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Abstract: There are different sources of energy in the environment, and one of the 

sources that is converted into electrical energy is the vibrations of the environment. 

One of the methods of energy extraction is the use of piezoelectric materials. The 

main advantage of piezoelectric materials is their high-power density and ease of 

use. In this study, a dynamic stiffness method is developed to extract energy from 

the piezoelectric cantilever beam despite damping, impedance, and concentrated 

mass. In order to get the maximum energy for concentrated mass, it is suggested 

that the effect of some parameters on the proposed system be investigated. Such 

parameters include damping and impedance effects noted. According to this study, 

the effect of Kelvin-Voigt damping on the voltage amplitude of the initial 

acceleration at the first resonant frequency is almost linear, while this value 

changes homographically at the second resonant frequency. The change in voltage 

amplitude over the base acceleration amplitude due to the change in the viscous 

damping coefficient at the first and second resonant frequencies is almost the same, 

but the amount of reduction is greater in the second case. Also, the effect of 

impedance on this system is investigated, and the system response is obtained 

using the dynamic stiffness method. The effect of increasing the impedance on the 

conductivity of the beam tip relative to the foundation support is such that as 

impedance increases, its natural frequencies increase, thus making the system more 

rigid. 
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1 INTRODUCTION 

The energy supply of a system from its environment is 

generally called energy extraction. Research in this 

field has attracted the attention of many engineers and 

researchers with the development of wireless 

telecommunications and the advent of low-

consumption electronic devices. For example, in 

wireless sensor networks, the power consumption of 

the sensors is low enough to supply energy from the 

environment. Therefore, by receiving the required 

energy from the environment, not only is there no need 

for batteries and external energy sources, but due to the 

lack of need to charge and replace the battery, the need 

for special care of the system disappears, which in turn 

reduces costs and Environmental pollution is very 

effective. The growth and development of low-power 

electronic devices, wireless technology, and wearable 

and portable smart devices have led to an increase in 

the use of these electronic devices by individuals. 

These devices have facilitated our communication 

while requiring electrochemical batteries to supply 

energy. In cases of emergency personnel and field 

environmental research, these devices generate a 

significant additional load. In addition, these loads 

increase again due to the need to carry heavy 

electrochemical batteries. With the continuous 

development of these devices and the achievements 

that have been achieved in the operation of these 

devices, the required electrical power has also been 

significantly increased. However, the increase in 

resources is not limited to the performance of the 

devices, in addition, due to the limited battery life, 

there is still a need for constant replacement. Electrical 

behavior depends on centralized parameters such as 

resistance, capacitor, so in the simulations performed, 

the parameters expressing the mechanical field are 

considered. In 2008, Erturk and Inman [1] examined 

the harmonic-excited SDOF model. They showed that 

the conventional harmonic base excitation relationship 

for predicting beam motion makes large errors and 

showed model errors. Then they presented modifying 

factors to improve the SDOF model by stimulating the 

harmonic base in transverse and longitudinal 

vibrations. They determined that the SDOF model 

could be used for high ratios of concentrated mass to 

mass of beam in transverse vibration. In fact, in the 

case where the concentrated mass is small, there is no 

conventional effective mass of the cantilever beams 

and rods, or it produces a negligible result compared to 

the system response. Therefore, the proposed modified 

SDOF model should be used. In 2004, Sodano et al. [2] 

obtained a more accurate estimate than the SDOF 

model for the systems with distributed parameters by 

the Rayligh-Ritz (RR) discrete formulation. In this 

approach, conversion of displacements that was 

selected in accordance with the basic functions was 

used. To confirm the method, which used the Hamilton 

principle, they performed a laboratory study for 

bimorph cantilever beam with PZT material. Dutoit et 

al. [3] proposed an SDOF model for MEM energy 

harvesters. His model consisted of Euler_Bernolli beam 

with a concentrated mass, the Equations of which were 

based on the RR discretization method and the 

Hamilton principle and dealt with the d-31 mode. They 

used the piezoelectric structural relationships and the 

resulting electrical displacement to express the 

relationship between electrical output and vibrational 

mode shapes. Hence, a non-optimized prototype 

presented the power density value 30µ
𝑊

𝑐𝑚2. They 

examined the ratio of output power to various 

resistance and proposed considerations for the design 

of piezoelectric energy harvesters, which ultimately 

tested the validity of the presented model by 

performing experiments and comparisons with previous 

work. However, in the 1990s, Hagood et al. [4] had 

used RR discretization as a modeling approach for 

electromechanical systems. Using Hamilton's principle, 

they derived coupled motion Equations for any desired 

elastic structure with piezoelectric and passive 

electronic components and developed the proposed 

spatial models for the output voltage of the electrodes, 

the direct output load of the electrodes, and the state in 

which the piezoelectric electrodes are indirectly 

connected to an arbitrary electrical circuit with built-in 

voltage and current sources and finally, they used these 

Equations for the cantilever beam. In 2006, Chen et al. 

