

of Jsc 

Absorption 

enhancement 

Ref. 

Si/NPs at top with 

strips and grooves 

(our study) 

22.7 50.23% 45.26% This 

Work 

Si/with grooves and 

strip 

19.1   [28] 

a-si/ 

(sio2@Ag(Hemisphere) 

NPs 

19.72 21% - [29] 

Si/(Ag@sio2) NPs 6.91   [30] 

Si/(Ag@Dielectric) 

NPs 

   [31] 

Si/(graphen@Ag) NPs 20.05 35% 29% [11] 

4. CONCLUSION 

In this research, we have designed a Si-based TFSC with strips at the top of the 

absorber layer and SiO2/Ag nanostructured grooves geometry at the rear-side of 

the absorber layer while Ag/graphene nanoparticles are embedded inside the 

absorber layer. We have considered the corrugated strips as light trapping 

structure, nanostructured grooves geometry as SPP element and Ag/graphene 

nanoparticles as LSPR elements. In comparison with TFSC with nanoparticles, 

adding of the strips and grooves results in a 21.36% absorption enhancement, a 

16.39% Jsc increase and a 3.9% conversion efficiency improvement. 
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