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Abstract. In this work, multi-objective fractional stochastic solid transportation problem uncertainties are repre-
sented using the Weibull distribution. This transformation converts the multi-objective fractional stochastic solid
transportation problem into a goal programming problem with chance constraints, incorporating probabilistic con-
straints into its formulation. Goal programming and hyperbolic membership functions also assist in solving the
fractional transportation problem. The proposed models serve as the basis for numerical examples and approaches
to solving the problem under validated uncertainty. Furthermore, we conduct a sensitivity analysis to assess the
impact of parameter changes on the proposed method.
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1 Introduction

Transportation systems are essential components of the economy and a necessary part of daily and social life.
These systems aim to convey a uniform product from a supply location to a demand location at low costs. In
the contemporary era of globalization, we see an increase in product transportation and a variety of methods
for transporting these goods. In order to meet this demand, we must define the solid transportation problem.
The STP is a critical research subject concerning both theoretical and practical dimensions. In the current
STP, it is essential to optimize many goals, such as minimizing transportation costs, packing expenses, and
transportation time. A solid transportation issue with a fractional objective function is a multi-objective
fractional solid transportation problem, that optimizes the ratio of many functions. In numerous practical
scenarios, individuals or groups extensively employ the performance metric to evaluate the financial dimen-
sions of transportation companies and management contexts. These scenarios require individuals or groups to
address the challenge of maintaining optimal ratios among critical parameters associated with the transporta-
tion of goods from specific suppliers to diverse demand centers using various modes of conveyance. Solving
optimization problems with fractional objective functions is challenging and requires advanced optimization
techniques or numerical approaches.

The transportation problem primarily consists of three parameters: cost coefficient, supply, and demand.
Owing to unforeseen variables, these parameters are not consistently immutable. This inaccuracy arises from
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the absence of precise information. Arya et al. [1] developed a model for multi-choice stochastic transporta-
tion issues using extreme value distributions via binary variables. Stochastic programming tackles situations
where random variables, rather than deterministic values, represent any of the optimization problem’s pa-
rameters. In the current competitive market, suppose that the parameters adhere to random variables. The
goal of the stochastic fractional transportation problem is to find an optimal transportation plan that min-
imizes the expected total cost, taking into account the uncertainty in the problem parameters. This means
that instead of having fixed values for these parameters, there is a range of possible values with associated
probabilities. In order to identify the best or nearly best solution given the stochastic nature of the problem,
stochastic programming techniques, such as stochastic linear programming or scenario-based optimization,
are often employed. The Weibull distribution is frequently used to compute the probability distribution of
a continuous random variable. The Weibull distribution also finds applications in biological sciences, earth
sciences, medicine, transportation planning, and other fields.

One mathematical programming tool used to address multi-objective optimization is the goal program-
ming method. Fuzzy goal programming (FGP) has shown to be an effective way of managing future ambitions
for decision-makers, even in the absence of exact information about future objectives. In other words, FGP is
an extension of conventional goal programming used for addressing multi-objective choice problems with im-
precisely defined model parameters. Several scholars have used the FGP technique to address multi-objective
optimization problems. The aims of the FGP model formulation issue are converted into fuzzy objectives
by giving an ambition level to each goal. Each fuzzy objective takes into account the attainment of the
hyperbolic membership value. The special membership function hyperbolic is used to develop the stochastic
solid transportation problem with the help of Lingo software.

1.1 Motivation of the study

• Motivated by Das and Lee [2], we extended their work to address a transportation problem with a
fractional stochastic objective function using a Weibull distribution. The objectives of the fractional
stochastic transportation problem are first converted into fuzzy goals by giving an ambition level to each
target. We evaluate the attainment of the hyperbolic membership value for each aim to the greatest
extent possible.

• The solution procedure to a deterministic model using chance constrained programming.

1.2 Novelty and Contribution

• In this paper, we propose a multi-objective fractional stochastic solid transportation problem by intro-
during probabilities constraints, we applied the Weibull distribution through the stochastic parameters.

• The chance-constrained programming and fractional goal programming approaches are used to handle
the uncertainty.

