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Abstract. This paper intends to establish several inequalities employing the Cartesian de-
composition of the operator. We used the results to determine the Berezin number inequali-
ties. Our results extend and improve some earlier inequalities.
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1. Introduction

In a complex Hilbert space .7 with the inner product (-, -), we denote the C*-algebra of
all bounded linear operators on ¢ as Z# (7). In the case when dim S = n, we identify
P () with the matrix algebra ., of all n x n matrices with entries in the complex
field C. For any T € % (), we can write T = A +1iB in which A = RT = I3 and
B=3T = % are self-adjoint operators. This is the so-called Cartesian decomposition
of T. For any T € HA(s), we can determine its numerical radius and the operator norm,
respectively illustrated by w(T') = supg =1 [(Tz,2)| and ||T']| = sup| =1 [|Tz[]. Two
meaningful inequalities for the usual operator norm and numerical radius are that

1T < |IT||" and w(T™) <w™(T); n=1,2,....

If T is normal, indicating T*T = T'T™, it is widely known that w(T") = ||T’||. However, this
equality fails for non-normal operators. Instead, we can establish the following inequality
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for any T' € B(H):
1
ST < w(@) < 7. (1)

This inequality is essential because it approximates the numerical radius w(7') in terms
of the more computationally manageable quantity ||7]|.

As a result, researchers have been concentrating on sharpening this and other inequal-
ities for the numerical radius, as found in [0, 4, T6-I8, 21, 23|. Below, we list some
results concerning the inequality ().

Kittaneh [20, Theorem 1] proposed an improvement of () in the following manner:

1 1
el B i

In [I8, Corollary 3.4], the previouse inequality was improved as follows:

o () < S| 417 | + 20 (T @)

After that, in [22, Corollary 2.8], inequality (2) was refined:

1
w(T) < 2\/H|T|2 17|+ T T+ 1T (3)

Inequality (B) can be written in the following setup:

o) < g/l 41| + 20T DL

Here, we point out that inequalities (2) and (B) have been established and generalized
individually in [7] and [R].

A functional Hilbert space H = H(2) is a Hilbert space of complex-valued functions
on a (nonempty) set €, which has the property that point evaluations are continuous,
i.e., for each A € Q the map f +— f(A) is a continuous linear functional on H. The Riesz
representation theorem ensure that for each A € €2 there is a unique element k) € H such
that f(A\) = (f,ky) for all f € H. The collection {ky : A € Q} is called the reproducing
kernel of H. If {e,} is an orthonormal basis for a functional Hilbert space H, then the
reproducing kernel of H is given by kx(z) = >, en(N)en(2); (see [IH, problem 37]). For
A€ Q, let k:A)\ = m be the normalized reproducing kernel of H. For a bounded linear

operator T on H, the function T defined on © by T'(\) = (Tky, k) is the Berezin symbol
of T', which firstly have been presented by Berezin [@, §]. Berezin set and Berezin number
of the operator, T', are determined by

Ber(T):={T(\): A€ Q} and  ber(T) :=sup{|T(\)|: A € Q},

respectively, (see [19]). Of course, the Berezin norm of 7' can also be defined as follows:

1T per = sup{‘<T7€\,\,Eu>‘ D WIRS Q}
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We understand that ber(7") < w(T). Moreover, the Berezin number and the Berezing
norm of an operator T fulfills the following properties:

(P1) [[aT|lper = 1| IT|lyer and ber(aT’) = |a|ber(T) for all o € C.
(P2) ber(S+T) < ber(S) + ber(T).

(P3) HS + T”ber < HSHber + HTHber'

(P4) [ T[|per = [T [l and ber (T) = ber (7).

(P5) [9, Proposition 2.11] || 1|, = ber (T'), whenever T is positive.

The Berezin symbol has been thoroughly examined for the Toeplitz and Hankel op-
erators on the Hardy and Bergman spaces; it is broadly utilized in various analytical
inquiries and exclusively characterizes the operator (i.e., for all A € Q,T(\) = S(A)
implies T' = 5).

The Berezin number inequalities have been investigated by many mathematicians over

the years, the curious readers can see [2, B, 4.

This paper desires to show considerable inequalities for inner products through the
operator’s Cartesian decomposition. The results are then used to determine the inequal-
ities in the Berezin number. Furthermore, our research improves and generalizes earlier
established inequalities.