[5] proposed a micro-dimensional transducer model of 

a piezoelectric bimorph cantilever beam that used the 

Hamilton principle to derive matrices of discrete mass, 

stiffness, and damping in the transformed space. In 

accordance with the base deflection approach, they 

formulated the relationship between voltage and 

induced mechanical strain. Their analytical method was 

based on solving with one state, and their model 

showed that the induced voltage is proportional to the 

excitation frequency and width of the piezoelectric 

material and is inversely proportional to the beam 

length and damping coefficient. They hypothesized the 

effect of electromechanical bonding as viscous 

damping. Incorporating electromechanical bonding into 

mechanical Equations as viscous damping coefficients 

is a common approach for electromagnetic harvesters 

[6]. But the effect of electromechanical bonding on 

piezoelectrics is much more complex than considering 

it as a viscous damping. Rafique and Bonello [7] 

showed that considering the effect of electromechanical 

bonding as a viscous damper is valid only at low 

resistance loads. In addition, they proved a detailed 

validation of the modal analysis model presented in [8] 

for a bimorph beam without concentrated mass around 

the first resonance region, validating these relationships 
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at frequencies higher than those considered in [8]. They 

investigated the effect of electromechanical bonding on 

the mechanical properties of the harvester, such as 

added resultant stiffness and damping, and by modal 

analysis and experiments showed that the resonant 

frequency and amplitude of the response due to 

electromechanical connection will be associated with 

changes. In 2013, Al-Adwani et al. [9] introduced a 

Shear Mode Harvester (SMH) to replace the energy 

harvesters in thickness mode (TMH) and longitudinal 

mode (LMH) in order to increase the harvested power. 

The reason for this choice was since the strain constant 

of piezoelectric material in shear is larger than the 

strain constant in longitudinal modes and thickness. To 

achieve the harvested energy in the shear mode, the 

piezoelectric element was polarized along a length 

parallel to the length of the electrode between the 

oscillator base and the concentrated mass. The base 

sinusoidal excitation in the direction of polarization 

causes the element to experience shear strain. They 

showed the optimal performance characteristics of 

SMH in comparison with TMH and LMH by providing 

numerical examples. In addition, they investigated the 

effect of resistance load and excitation frequency on 

SMH. The dynamic stiffness method relates the 

amplitude of the applied forces to the vibrational 

response of the system. This method is used to analyze 

systems that are harmonically excited and can provide 

an infinite number of natural modes for a finite number 

of node coordinates of continuous structures. In the 

present study, first, the formulas of the dynamic 

stiffness method are extracted, then the bimorph 

cantilever beam with concentrated mass at the desired 

distance from the end of the beam is divided into two 

elements and with the help of direct stiffness method, 

the dynamic stiffness matrix of the whole beam is 

obtained. This is done to damp the effect and apparent 

resistance in energy harvesting from the piezoelectric 

beam using the dynamic stiffness method. 

2 THEORIES 

Since common piezoelectric cantilever energy 

harvesters are often designed and manufactured as thin 

beams, and also most bimorph beams have thin 

structures, it seems reasonable to assume the beam as a 

Euler-Bernolli beam. The piezoelectric layers and the 

central layer are well bonded, and the electrodes that 

have been extended along the entire length of the beam 

are flexible and have a negligible thickness compared 

to the total thickness of the beam. In addition, the 

electrodes have been assumed to be well-conductive. 

Hence, only one electric potential difference along each 

electrode can be defined. Equations (1) and (2) are used 

to derive the behavior of moving beams with 

piezoelectric layers. 

 

𝐵
𝜕4𝑢

𝜕𝑥4 + 𝐴
𝜕5𝑢

𝜕𝑥4𝜕𝑡
+ 𝑐𝑎

𝜕𝑢

𝜕𝑡
+ 𝑚

𝜕2𝑢

𝜕𝑡2 = 0                          (1) 

 
𝐷3 = 𝑑31𝑌𝑃𝑆 + 𝑑31𝑐𝑃�̇� + 𝜀33

𝑆 𝐸3                                 (2) 

 
𝜀33

𝑆 = 𝜀33
𝑇 − 𝑑31

2 𝑌𝑃 
𝐵 = 𝑌𝑝𝐼𝑝 + 𝑌𝑠𝐼𝑠                                                              (3) 
𝐴 = 𝑐𝑝𝐼𝑝 + 𝑐𝑠𝐼𝑠   

 

Where S is axial strain, d 31, piezoelectric coefficient, 

E3 , Induced Electric Field, 𝜀33
𝑇 , permittivity at constant 

stress, D3 , component of electric displacement vector, 

YP, Modulus of elasticity of piezoelectric material, YS, 

Modulus of elasticity of the middle layer, CP, Kelvin-

Voigt damping coefficient for a piezoelectric layer, CS, 

Kelvin-Voigt damping coefficient for a middle layer, 

IP, the second torque of the surface around the neutral 

axis for a piezoelectric layer, IS, the second torque of 

the surface around the neutral axis for a middle layer, 

m, mass per unit length, u, beam displacement in the y 

direction, Ca, the average viscous damping coefficient 

of ambience per unit length. 

By placing Equation (2) in Gaussian law and deriving 

from it, the current intensity I as a function of time is 

obtained as Equation (4) where β, Cp
, and f are 

respectively according to Equations (5) to (7). Cp in 

Equation (5) is the internal capacity of a piezoelectric 

layer, and hpc in Equation (6) is the distance from the 

neutral axis to the midpoint of the piezoelectric layer 

[10]. 

 

𝑖(𝑡) = 𝑓𝛽 ∫
𝜕3𝑢

𝜕𝑥2𝜕𝑡

𝐿

0
𝑑𝑥 −

𝑓

𝑎
𝐶𝑝�̇�                                    (4) 

 

𝛽 = −d31Yphpcb                                               (5) 

 

𝐶𝑝 = 𝜀33
𝑆 𝑏𝐿

ℎ𝑝
                                                                  (6) 

 

𝑓 = {
1, 𝑓𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠
2, 𝑓𝑜𝑟 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

                                         (7) 

 

hp is the thickness of a piezoelectric layer, 𝑣(𝑡) is the 

voltage of the whole set is equal to 2 and 1 for series 

and parallel, respectively, L is the length, and b is the 

width of the beam. 

For dynamic stiffness analysis, harmonic excitation is 

assumed. Hence, the displacement is obtained from 

Equations (3-30). Using the Equations (8) and (10), 

Equation (10) would be achieved [11]. 