• The hyperbolic membership function is used to aggregate the conflicting objectives. Both transportation
cost and time are minimized to find the optimal solutions. As compared to the previous papers our
proposed model shows greater domination.
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Abbreviations in theis study

MOFSSTP Multi-Objective Fractional Stochastic
Solid Transportation Problem

FTP Fractional Transportation Problem

STP Solid Transportation Problem

FGP Fractional Goal Programming

CCP Chance-Constrained Programming

CDF Cumulative Distribution Function

PDF Probability Density Function

2 Literature Review

This section presents an exposition of past research on the transportation problem and fractional transporta-
tion problem in stochastic solid environments. Mahapatra et al. [3] examined a stochastic transportation
problem with a single source and a single destination after creating a stochastic variable for the demand us-
ing a joint cumulative distribution function. Schaible and Ibaraki [4], many researchers including those who
have researched fractional programming. Ebrahimnejad [5] simplified fuzzy transportation problems with
trapezoidal fuzzy numbers. Anukokila and Radhakrishnan [6] presented a fuzzy goal programming approach.
Ojha et al. [7] introduced a stochastic discounted multi-objective stochastic linear time program in which the
demand is a stochastic variable and is transformed into deterministic variables using the expected value cri-
terion. However in real-world applications, supply and conveyance capacity are also stochastic with demand.
Mahapatra, Prékopa and Williams [8, 9, 10] presented a multi-choice stochastic transportation problem with
probabilistic limitations that involves extreme value distributions. Because the extreme value distribution is
produced by taking the natural logarithm of the Weibull distribution, the Weibull and extreme value dis-
tributions are closely related. Holmberg and Tuy [11] proposed a branch-and-bound approach for solving
the transportation problem with convex production costs and stochastic demand. Charnes and Cooper [12]
presented a multi-objective transportation challenge that would minimize transportation time and cost and
discussed the import of the problem. Sengupta et al. [13] presented green supply chain management. In
[14, 15], researchers developed a transportation problem of this sort. Kataoka [16] presented a model of
stochastic programming for a transportation problem with a single meaning. Chalam [15] produced a fuzzy
goal programming method for stochastic total points while following financial limitations. Bhattacharya and
Gupta [17, 18] introduced a fuzzy programming approach to solve a multi-objective transportation problem
with distinct costs when a random variable has a normal distribution. Mahapatra et al. [3] presented a
log-normal distribution-based multi-objective stochastic transportation problem. Gessesse and Mishra [19]
addressed a linear fractional transportation problem with several objectives in a stochastic setting. When
modeling a stochastic transportation problem or solid transportation problem, many researchers have em-
ployed a normal distribution to define the variables. Dambrosio et al. [20]. But for transportation problems or
solid transportation problem models, stochastic variables have also been defined using different distributions
[21, 22]. Also, the fuzzy theory has been presented as a means of characterizing uncertainty. Gao and Lee
[23] examined a scenario-based multi-objective redistribution problem as a stochastic mixed-integer problem,
in which the availability of the transportation network in catastrophic events is unpredictable, where the
supply and demand at relief centers are uncertain. Agrawal and Ganesh [24] studied and presented a method
for solving a multi-choice transportation problem in a stochastic setting using Newton’s split difference in-
terpolation. Gupta and Garg [25] perceived it as a capacitated stochastic transportation problem, where
the uncertain parameters related to supply and demand restrictions are managed by the application of the
maximum-likelihood estimation method and the chance-constrained programming method.
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3 Formulation of Fractional Transportation Problem

Fractional transportation problem is usually applied to a particular class of optimization problems found in
mathematical programming and operations research. The fractional transportation problem is the problem
of minimizing “t” transportation valued objective function with transportation cost,

Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 = ak1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 = bk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 = ck3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0, ∀ k1, k2, k3,

(1)

where (Z1(Y),Z2(Y), ...,Zζ(Y)) is a vector of t objective functions. Yk1k2k3 represents the amount of the
product to be shipped from k1 source parameters to the k2 destination parameter, and k3 is the conveyance

parameter.
Ct
k1k2k3

Dt
k1k2k3

, k1 source parameters to the k2 destination parameters and k3 is the conveyance param-

eter. ak1 ; (k1 = 1, 2, ..., n1), bk2 ; (k2 = 1, 2, ..., n2) and ck3 ; (k3 = 1, 2, ..., n3) and
Ct
k1k2k3

Dt
k1k2k3

are the conveyance

parameters, which are in the form of transportation problem values of source, destination and conveyance.
Using real values for supply, demand, conveyance, and transportation cost, the suggested approach offers an
easy means to identify the best way to solve a fuzzy FTP.