In order to achieve these purposes, we will need the following facts:

(I) (Mixed Schwarz inequality [IH, pp. 75-76]) For any T € AB() and x,y € I,

(Toy)? < ([T 2,2) (I yy) s (v € [0,1]). (4)
(I1) [2, (2.26)] For any z,y,z € 2,

2 2) P ) P < el mase (] ) + 1)) )
(III) (Buzano inequality [10]) For any z,y, 2z € 7,

2

z

e ) 20l < (o) + el o). ()

(IV) (Arithmetic-geometric mean inequality for the usual operator norm [6]) For any S,T" €

B(H),

STl < 5 [|isi+ 17+ 7)

2. Inner Product Inequalities

The following theorem suggests an upper bound for

<T%)\, Eu>‘ using polar decompo-

sition.

Theorem 2.1 Let S,T € % (). Then

{5+ i) BB )| < max (HS*@\

g HT*@HQ)H<Ts@,zu>;+2 [(sha )| [T )

9
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for any vectors 7{:}\,%# € J with Hg)\H = H@FLH = 1. If T € # () with the Cartesian
decomposition T'= A 4+ iB, then

2

)

(T B ) < max (HA@

B ) + Bk + 2[R B | (B, ).
(8)

Proof. Letting z = S*EM, y = T*/l%“ and z = ky with ‘EAH = HE"H =1, in (B), we obtain

(st i) 4 =B R)f + )

< max (‘

~ |12
i

Hence,

}<(5+T)%A,E“>]2

= | (5Fa, B ) + <m,z,l>f

< (‘<SEA,E#>‘ + ‘<T@,\,EM>DZ (by the triangle inequality)

= [(shn B[+ [ (7B |+2 (5B B | (750, )|

<o ([T TR ) + (75T B+ 2] (5T | (T, ).
ie.,

2
)

S*EM‘

(S +T) T R,)| < max (\ T*EMH2>+’<TS*EM,EM>‘+2 (sha )| [ (T B

(9)
We reach the desired inequality by substituting 7" by iT in the inequality (9). [ ]

Inequality (B) can be stated in the following arrangement:

Corollary 2.2 Let T' € # () with the Cartesian decomposition T'= A +iB. Then
(B 3 (AP $1) B+ (47 1) B} (580 ) 2 0 ) (555

for any vectors %,\,EM € S with H?{:\,\H = HEMH =1.
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Proof. We have
(7 5)]
< ([l [ [ |7) + (2B )] 2] (50 B (5, )
)+ |(BAR R )| 2 |(AR B ) |(BR B
(QLAPRa B + (1B R R ) + [ (1A Rw R ) = (1BPE B )|) + |(BAR. B )| + 2| (4B B )| [ BRa B |

(AP 13 B + (147 ~ 13 BB ) (380} 2|45 ) (55,2

(e o E R (F o

N~ N~ N

as desired. m
The next theorem delivers an upper bound for the product of two operators.

Theorem 2.3 Let A, B € (). Then

2

)

~ |12 ~ o~
BR ) + ‘<B[2\A|2kk,/@>‘> ,

2 1 ~
‘<B*Ak,\,k:A>‘ <3 <max <H\A\%‘

for any vector %A € I with HE,\H =1.

Proof. Taking x = \A|2E)\, Yy = |B[2%)\, and z = ky, in (8), we have

A"+ (i )< o f1ari |

~ 112 ~ ~
BER") + [(14PRs 1BER)).
(10)
So,

2 ‘<B*AEA,E,\>’2 —9 ‘<AEA,BEA>‘2
< QHAEAHQHBEAW (by the Cauchy-Schwarz inequality)
—9 <AEA, A@A> <BEA,BEA>
—9 <A*AEA,EA> <B*BEA,§A>
= 2(14P% Fr ) (IBIFons B )
< (1APR B )+ (IBPRR)
(by the arithmetic-geometric mean inequality)

(AR | 5
2
|

|

< max (H|A[22)\‘

BER") + [(14PRIBPR)| oy @)

= max <H|A|2%)\’

—~ |12 o~ o~
BER") + (1 BRIARE B
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Accordingly,

2

2 1 ~
‘<B*Ak,\,k:A>‘ <3 <max <H\A\%‘ ,

—~ 112 ~ o~
|B\2/<:,\H ) n ‘<B[2\A|2kk,/@>‘> ,

as desired. m
As a consequence of Theorem P23, we have:

Corollary 2.4 Let T'€ #() and let 0 < v < 1. Then

= 2\ 1 v ||? * 7 |2 * —v v T
(TR s2<max (H\TF oY I (AR >+]<1T PO kmA}D,

for any vector EA €  with H/I::)\H =1.

Proof. Letting B* = U|T|'™" and A = |T|", in Theorem 223, we get

~ ~\12 1 ~ 2
(i) < (o (e

2
= % <maX (H\T,%@A‘r’ \T*‘2(1—V)2AH2> N szu%’ ‘T*’2(1_V)EA>D
(by [I3, Theorem 4 (ii), p. 58])

_ % <max (H'TFVEAHz’ |T*‘2(1_V)%AH2> . ’<’T*|2(1_V)|T|2V7f\,\,/];)\>‘> 7

as needed. [ ]

—~ |12 ~
U|T|2(1”’)U*k:AH > ¥ ’<!T|2",U|T]2(1”)U*k,\>‘>

Next, we obtain another upper bound for ’<T/IE>\,EM>‘ using polar decompostion.