 

𝑢(𝑥, 𝑡) = �̃�(𝑥)𝑒𝑗𝜔𝑡                                            (8) 
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𝐵(𝑒𝑗𝜔𝑡) (
𝜕4�̃�

𝜕𝑥4
) + 𝐴(𝑗𝜔)(𝑒𝑗𝜔𝑡) (

𝜕4�̃�

𝜕𝑥4
) + 𝑐𝑎(𝑗𝜔)𝑒𝑗𝜔𝑡�̃�

+ 𝑚(𝑗𝜔)2𝑒𝑗𝜔𝑡�̃� = 0   
                                         (9) 

 
�̃�𝑖𝑣 − 𝑘�̃� = 0                                                   (10) 

 

𝑘 =  𝜔
1

2 [
𝑚

�̂� /(1−𝑗
𝑐𝑎
𝑚𝜔

)
]

1

4

                                          (11) 

 

�̂� = 𝐵 (1 + 𝑗𝜔
𝐴

𝐵
)                                             (12) 

 
Because the excitation is harmonic, parameters such as 

M (x, t), Q (x, t), θ (x, t) and v (t) are in the form of 

(13) Equations. 

 

𝑀(𝑥, 𝑡) = �̃� (𝑥) 𝑒𝑗𝜔𝑡   𝑄(𝑥, 𝑡) = �̃� (𝑥) 𝑒𝑗𝜔𝑡   𝜃(𝑥, 𝑡) =
 𝜃 ̃(𝑥) 𝑐𝑜𝑠 𝑒  𝑗𝜔𝑡  𝑣(𝑡) = 𝑣 ̃𝑒𝑗𝜔𝑡     𝑖(𝑡) =  𝑖̃ 𝑒𝑗𝜔𝑡       (13) 

 

Using Equations (9), (12) and (4), the bending moment 

amplitude is obtained from (14) Equation [12]. 

 

�̃�(𝑥) = �̂� �̃�′′ + 𝜗𝑣 ̃   �̃�(𝑥) = �̂��̃�′′′                     (14) 

 
If Z is the symbol of the apparent resistance of the 

electric charge, Equation (15) can be written. By 

placing (15) in (4), the voltage amplitude would be 

achieved by Equation (16), in which G can be obtained 

in Equation (17) [13]. 

 

�̃� = 𝑍𝑖̃                                                           (15) 

 

�̃� = 𝐺[�̃�(𝐿) − �̃�(𝑂)]                                        (16) 

 

𝐺 =
𝑗𝜔𝑓𝛽

𝑗𝜔(
𝑓

𝑎
)𝐶𝑝+

1

𝑍

                                                   (17) 

 
The dynamic stiffness matrix of the beam with the 

concentrated mass shown in “Fig. 3” can be determined 

by calculating relations (18) [14]. 

 

f = Du          f =  [�̃�0  �̃�0   �̃�𝐿  �̃�𝐿]
𝑇          u =

[�̃�0  �̃�0   �̃�𝐿  �̃�𝐿]
𝑇
                                              (18) 

 

It should be noted that the dimensions of the 

concentrated mass are assumed in comparison with the 

dimensions of the previous beam, therefore, the 

displacement of the end of the beam and the 

concentrated mass will be the same. also the moment of 

inertia of the concentrated mass is neglected. Hence, 

according to “Fig. 1”,  relation (19) is written in which 

fe corresponds to relation (18) [15]. 

 

fe = Deu        fe = [�̃�0  �̃�0   �̃�𝐿𝑒
  �̃�𝐿𝑒

]
𝑇
                    (19) 

 
From “Fig. 1”, the boundary conditions are obtained as 

Equations (20). 

 

�̃�(𝑂) = −�̃�0     �̃�(𝐿) = �̃�𝐿𝑒
      �̃�(𝑂) = �̃�0    �̃�(𝐿) =

−�̃�𝐿𝑒
                                                                  (20) 

 

 
Fig. 1 Free body diagram of the beam with a concentrated 

mass )The damping forces are not displayed). 

 
As a result, Equation (21) would be achieved by 

solving Equation (14) [16]. By applying the boundary 

conditions and Equation (21) in Equations (18) and 

(19), relations (22) to (25) are obtained. 

 

�̃�(𝑥) = 𝐶1 𝑐𝑜𝑠ℎ 𝑘𝑥 +
 𝐶2 𝑠𝑖𝑛ℎ 𝑘𝑥 +𝐶3 𝑐𝑜𝑠 𝑘𝑥 +𝐶4  𝑠𝑖𝑛 𝑘𝑥                      (21) 

 

�̃�0 = �̂�𝑘2(−𝐶1 + 𝐶3) + 𝜗𝐺(�̃�0 −

 �̃�𝐿)                                                                        (22) 
 

�̃�𝐿𝑒
= �̂�𝑘2(𝐶1 𝑐𝑜𝑠ℎ 𝑘𝐿 +𝐶2 𝑠𝑖𝑛ℎ 𝑘𝐿 − 𝐶3 𝑐𝑜𝑠 𝑘𝐿 −

𝐶4  𝑠𝑖𝑛 𝑘𝐿 ) + 𝜗𝐺(�̃�𝐿 − �̃�0)                                 (23) 

 

�̃�0 = �̂�𝑘3(𝐶2 − 𝐶4)                                          (24) 

 

�̃�𝐿𝑒
= �̂�𝑘3(−𝐶2 𝑐𝑜𝑠ℎ 𝑘𝐿 −𝐶1 𝑠𝑖𝑛ℎ 𝑘𝐿 + 𝐶4 𝑐𝑜𝑠 𝑘𝐿 −

𝐶3  𝑠𝑖𝑛 𝑘𝐿 )                                                         (25) 