3.1 Chance Constrained Programming Model

Weibull [26], a Swedish physicist, suggested using it for modeling the stress distribution in order to break
specimens. For chance-constrained programming (CCP), getting probability distributions for uncertain pa-
rameters and working out the right confidence levels are crucial. When there is ambiguity in the distribution’s
parameters, CCP with the Weibull distribution is a successful approach for determining dependability and
risk. The stochastic Weibull distribution, a probability distribution, is used to model uncertainty in various
events, such as the failure rate of system components. Using CCP with a three-parameter stochastic Weibull
distribution is a successful method to make solid choices when there is unknown about the Weibull-distributed
variables. The random variable g’s cumulative distribution function (cdf) and probability density function
(pdf), as per a three-parameter Weibull distribution as

f(g) =
δ

ϑ

(
g− ψ

ϑ

)δ−1

exp

{
−
(
g− ψ

ϑ

)δ}
, (2)

F (g) = 1− exp

{
−
(
g − ψ

ϑ

)δ}
, (3)

for, f(g) ≥ 0, g ≥ 0 or ψ, δ > 0, ϑ > 0,−∞ < ψ < ∞. Note that δ, ϑ, and ψ are the shape parameter, scale
parameter, and the location parameter, respectively.
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A closed form extraction of a probability distribution function’s quantiles is the only way to get the deter-
ministic constraints required by the suggested stochastic programming paradigm. In this paper, the chance-
constrained programming model of the multi-objective fractional stochastic solid transportation problem is
defined as follows:

Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :

P

(
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ qk1

)
≥ pqk1 , k1 = 1, 2, ..., n1,

P

(
n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≥ rk2

)
≥ prk2 , k2 = 1, 2, ..., n2,

P

(
n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≤ sk3

)
≥ psk3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0, ∀ k1, k2, k3,

(4)

where the probabilities pqk1 , prk2 , and psk3 are specified. It is assumed that the random variables qk1 , rk2 , and
sk3 , representing supply, demand, and conveyance capacity, adhere to the Weibull distribution, respectively.
The Weibull distribution for qk1 comprises three parameters: δqk1 (shape), ϑqk1 (scale), and ψqk1 (location).
Also, the parameters for the Weibull distribution for rk2 and sk3 are likewise specified. Constraint (4) repre-
sents the probabilistic limitation on the supply quality at source k1, ensuring that with a certain probability
pqk1 , the total shipments from source k1 do not exceed qk1 . Likewise, limitations (4) might be construed in
terms of the demand at destination k2 and the conveyance capacity of transportation mode k3. Three cases
are examined in which one random variable among pqk1 , prk2 , and psk3 is uncertain, designated as Case I,
Case II, and Case III. Case IV presents an environment in which all random variables represent uncertainty.

3.1.1 Case I

The equation (4) can therefore be rearranged as independent random variables qk1(k1 = 1, 2, ..., n1) with
three known parameters δk1 , ϑk1 , and ψk1 . The Weibull distribution has been proposed to apply to these
factors.

P

qk1 ≥
n2∑
k2=1

n3∑
k3=1

Yk1k2k3

 ≥ pqk1 , k1 = 1, 2, ..., n1. (5)

φqk1 =

n2∑
k2=1

k3∑
k3=1

Yk1k2k3 ∀ k2, k3, k1 = 1, 2, ..., n1.