Theorem 2.5 Let S,T € # (). Then for any 0 <v <1,

(S +iT) R B < \/ (1P +1r™) EA,%Q\/ (18P0 4 2P0 B ),

for any vectors E,\,Eﬂ € J with Hk\)‘H = H%HH = 1. If T € # () with the Cartesian
decomposition T'= A + iB, then

‘<TE,\,EM>‘ < \/<(|A]2” + |B\2V> EA,EQ <<]A\2(1_”) + \B[Z(l_”)> EM,EH>.
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Proof. Let %,\,/l;u € J with HE)‘H = HE’LH = 1. Then
‘<(S+iT)EA,Eu>’ - ’<SEA7EN> +i<TEA,EM>‘
< ‘<SE)\,/EH>‘ + KTE)\,EHM (by the triangle inequality)
< \/<\SP%,EA> (18P ) + \/<|T|2“EA,EA> (TP R k) (by @)

< \/<\S\2”EA,EA>+<|T\2”EA,EA>\/<\S*\2(1f”@:@u>+<IT*\2“*”)%EH>

(by the Cauchy-Schwarz inequality)

= \/<(\S\2” +I71>) EA,EA>\/<(|S*|2“—”> + (TP ) R ),

i.e.,
(S +iT) R B | < \/ (1P +1r) MAW (18P0 4 2P0 B ),
as expected. [ |

3. Berezin Number Inequalities

This section derives several inequalities for the Berezin number. The first result reads
as follows.

Proposition 3.1 Let S,T € #B(). Then

2 1 2 2 2 2 12 2 |2 |2
1+ Tl e < 5 min (|15 + 17 P —1TP|| [t i 87— 177

|

|

ber)

)

ber ber ber

+ min (ber (T*S) ,ber (T'S™)) + 2(|S|por 1T lper -

Proof. It observes from (H) that

Now, by taking supremum over all vectors 74:\)\,745\“ € A with HE,\H = HE"H =1, we obtain

I+ Tliper < 5 (|17 +17P

ber b

)+ber (T5)+21S o [T llper -
(1)

1
2

er
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If we substitute S and T by S* and T, in (Id), we deduce

1S+ Tllper
= [I5™ + T*|[pex
< L(llis? + 2 S|* —|1)? ber (T*S) + 2 [|S*||per 1T (12)
<5 (s +1m2] 4 [is? = 1mR] )+ ber (778) + 2115 o 17 hyer
er ber
= 2 (s + 72 S|* —|1)? ber (T*S) + 2||S|le, |IT
=2 (s 41+ 152 = 1TR], )+ ber (78) + 2 1Sllper 1T e
er ber
thanks to (P-4).
We conclude the desired result by combining two inequalities () and (I2). [ |

The second result can be stated as follows.

Proposition 3.2 Let S,T € B(°). Then

1
ber? (S +T) < 5min(H|S\2+ T )2 - |12 5% 2 + ||

|

*2 *2
+ |15 = 17|

ber)

)

ber ber ber

+ min (ber (T*S) ,ber (T'S*)) + 2ber (S5) ber (T .

Proof. Letting Eu =ky, in (8), we observe that

<2 (s #1772

‘ +H‘S*‘2_|T*|2
ber

‘ ) + ber (T'S*) + 2ber (S) ber (T ,
ber

which implies

ber? (S +T) < % (Jis* + 1

*|2 * |2
+ |15t = 1P

)+ber (T'S*)+2ber (S)ber (T) .

ber ber

If we substitute S and T by S* and T, in the above inequality, we infer

1
ber? (S +T) < - (H|S|2 n |T]2‘ + H\S!Z - \T|2( )+ber (T*S)+2ber (S) ber (T)
2 ber ber
thanks to (P-4).
Now, the result follows by incorporating these two inequalities. [ |

The following result is a product of Theorem 3.
Corollary 3.3 Let A, B € #(). Then

ber? (B°4) < & (max (|4l ge, | Bliber ) + ber (IB41))

The following theorem suggests an upper bound for the Berezin number of the product
of two operators.
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Theorem 3.4 Let A, B € #(). Then for any r,s > 1,