 

The relations from (22) to (25) can be written in matrix 

form as Equation (26). 
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[
 
 
 
 
�̃�0

�̃�0

�̃�𝐿𝑒

�̃�𝐿𝑒 ]
 
 
 
 

= 𝜗𝐺 [

𝑂
𝑂
𝑂
𝑂

  

𝑂
1
𝑂
−1

  

𝑂
𝑂
𝑂
𝑂

  

𝑂
−1
𝑂
1

]

[
 
 
 
�̃�0

�̃�0

�̃�𝐿

�̃�𝐿]
 
 
 

+ �̂�𝑘2 [

0
−1

−𝑘 𝑠𝑖𝑛ℎ 𝑘𝐿
𝑐𝑜𝑠ℎ 𝑘𝐿

       

𝑘
0

−𝑘 𝑐𝑜𝑠ℎ 𝑘𝐿
𝑠𝑖𝑛ℎ 𝑘𝐿

       

0
1

−𝑘 𝑠𝑖𝑛 𝑘𝐿
− 𝑐𝑜𝑠 𝑘𝐿

      

−𝑘
0

𝑘 𝑐𝑜𝑠 𝑘𝐿
− 𝑠𝑖𝑛 𝑘𝐿

] [

𝐶1

𝐶2

𝐶3

𝐶4

]                  (26) 

 
The relation (27) is obtained by computing the 

derivative of Equation (21). Hence, u ̃ and θ  ̃ at the 

beginning and end of the beam will be according to the 

relations (28) to (31), which are written in matrix form 

as Equation (3-65). u and C are also according to 

Equations (32) and (33). 

 

�̃� (𝑥) = 𝑘 (𝐶1 𝑠𝑖𝑛ℎ 𝑘𝑥 +
 𝐶2 𝑐𝑜𝑠ℎ 𝑘𝑥 −𝐶3 𝑠𝑖𝑛 𝑘𝑥 +𝐶4  𝑐𝑜𝑠 𝑘𝑥 )                  (27) 

 

�̃�0 = 𝐶1 + 𝐶3                                                    (28) 

 

�̃�0 = 𝑘(𝐶2 + 𝐶4)                                              (29) 

 

�̃�𝐿 = 𝐶1 𝑐𝑜𝑠ℎ 𝑘𝐿 + 𝐶2 𝑠𝑖𝑛ℎ 𝑘𝐿 +𝐶3 𝑐𝑜𝑠 𝑘𝐿 + 𝐶4 𝑠𝑖𝑛 𝑘𝐿 

                                                                     (30) 

 

�̃�𝐿 = 𝑘(𝐶1 𝑠𝑖𝑛ℎ 𝑘𝐿 + 𝐶2 𝑐𝑜𝑠ℎ 𝑘𝐿 − 𝐶3 𝑠𝑖𝑛 𝑘𝐿 +
𝐶4 𝑐𝑜𝑠 𝑘𝐿)                                                      (31) 

 

u = AC             C = [𝐶1       𝐶2      𝐶3      𝐶4]               (32) 

 

A = [

1
0

𝑐𝑜𝑠ℎ 𝑘𝐿
𝑘 𝑠𝑖𝑛ℎ 𝑘𝐿

     

0
𝑘

𝑠𝑖𝑛ℎ 𝑘𝐿
𝑘 𝑐𝑜𝑠ℎ 𝑘𝐿

    

1
0

𝑐𝑜𝑠 𝑘𝐿
−𝑘 𝑠𝑖𝑛 𝑘𝐿

    

0
𝑘

𝑠𝑖𝑛 𝑘𝐿
𝑘 𝑐𝑜𝑠 𝑘𝐿

]   

                                                  (33) 

 

To obtain fe as a function of u, C from (30) is placed in 

Equation (24). If C is placed from Equation (30) to 

Equation (24), the dynamic stiffness matrix of the beam 

is obtained using the above relations as Equation (34), 

in which De is known as the dynamic stiffness matrix 

of the Beam without electric coupling and can be 

achieved in short circuit conditions [17]. 

 

De = [

𝑠1

𝑠2

𝑠3

𝑠4

    

𝑠2

𝑠5

−𝑠4

𝑠6

    

𝑠3

−𝑠4

𝑠1

−𝑠2

    

𝑠4

𝑠6

−𝑠2

𝑠5

]  +

𝜗𝐺 [

0
0
0
0

   

0
1
0

−1

    

0
0
0
0

    

0
−1
0
1

]                                           (34) 

 

𝑆1 =
�̂�𝑘3(𝑐𝑜𝑠 𝑘𝐿 . 𝑠𝑖𝑛ℎ 𝑘𝐿 + 𝑐𝑜𝑠ℎ 𝑘𝐿 . 𝑠𝑖𝑛 𝑘𝐿)

𝛥
 

 

𝑆2 =
�̂�𝑘2(𝑠𝑖𝑛 𝑘𝐿 . 𝑠𝑖𝑛ℎ 𝑘𝐿)

𝛥
 

 

𝑆3 = −
�̂�𝑘3(𝑠𝑖𝑛 𝑘𝐿 + 𝑠𝑖𝑛ℎ 𝑘𝐿)

𝛥
 

 

𝑆4 = 
�̂�𝑘2(𝑐𝑜𝑠ℎ 𝑘𝐿 − 𝑐𝑜𝑠 𝑘𝐿)

𝛥
 

 

𝑆5 = �̂�𝑘
(𝑐𝑜𝑠ℎ 𝑘𝐿 . 𝑠𝑖𝑛 𝑘𝐿 − 𝑐𝑜𝑠 𝑘𝐿 . 𝑠𝑖𝑛ℎ 𝑘𝐿)

𝛥
 

 

𝑆6 = �̂�𝑘
(𝑠𝑖𝑛ℎ 𝑘𝐿 − 𝑠𝑖𝑛 𝑘𝐿)

𝛥
  

 

According to “Fig. 2”, which shows the free diagram of 

the concentrated mass, the relations (35) and (36) can 

be written. In these two relations, MT represents the 

concentrated mass, and IT represents the moment of 

inertia of the concentrated mass. In Equation (35), CT 

indicates the ambient damping coefficient per 

concentrated mass and is considered as Equation (37) 

in order to compare the dynamic stiffness method with 

modal analysis [18]. 