∫ φqk1

∞

δqk1
ϑqk1

(
qk1 − ψqk1
ϑqk1

)δqk1−1

exp

{
−

(qk1 − ψqk1
ϑqk1

)δqk1}dqk1 ≥ pqk1 , k1 = 1, 2, ..., n1. (6)

It is possible to further express equation (6) as P (qk1 ≥ φqk1 ) ≥ pqk1 , k1 = 1, 2, ..., n1∫ φqk1

ψqk1

δqk1
ϑqk1

(
qk1 − ψqk1
ϑqk1

)δqk1−1

exp

{
−

(qk1 − ψqk1
ϑqk1

)δqk1}dqk1 ≥ pqk1 , k1 = 1, 2, ..., n1. (7)
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Integrating equation (7) gives

exp

{
−

(φqk1 − ψqk1
ϑqk1

)δqk1} ≥ pqk1 , k1 = 1, 2, ..., n1,

(
φqk1 − ψqk1

ϑqk1

)
≤ (−lnqk1)

1
δqk1 ,

φqk1 − ψqk1 ≤ ϑqk1{−lnqk1}
1

δqk1 ,

φqk1 ≤ ψqk1 + ϑqk1{−ln(qk1)}
1

δqk1 .

The quantile of the Weibull distribution may be used to convert this into deterministic constraints in the
following way.

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ [lnψqk1 + ϑqk1{−ln(pqk1 )}]
1

δqk1 , k1 = 1, 2, ..., n1. (8)

Hence, the multi-objective fractional solid transportation problem is given when the supply constraint is
uncertain, as follows.

Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ [lnψqk1 + ϑqk1{−ln(pqk1 )}]
1

δqk1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≥ rk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≤ sk3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0, ∀ k1, k2, k3.

(9)

3.1.2 Case II

The equation (4) is presented, with three known parameters, δk2 , ϑk2 , and ψk2 respectively. It is assumed
that rk2 (k2 = 1, 2, ..., n2) are independent random variables that follow the Weibull distribution.

∫ φrk2

−∞

δrk2
ϑrk2

(
rk2 − ψrk2
ϑrk2

)δrk2−1

exp

{
−

(rk2 − ψrk2
ϑrk2

)δrk2}drk2 ≥ prk2 , k2 = 1, 2, ..., n2. (10)

It is possible to further express equation (10) as (rk2 ≥ φrk2 ) ≥ rk2 , k2 = 1, 2, ..., n2

∫ φrk2

ψrk2

δrk2
ϑrk2

(
rk2 − ψrk2
ϑrk2

)δrk2−1

exp

{
−

(rk2 − ψrk2
ϑrk2

)δrk2}drk2 ≥ prk2 , k2 = 1, 2, ..., n2. (11)
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Integrating equation (11) gives

1− exp

{
−

(φrk2 − ψrk2
ϑrk2

)δrk2} ≥ prk2 , k2 = 1, 2, ..., n2.

The quantile of the Weibull distribution may be used to convert this into deterministic constraints in the
following way.

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≥ [lnψrk2 + ϑrk2{−ln(1− prk2 )}]
1

δrk2 , k2 = 1, 2, ..., n2. (12)

Therefore, in the case of an unknown demand constraint, the multi-objective fractional solid transportation
issue is provided as follows.

Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ qk1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≥ [lnψrk2 + ϑrk2{−ln(1− prk2 )}]
1

δrk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≤ sk3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0,∀ k1, k2, k3.

(13)

3.1.3 Case III

The equation (4) is presented, with three known parameters, δsk3 , ϑsk3 , and ψsk3 respectively. It is assumed
that sk3 (k3 = 1, 2, ..., n3) are independent random variables that follow the Weibull distribution.∫ φsk3

∞

δsk3
ϑsk3

(
sk3 − ψsk3
ϑsk3

)δsk3−1

exp

{
−

(sk3 − ψsk3
ϑsk3

)δsk3}dsk3 ≥ psk3 , k3 = 1, 2, ..., n3 (14)

It is possible to further express equation ( 14) as (sk3 ≥ φsk3 ) ≥ sk3 , k3 = 1, 2, ..., n3.∫ φsk3

ψsk3

δsk3
ϑsk3

(
sk3 − ψsk3
ϑsk3

)δsk3−1

exp

{
−

(sk3 − ψsk3
ϑsk3

)δsk3}dsk3 ≥ psk3 , k3 = 1, 2, ..., n3 (15)

Integrating equation (15) gives

exp

{
−

(φsk3 − ψsk3
ϑsk3

)δsk3} ≥ psk3 , k3 = 1, 2, ..., n3.