- ‘A|28—|— ‘B|2S s
2

|A|2T + |B|2T

ber (B*A) < 5

ber ber

Proof. It has been demonstrated in [T, Corollary 4] that

1 1
r s

2 ber 2 ber 2 ber
which can be written as
|A‘27' + |B’2r B |A‘28 + |B|25 s
IR (B A) e < 4| | 220 2 EIET
2 2
ber ber
Replacing A by e’ A, we receive
) A 2r B 2r || = A 2s B 25 || s
(Tt | [ A VA
ber 2 2
ber ber
Now taking supremum over § € R, we infer that
A 2r B 2r v A 2s B 2s s
bor (54) < | [AL18 | [llaPe 12
2 2
ber ber
due to sup HfﬁewTHb = ber (T) [74]. [ |
R er
Remark 1 The case s = r, in Theorem B4, reduces to ber” (B*A) <
%H’A|2T+|B‘2T ]
ber

By using the same technique as in the proof of Corollary 24, we can write from
Theorem B that:

Corollary 3.5 Let T' € #(s). Then

1 1
r s

’T|2SV + ’T* |25(1—V)
2

‘T’2TV + |T*‘27‘(1—V)

ber (T) <
er (7)< 5

; (r,s>1,0<v<1).

ber

ber

Remark 2 The case s = r, in Corollary B, reduces to

1
ber" (T) < 5 H’T|2TV + ‘T*|2T(1fl/)

ber '
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It is easy to see that if T = A + iB is the Cartesian decomposition of T' € & (),
then || T]|per < I|Allper + [ Bllpey- Closely related to this inequality, one may note the
following result, a natural consequence of Theorem 3.

Corollary 3.6 Let S,T € B () be two self-adjoint operators. Then for any 0 < v < 1,

18+ T e < 151 + 17

- H|S‘2(1_V) 4 |T|2(1—1/)

ber ’

If T € % () with the Cartesian decomposition "= A 4 iB, then

2v 2v
e < 14P +15

‘|A’2(1—V) + ’B|2(1—l/)

ber ‘ ber.

Remark 8 Put v =1 in Corollary &4, we obtain ||S + iT||ier < 2H|S|2 + |T]2Hb .
er
Remark 4 Letting v = % in Corollary B4 to get
1S +iT lper < I ST+ 1T lper < ISllber + 17 lper

where the second inequality is obvious by the triangle inequality. By substituting S = RT
and T = ST, we deduce

1
ITllper < 5 H\/TT* FT*T + 2RT2 + \/TT* + T+T — 23%T2Hber < IRT N per + ST | per -

Corollary 3.7 Let T € % () with the Cartesian decomposition 7' = A + iB. Then
forany 0 <v <1,

1 et 4 v bt 4
ber (T) < 5 ||l + AP + B + B ||

Proof. Letting Eu = Em in Theorem P-4, we can write

(Th T < \/ (14 + 18P ) T on) ((14PC) 4 1BPC™)) B )
< 5 ((1AP 4140 B 1 |BPA) By Ry )

I

1 bt 24 1% -V
< 5 14+ 14PC) + 1B+ 1BPO |

where the second inequality is observed from the arithmetic-geometric mean inequality.
Taking supremum over all vectors k) € 7 yields the desired result. [ |

Another corresponding result can be stated as follows.

Proposition 3.8 Let T' € .#,,. Then H]T|2H < HT*T + iSTQHb .
ber er
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Proof. For any A, B € 4,

[la+ B2 =lIA+B)" (A+ By
= |A*A+ B*B + A*B + B*A| |,
= ||A*A+ B*B + 2R (A*B)||per
=|R(A*A+ B*B+2A"B)|per
< |A*A+ B*B + 24" By,

Thus, H]A—i—B[QHb < ||A*A+ B*B +2A*B||\,o,- If we replace B by iB, we obtain
er

H\A+13|2Hb < ||A*A+ B*B + 2iA*B|,o,- Now, if T'= A +iB is the Cartesian de-
er
composition of T' € ., (noticing that A and B are self-adjoint now), then

iz

- H]A—HB\Q‘

ber ber

S HA2 + B2 + 2iABHber

< H(%Tf +(ST)? + 2i (RT) (%T)‘

ber
= HT*T + iC\XST’QHber
. 2 * . 2 .
ie., [||T] Hber < HT T +iST Hber’ as required. [ ]
Remark 5 Notice that
H\TE - H\A +iBJ?
ber ber

< ||A* 4+ B* 4+ 2iAB|,,,

= [[A(A+iB) + (1A + B) Blly,

= [[A(A+iB) + (A+1B)" (iB)| ey

< [ Allperll A + iBllpey + [[(A +1B) [l per 1Bl per
= [[A+1B|lper (| All per- + | Bllper)

= [Tl per URT |y + IST e -

Therefore, by Proposition B8, we conclude that

S HT”ber(H%THber—i_ ”%Tuber) .

izl < e o7,
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