 

 
Fig. 2 Bimorph beam with concentrated mass at a distance 

of Li from the base of the beam. 

 

𝐹𝐿 − 𝐹𝐿𝑒
= 𝑀𝑇�̈�𝐿 + 𝑐𝑇�̇�                                   (35) 

 

𝛤𝐿 − 𝛤𝐿𝑒
= 𝐼𝑇�̈�𝐿                                               (36) 

 

𝑐𝑇 = 𝑐𝑎
𝑀𝑇

𝑚
                                                      (37) 

 

Equations (38) and (39) would be achieved, if 𝑒𝑖𝜔𝑡 is 

removed from relations (35) and (36). Also, if Equation 

(13) is subtracted from (10), the relation (40) is 

obtained. 

 

�̃�𝐿 − �̃�𝐿𝑒
= −𝜔2𝑀𝑇 �̃�𝐿 + 𝑗𝜔𝑐𝑎

𝑀𝑇

𝑚
�̃�𝐿                  (38) 

 

�̃�𝐿 − �̃�𝐿𝑒
= −𝜔2𝐼𝑇  �̃�𝐿                                        (39) 

f − fe = (D − De)u                                           (40) 
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By placing the relations (38) and (39) in (40), Equation 

(41) is written. Hence, by using relation (41), Equation 

(42) is obtained in which Dm corresponds to Equation 

(43) [19]. 

 

[
 
 
 
 
�̃�0 − �̃�0 

�̃�0 − �̃�0

�̃�𝐿 − �̃�𝐿𝑒

�̃�𝐿 − �̃�𝐿𝑒 ]
 
 
 
 

=

[
 
 
 
 0
0
0
0

      

0
0
0
0

         

0
0

−𝜔2𝑀𝑇 − 𝑗𝜔𝑐𝑎

𝑀𝑇

𝑚
0

          

0
0
0

−𝜔2𝐼𝑇]
 
 
 
 

 

[
 
 
 
�̃�0

�̃�0

�̃�𝐿

�̃�𝐿]
 
 
 

  

                                             (41) 

 

D =  De + [
0 0
0 Dm

]                                          (42) 

 

Dm = [
−𝜔2𝑀𝑇 + 𝑗𝜔𝑐𝑎

𝑀𝑇

𝑚
 0

0 −𝜔2𝛪𝑇
]                  (43) 

 

The matrix R is defined as relation (44), therefore, u is 

obtained according to relation (45) [18]. 

 

R = D−1                                                         (34) 

 
u = Rf                                                            (45) 
 

Given that there is no external excitation on the 

concentrated mass, Equation (45) can be extended to 

Equation (46). 

 

[
 
 
 
�̃�0

�̃�0

�̃�𝐿

�̃�𝐿]
 
 
 

= [

𝑅11

𝑅21

𝑅31

𝑅41

  

𝑅12

𝑅22

𝑅32

𝑅42

  

𝑅13

𝑅23

𝑅33

𝑅43

  

𝑅14

𝑅24

𝑅34

𝑅44

] [

�̃�0

�̃�0

0
0

]                               (46) 

 
Using the presented relations, the output voltage is 

obtained as in Equation (47) [20]. Also, the output 

displacement as Equation (48) can be achieved by 

placing relations (46) and (47) in Equation (46) [20]. 

 

�̃� = 𝐺 [
𝑅41𝑅22−𝑅42𝑅21

𝛼
] �̃�0 +  𝐺 [

𝑅42𝑅11−𝑅41𝑅12−𝛼

𝛼
] �̃�0 (47) 

 

�̃�𝐿 = (
𝑅31𝑅22− 𝑅32𝑅21

𝛼
) �̃�0 + (

𝑅32𝑅11− 𝑅31𝑅12

𝛼
) �̃�0       (48) 

 

Given that the sample beam is of the bimorph type, the 

relations related to the bimorph beam are extracted. 

The purpose of this work is to convert the beam into 

two arbitrary elements and to obtain the effect of 

concentrated mass displacement on the system. To 

obtain the output voltage of the system, Gauss's law for 

a piezoelectric layer is written as Equation (49). 

 

𝑞 = −∫ 𝑦𝑌𝑝𝑑31
𝑏𝜕2𝑢

𝜕𝑥2 𝑑𝑥 + ∫ 𝑏𝜀33
𝑆 𝐸3𝑑𝑥   

𝐿

𝑜

𝐿

𝑜
            (49) 

 

Because the electrodes are completely conductive and 

the electrical potential is the same throughout the 

electrode, the amount of charge accumulated in the 

middle section of the top layer is obtained according to 

relation (50). Hence, by computing the derivative of 

Equation (50) with respect to time, the intensity of 

electric current through the external resistance will be 

under Equation (51) for a piezoelectric layer. 