The quantile of the Weibull distribution may be used to convert this into deterministic constraints in the
following way.

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ [lnψsk3 + ϑsk3{−ln(psk3 )}]
1

δsk3 , k3 = 1, 2, ..., n3. (16)
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Consequently, when the conveyance constraint is unclear, the multi-objective fractional solid transportation
problem is presented as follows.

Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≥ qk1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≥ rk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≥ [lnψsk3 + ϑsk3{−ln(psk3 )}]
1

δsk3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0,∀ k1, k2, k3.

(17)

3.1.4 Case IV

It is assumed that δi(i = 1, 2, 3, ...,m), ϑj(j = 1, 2, 3, ..., n), and ψk(k = 1, 2, 3, ..., l) are independent ran-
dom variables using the Weibull distribution. By combining the derivations, the multi-objective fractional
stochastic solid transportation problem (MOFSSTP) is a deterministic model for Cases I, II, and III.

Now let’s consider Fractional stochastic multi-objective solid transportation problem of the type

Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ [lnψqk1 + ϑqk1{−ln(pqk1 )}]
1

δqk1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≥ [lnψrk2 + ϑrk2{−ln(1− prk2 )}]
1

δrk2 , k2 = 1, 2, ..., n2,

n1∑
k2=1

n2∑
k3=1

Yk1k2k3 ≤ [lnψsk3 + ϑsk3{−ln(psk3 )}]
1

δsk3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0,∀ k1, k2, k3.

(18)

This portion presents the deterministic mathematical programming models for the multi-objective fractional
stochastic solid transportation problem (MOFSSTP) using the quantile of the Weibull distributions. In a
real-world situation, it makes sense that while certain components of supply, demand, and transportation
capacity could be known with certainty, others would not. Thus, multi-objective fractional stochastic solid
transportation problem (MOFSSTP) deterministic may be modified as needed, depending on the circum-
stances. This deterministic mathematical programming may be solved for optimality using the commercially
available solvers.

3.2 Fractional Stochastic Solid Transportation Problem

For MOFSSTP, the objective value and constraints hold significant importance. Our primary aim is to
minimize the total cost of transportation. In real-life situations, uncertainties in dimensions like cost, time,
supply, demand, and transportation capacity provide obstacles for decision-makers in achieving optimal
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solutions. Fuzzy and stochastic variables can effectively address this situation. This model treats cost as a
fuzzy variable and constraints as random variables. The unpredictability in supply, demand, and conveyance
capacity limits may arise or not, depending on the specific circumstances of the demand management process.
Therefore, we develop three MOFSSTP models based on the uncertainty of constraints. We construct a
MOFSSTP model with k1 sources, k2 destinations and k3 conveyance capacity as described below.

3.2.1 Model I

Modeling for deterministic MOFSSTP may be transformed into a stochastic model when supply is uncertain,
but demand and conveyance capacity restrictions remain certain.



Minimize Zt(Y) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

Ct
k1k2k3

Yk1k2k3

n1∑
i=1

n2∑
j=1

n3∑
k=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≥ [lnψqk1 + ϑqk1{−ln(pqk1 )}]
1

δqk1 , k1 = 1, 2, ..., n1,

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 = [lnψqk1 + ϑqk1{−ln(pqk1 )}]
1

δqk1 , k1 = 1, 2, ..., n1,

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ [lnψqk1 + ϑqk1{−ln(pqk1 )}]
1

δqk1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≥ rk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 = rk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≤ rk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≥ sk3 , k3 = 1, 2, ..., n3,

n1∑
k1=1

n2∑
K2=1

Yk1k2k3 = sk3 , k3 = 1, 2, ..., n3,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≥ sk3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0, ∀ k1, k2, k3.

(19)

3.2.2 Model II

Modeling for deterministic MOFSSTP may be transformed into a stochastic model when demand is uncer-
tain, but supply and conveyance capacity restrictions remain certain.

 Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ
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subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≥ qk1 , k1 = 1, 2, ..., n1,

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 = qk1 , k1 = 1, 2, ..., n1,

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ qk1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≥ [lnψrk2 + ϑrk2{−ln(1− prk2 )}]
1

δrk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 = [lnψrk2 + ϑrk2{−ln(1− prk2 )}]
1

δrk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≤ [lnψrk2 + ϑrk2{−ln(1− prk2 )}]
1

δrk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≥ sk3 , k3 = 1, 2, ..., n3,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 = sk3 , k3 = 1, 2, ..., n3,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≤ sk3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0,∀ k1, k2, k3.

(20)

3.2.3 Model III

Modeling for deterministic MOFSSTP may be transformed into a stochastic model when conveyance capacity
is uncertain, but supply and demand restrictions remain certain.



Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
Lk1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≥ qk1 , k1 = 1, 2, ..., n1,

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 = qk1 , i = 1, 2, ..., n1,

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ qk1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≥ rk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 = rk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≤ rk2 , k2 = 1, 2, ..., n2,
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n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≥ [lnψsk3 + ϑsk3{−ln(psk3 )}]
1

δsk3 , k3 = 1, 2, ..., n3,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 = [lnψsk3 + ϑsk3{−ln(psk3 )}]
1

δsk3 , k3 = 1, 2, ..., n3,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≤ [lnψsk3 + ϑsk3{−ln(psk3 )}]
1

δsk3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0, ∀ k1, k2, k3.

(21)

3.2.4 Model IV

Modeling for deterministic MOFSSTP may be transformed into a stochastic model when supply and demand
restrictions remain uncertain.

Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≥ [lnψqk1 + ϑqk1{−ln(pqk1 )}]
1

δqk1 , k1 = 1, 2, ..., n1,

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 = [lnψqk1 + ϑqk1{−ln(pqk1 )}]
1

δqk1 , k1 = 1, 2, ..., n1,

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 ≤ [lnψqk1 + ϑqk1{−ln(pqk1 )}]
1

δqk1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≥ [lnψrk2 + ϑrk2{−ln(1− prk2 )}]
1

δrk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 = [lnψrk2 + ϑrk2{−ln(1− prk2 )}]
1

δrk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 ≤ [lnψrk2 + ϑrk2{−ln(1− prk2 )}]
1

δrk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≥ [lnψsk3 + ϑsk3{−ln(psk3 )}]
1

δsk3 , k3 = 1, 2, ..., n3,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 = [lnψsk3 + ϑsk3{−ln(psk3 )}]
1

δsk3 , k3 = 1, 2, ..., n3,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 ≤ [lnψsk3 + ϑsk3{−ln(psk3 )}]
1

δsk3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0,∀ k1, k2, k3.

(22)

3.3 Hyperbolic Membership Function

Hyperbolic membership function can be defined as,

µHt (Z
t(y)) =

1

2
tanh

[
Ut + Lt

2
−

m∑
i=1

n∑
j=1

l∑
k=1

[
F tR, F

t
C

]
xijk

]
αt +

1

2
.

where αt=
6

Ut−Lt
. This membership function has following properties.
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(a) µHt (Y
t(y)) is strictly monotonically decreasing function with respect to (Zt(y));

(b) µHt (Z
t(y))=1

2 iff (Zt(y))=1
2(U

t + Lt);

(c) µHt (Z
t(y)) is strictly convex for Zt(y) ≥ 1

2(Ut + Lt);

(d) µHt (Z
t(y)) satisfies 0 < µHt (Z

t(y)) < 1 for Lt < F t(y) < 1 for Lt < Zt(y) < Ut;

The fuzzy approach relies heavily on the membership function, which enables it to evaluate unexpected
and ambiguous topics. The membership function of a fuzzy set represents a distinct, subjective human
perspective. In addition to non-linear membership functions, fuzzy mathematical programming may also
make use of hyperbolic membership functions. Over one subset of the objective function value, the hyperbolic
function is convex, whereas over the other subset, it is concave. The finest compromise and effective solutions
for a multi-objective fractional transportation problem are found by fuzzy programming with hyperbolic
membership functions. It expresses objective functions in a fuzzy context. The attributes listed below apply
to this membership function, where the parameter αt is defined as αt=

6
Ut−Lt

. Next, the fuzzy model’s
matching crisp model can be expressed as follows:



Minimize Φ

subject to :

Φ ≤ 1
2 tanh

[[
Ut+Lt

2 −
n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Dt
k1k2k3

Yk1k2k3
]
αt

]
+ 1

2 .

n2∑
k2=1

n3∑
k3=1

Yk1k2k3 = ak1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 = bk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 = ck3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0, ∀ k1, k2, k3.