 

𝑞 = −ℎ𝑝𝑐𝑌𝑝𝑑31 ∫ 𝑏
𝜕2𝑢

𝜕𝑥2 𝑑𝑥 −
𝜀33
𝑆 𝑣(𝑡)

ℎ𝑝
∫ 𝑏𝑑𝑥        

𝐿

𝑜

𝐿

𝑜
    (50) 

 

𝑖(𝑡) = −ℎ𝑝𝑐𝑌𝑝𝑑31 ∫ 𝑏
𝜕3𝑢

𝜕𝑥2𝜕𝑡
𝑑𝑥 −

𝜀33
𝑆 �̇�(𝑡)

ℎ𝑝
∫ 𝑏𝑑𝑥

𝐿

0
 

𝐿

𝑜
   (51) 

 

Equation (52) represents the current flowing through 

the apparent resistance for the whole system in series 

and parallel connection. Assuming the excitation of the 

system is harmonic, the output voltage amplitude is 

written according to relation (53). 

 

𝑖(𝑡) = −ℎ𝑝𝑐𝑌𝑝𝑑31 𝑓 ∫ 𝑏
𝜕3𝑢

𝜕𝑥2𝜕𝑡
𝑑𝑥 −

𝑓𝜀33
𝑆 �̇�(𝑡)

𝑎ℎ𝑝
∫ 𝑏𝑑𝑥  

𝐿

0

𝐿

0
  

                                                                     (52) 

 

�̃� = [
−𝑗𝜔ℎ𝑝𝑐𝑌𝑝𝑑31

−𝑗𝜔𝜀33
𝑆

ℎ𝑝
(
𝑓

𝑎
) ∫ 𝑏𝑑𝑥+

1

𝑍

𝐿
0

] ∫ 𝑏𝑢′′𝑑𝑥
𝐿

𝑜
                     (53) 

 

Equation (53) can be used for beams of uniform 

thickness with the number of arbitrary elements and 

different cross sections, but for the system shown in 

“Fig. 2”, the voltage amplitude is obtained as Equation 

(54) in which  �̃�𝐿𝑖

(2)
𝑎𝑛𝑑 �̃�𝐿𝑖

(1)
 are slope range in Li for 

element 1 and element 2, respectively.  

 

�̃� = 𝐺[�̃�𝐿 − �̃�𝐿𝑖

(2)
+ �̃�𝐿𝑖

(1)
− �̃�0]                              (54) 

 

Due to the continuity of the beam and the concentration 

of the mass, �̃�𝐿𝑖
(1)

and �̃�𝐿𝑖
(2)

are equal and the voltage 

amplitude is obtained according to Equation (27). 

Again, it is observed that the output voltage depends 

only on the beginning and end slopes of the beam and 

is independent of θ ̃Li. This is because the width of the 

beam is uniform, but if the value of b changes at Li then 

the output voltage will depend on the slope at the point 

Li. 

 

�̃� = 𝐺[�̃�𝐿 − �̃�𝑜]                                                 (55) 
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If D1 and D2 are the dynamic stiffness matrices of 

element 1 and element 2 in “Fig. 2”, respectively, the 

dynamic stiffness matrix of the whole system can be 

obtained by the direct stiffness method, in which the 

relations (56) to (58) are written for the whole system. 

 

f = Du                                                           (56) 

 

u = [�̃�0  �̃�0  �̃�𝐿𝑖
  �̃�𝐿𝑖

  �̃�𝐿  �̃�𝐿]                                  (57) 

 

f = [�̃�0  �̃�0  �̃�𝐿𝑖
 �̃�𝐿𝑖

  �̃�𝐿  �̃�𝐿  ]                                    (58) 

 

Due to the lack of external excitation at points L and Li, 

the values of external force and torque are equal to 

zero, hence by considering Equation (47), the voltage 

amplitude and displacement range of the end of the 

beam will be obtained by Equations (59) and (60) as a 

function of �̃�0 and  �̃�0. 

 

�̃� = 𝐺 [
𝑅61 𝑅22−𝑅62𝑅21

𝛼
] �̃�0 + 𝐺 (

𝑅62 𝑅11−𝑅61 𝑅12−𝛼

𝛼
) �̃�0     

                                                                                  (59) 

 

�̃�𝐿 = (
𝑅51 𝑅22−𝑅52 𝑅21

𝛼
) �̃�0 + (

𝑅52 𝑅11−𝑅51 𝑅22

𝛼
) �̃�0      (60) 

3 SAMPLE SPECIFICATIONS AND RESULTS 

The system is analyzed with the specifications given in 

“Table 1”. Also, the damping ratios for the first two 

modes are 𝜁1 = 0.0166 and  𝜁2 = 0.0107, respectively, 

and the amount of concentrated mass (MT) is equal to 

0.5mb [21]. By using the values  𝜁1 and  𝜁2 that are 

presented for two modes, and also Equation (60), the 

values Ca and A can be achieved. The values 𝜁3 and  𝜁4 

are obtained by using the values  𝜁1 and 𝜁2, although it 

may not be valid for the higher modes of Ca and A [1]. 

 
Table 1 Dimensions and mechanical and physical properties 

of the system 

60 L (mm) 0.267 hp (mm) 

7800 
 (kg m3⁄ ) 

Piezoelectric 

layer density 

0.300 hs (𝑚𝑚) 

2700 
 (kg m3⁄ ) 

middle layer 

density 

6200 Yp (GPa) 

-320×
10−12 

d31 (m/V) 7200 YS (GPa) 

3.3646×
10−8 

ε33
T  (

𝐹

𝑚
) 25 b (mm) 

 

Because the maximum ratio of output voltage to base 

acceleration for a distance of 38 mm mass from the 

base occurs at the first resonant frequency, and at the 

second resonant frequency, the maximum ratio of 

output voltage to base acceleration for concentrated 

mass is obtained in 16 mm, the effect of Kelvin-Voigt 

damping coefficients and viscous damping for these 

two concentrated mass locations is investigated. For 

this purpose, the FRFs of voltage to base acceleration 

ratio are plotted for several A / B values and compared 

with the undamped mode (“Fig. 3”). 

 

 
Fig. 3 The FRF of output voltage to base acceleration ratio 

to rise A/B values. 

 

As shown in “Fig. 3”, despite the small A/B values, 

changing it greatly affects the system output. This 

effect on the output voltage to the base acceleration 

ratio at the second resonant frequency is greater, so that 

this decline has been 97.61% for changing the value of 

A / B from 0 to 10 × 10-6, but at first resonant 

frequency, it dropped to 31.97% for changing the value 

of A / B from 0 to 10 × 10-6. In the undamped mode for 

concentrated mass with 16 mm far from the base, the 

voltage to base acceleration ratio at the second resonant 

frequency is greater than this value at the first resonant 

frequency, but gradually with the growth of the value 

A/B due to the fact that the rise of damping at the 

second resonant frequency causes that the voltage falls 

considerably, the output voltage to base acceleration 

ratio at the first resonant frequency compared to this 

value in the second resonant frequency is remarkable. 

As far as A / B is equal to 6 × 10 × 10-6, the proportion 

of output voltage to base acceleration at the first 

resonant frequency is 4.76 volt/ m and at the second 

resonant frequency is 0.2314 volt/ m (“Fig. 4”).  
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Fig. 4 (a): The ratio of output voltage to base acceleration 

at the second resonant frequency in accordance with A/B 

changes, and (b): The ratio of output voltage to base 

acceleration at the first resonant frequency in accordance with 

A/B changes. 

 

As can be seen in “Fig. 4”, the decline in output voltage 

at the first resonant frequency occurs due to the growth 

of damping with a gentle slope and almost linearly, but 

at the second resonant frequency this drop was initially 

abrupt, then the effect of growth of this damping on the 

system output will be dropped by rising the A/B. The 

diagrams in “Fig. 4” are drawn based on A/B 

variations. These changes for ωr1
= 126.21 Hz and 

ωr2
= 637.4 Hz are equal to 0.004  ˂ ζ1˂0 and 0.02  ˂ ζ2 

˂0. For this reason, a marked drop in voltage at the 

second resonant frequency can be justified. For the 

concentrated mass with 38 mm far from the base, the 

effect of A/B changes is shown in “Fig. 5”. 

 

 
Fig. 5 The ratio of output voltage to base acceleration 

based on excitation frequency to raise the values A/B 38. 

 

As in “Fig. 3”, the effect of the A/B changes for the 

second resonant frequency on the graph is very high, 

but this decline occurs at the first resonant frequency 

with a gentle slope and almost linearly (“Fig. 6”).  

 
 

Fig. 6 (a): The ratio of output voltage to base acceleration 

at the first resonant frequency in accordance with A/B 

changes for 38, and (b): The ratio of output voltage to base 

acceleration at the second resonant frequency in accordance 

with A / B changes for 38. 

 

For the concentrated mass with 38 mm far from the 

base, the proportion of voltage to base acceleration 

from the second resonant frequency is less than this 

ratio at the first resonant frequency in which by 

changes of A/B, it would decline to 96.5% and 25.65%, 

respectively. It should be noted that this range of 

changes for A / B is equal to 0  ˂ ζ1  ˂ 0.0032 and 0 ˂ζ2 

<0.0209. 

The FRFs of voltage to base acceleration ratio for 

various values of Ca/m for a system with concentrated 

mass and a distance of 16 mm are according to “Fig. 

7”.  

 

 
Fig. 7 The ratio of output voltage to base acceleration 

based on excitation frequency to raise the values Ca/m. 

 

Unlike Kelvin-White damping, the changes of viscous 

damping upon the reduction of the voltage-to-

acceleration ratio for the first and second resonant 

frequencies follow almost the same pattern (“Fig. 8”). 

However, the graph changes for the second resonant 

frequency are greater than the first resonant frequency, 

so that this decline is 72.66% and 45.19%, respectively. 

(b) 
(a) 

(a) 

(b) 

(b) 
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The range of changes from 0 to 10 for Ca / m is equal to 

0 ˂ ζ1˂0.0063 and 0˂ ζ2 ˂0.0012. 

 

 
 
 

Fig. 8 (a): The ratio of output voltage to base acceleration 

at the first resonant frequency in accordance with Ca/m 

changes for 16, and (b): The ratio of output voltage to base 

acceleration at the second resonant frequency in accordance 

with Ca/m changes for 16. 

 

For a system with a concentrated mass at a distance of 

38 mm from the base, the FRFs of the voltage to base 

acceleration ratio have been drawn (“Fig. 9”).  
 

 
 
 

Fig. 9 (a): The ratio of output voltage to base acceleration 

at the first resonant frequency in accordance with Ca / m 

changes for 38, and (b): The ratio of output voltage to base 

acceleration at the second resonant frequency in accordance 

with Ca / m changes for 38. 

 

Similar to what happens for the concentrated mass at a 

distance of 16 mm due to the change in Ca/m, the 

reduction in diagrams 4-16 a and b is almost the same, 

and this decline is greater at the second resonant 

frequency. This drop for the first and second resonant 

frequencies is 47.20% and 62.95%, respectively. The 

range of changes from 0 to 10 for Ca / m is equal to 0 ˂ 

ζ1˂0.0077 and 0˂ ζ2 ˂0.0012. As a result, it can be said 

that a little growth in A/B from the undamped mode 

causes a sharp drop in the proportion of voltage to base 

acceleration for the second resonant frequency, 

although it should be noted that this decline would be 

gentle for the first resonant frequency. The reason is 

that the rise of A/B causes the greater growth of 𝜁𝑟  for 

the next modes of the system. Therefore, one of the 

factors that reduces the effect of the system response in 

the resonant frequencies is Kelvin-Voigt damping. 

Regarding the effect of viscous damping, it should be 

said that the rise of Ca/m causes less growth in 𝜁𝑟  for 

higher modes of the system. Despite this, the decline in 

the second resonant frequency is greater than the 

decline in the first resonant frequency, which, unlike 

Kelvin-Voigt damping, does not cause a sudden 

reduction in system output due to the rise of damping 

frequency in the second resonant frequency and occurs 

gently. Therefore, because the proportion of the voltage 

to acceleration drops sharply due to the rise of Kelvin-

Voigt damping coefficients in the second resonant 

frequency, the best place for energy harvesting is where 

the concentrated mass is 38mm away from the base. 

According to the analysis performed in the previous 

section, a system with a concentrated mass that is 38 

mm away from the base was proposed. Therefore, this 

system is used to investigate the effect of apparent 

resistance. In addition, it is assumed that the 

qualification factors remain constant due to the 

displacement of the concentrated mass, according to 

which the relations Ca/m = 7.71934 and A/B= 

8.5000198 × 10-6 are established. The output power for 

the system changes with the alteration of the apparent 

resistance. These changes have been drawn for a 

resistor R of 10 Ω, which is very close to the short 

circuit conditions (“Figs. 4-12”). The harvested voltage 

rises with increasing R to reach its maximum in open-

circuit mode. The effect of increasing the apparent 

resistance (“Fig. 10”) on the portability of the beam tip 

relative to the base is such that as the apparent 

resistance rises, its natural frequencies grow, hence 

making the system more rigid [22].  

 

 
Fig. 10 The FRF of Voltage to Base acceleration ratio with 

rise of apparent resistance in ohms from short circuit to open 

circuit mode. 

 

Increasing the apparent resistance from 103 Ω to 105 Ω 

raises the natural first and second frequencies by 5.04% 

and 2.19%. The growth in natural frequencies can be 

neglected by raising the apparent resistance from 105 Ω 

to 5 × 105 Ω. It should be noted that the frequency of 

(a) (b) 

(a) (b) 
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the peaks of the transmittable diagram overlaps the 

FRF frequency of the voltage-to-base acceleration 

ratio. 

In some cases, the net load of the capacitor is expressed 

as Z = 1 / jωC in which the capacitance of the capacitor 

is C = nCp. The transmissibility diagram of the beam 

tip relative to the beam base is drawn to rise the values 

of n:  

n = 0 is equivalent to the open circuit conditions, n = ∞ 

is equivalent to the short circuit state, and n = 10-4 is 

considered when experimental open circuit conditions 

are in place [23]. A comparison of “Figs. 11 and 12” 

shows that the system becomes more rigid as the 

conditions change from short circuit to open circuit, but 

the reduction in the amplitude of the diagram is 

negligible. 

 

 
Fig. 11 Transmissibility of the beam tip relative to the 

beam base to raise the apparent resistance values ohms from 

the short circuit state to the open circuit state. 

 

 
Fig. 12 Transmissibility of the beam tip relative to the base 

beam in accordance with changes in various values of 

capacitor load. 

4 CONCLUSIONS 

In this study, a dynamic stiffness method was 

developed to harvest energy from a piezoelectric beam 

despite damping and apparent resistance with 

concentrated mass. The intended purpose is to 

investigate the effect of damping and apparent 

resistance on energy harvesting from piezoelectric 

beams using the dynamic stiffness method. According 

to the results obtained in this study, changes in Kelvin-

Voigt damping coefficients and viscous damping were 

investigated in which with rising the Kelvin-Voigt 

damping coefficient from undamped mode, the 

proportion of voltage amplitude to base acceleration in 

the second resonant frequency dropped sharply, but 

with further growth of this coefficient, the amplitude 

declined with a gentle slope. A reduction in FRF of 

voltage to acceleration ratio at the first resonant 

frequency occurred almost linearly with a gentle slope 

due to the rise in Kelvin-Voigt damping. The effect of 

rising the viscous damping on the FRF amplitude of 

voltage to base acceleration ratio in the first resonant 

frequency resembled the changes in the Kelvin-Voigt 

damping coefficient, however the effect of this 

coefficient on decreasing the amplitude of the diagram 

in the second resonant frequency was not as severely as 

before and was almost close to decline of the diagram 

amplitude in the first resonant frequency. 

Regarding the effect of damping coefficients for the 

maximum output voltage harvesting, a system was 

proposed whose concentrated mass was 38 mm away 

from the base, and the effect of apparent resistance and 

capacitor load on the transmissibility of the beam tip 

relative to the base was investigated for this system. As 

a result of raising the resistance load from the short 

circuit to open circuit conditions, the natural 

frequencies of the system became more magnified. In 

fact, raising the resistance load made the system more 

rigid. A similar change in the system's natural 

frequencies occurred from short circuit to open circuit 

conditions to change the capacitor load. It should be 

noted that the reduction in the FRF of the Voltage to 

acceleration ratio was significant in the resistance load 

alteration, although the reduction of this amplitude in 

changing the capacitor load could be ignored. Given 

that the dynamic stiffness matrix of the beam element 

was obtained with a uniform cross section and 

concentrated mass, the element matrix can be used to 

analyze the set of interconnected beams. Also, a 

trapezoidal beam can be divided into different parts, 

and the dynamic stiffness matrix of each segment can 

be calculated separately. Finally, by assembling the 

stiffness matrices of the elements by the direct stiffness 

method, the electrical output for this beam can be 

obtained. The DSM method can be used for a variety of 

boundary conditions, so obtaining electrical outputs for 

different boundary conditions can be deliberated.  
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