(23)

3.4 Goal Programming

A fuzzy set theory-based approach to goal formulation is referred to as fuzzy goal programming. The mem-
bership functions are then used to characterize the fuzzy goals. Once both positive and negative deviational
variables are included, and each is assigned the greatest membership value, these membership functions are
transformed into fuzzy flexible membership objectives. Minimizing the differences between aspiration levels
Gt1 and Gt2 and goal Zt(Y)achievement is the primary goal. The following is a mathematical formulation
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of goal programming: 

Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

[Ct
k1k2k3

]Yk1k2k3
−Gt1

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

[Dt
k1k2k3

]Yk1k2k3
−Gt2

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 = ak1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 = bk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 = ck3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0, ∀ k1, k2, k3,

(24)

where Gt is the aspiration level and Yk1k2k3 is the linear function of the tth objective. Let the function
Yk1k2k3 = D+

t −D−
t + Gt be used to solve the objective programming. The achievement function can thus

be expressed as follows: 

Minimize
n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

(D+
t −D−

t )

subject to :
[Ct

k1k2k3
]Yk1k2k3

−Gt1

[Dt
k1k2k3

]Yk1k2k3
−Gt2

= D+
t −D−

t , t = 1, 2, ..., ζ,

X ∈ F, (F is a feasible set)

D+
t −D−

t ≥ 0, t = 1, 2, ..., ζ.

(25)

3.5 Min-max Approach

Among the several methods that have been developed for goal programming are preemptive goal programming
and min-max goal programming. The following model is produced by converting Zimmermann [27] minmax
technique to fuzzy goal programming.

Minimize Zt(Y) =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Yk1k2k3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Dt
k1k2k3

Yk1k2k3

, t = 1, 2, ..., ζ

subject to :
n2∑
k2=1

n3∑
k3=1

Yk1k2k3 = ak1 , k1 = 1, 2, ..., n1,

n1∑
k1=1

n3∑
k3=1

Yk1k2k3 = bk2 , k2 = 1, 2, ..., n2,

n1∑
k1=1

n2∑
k2=1

Yk1k2k3 = ck3 , k3 = 1, 2, ..., n3,

Yk1k2k3 ≥ 0, ∀ k1, k2, k3.

(26)

where there is satisfaction of the equilibrium condition
n1∑
k1=1

ak1 =
n2∑
k2=1

bk2 =
n3∑
k3=1

ck3 .
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4 Numerical Example

This section explains the problem by taking the example of a third party logistics company that has four
(supply) suppliers, q1, q2, q3, and q4 and three destination places such as hospitals, pharmacies and medical
labs are expressed as r1, r2, and r3. Suppliers q1, q2, q3,and q4. supply Covid-19 (covaxin), pandemic virus
(oseltamivir), viral fever (paracetamol), and heart attack (loading dose) medicines to the destination. The
two conveyances of the transport are represented by the numbers s1 and s2 which has distinct loading powers.
The Weibull distribution has been used to preserve the medicine from its leakage and expiretion date. Reduc-
ing the total expense and duration of transportation is the ultimate objective of this challenge. Everyone has
shown that the optimal compromise solutions for multi-objective fractional stochastic solid transportation
problem-solving models may be achieved through the use of FGP. All mathematical programming models’
deterministic equivalents were solved using the Lingo solver. The likelihood that the desired quantity of
produce is accessible for the provider q1 is pq1 . In the same way, for suppliers q2, q3, and q4, respectively,
probabilities pq2 , pq3 , and pq4 are defined. It stems from incorrect forecasts, fluctuations in demand, or unex-
pected delivery delays. The likelihood that the estimated demand is needed for medicine hall. r1 is therefore
pr1 . Similar to this, market halls r2, r3, respectively, have defined probabilities pr2 , pr3 . Similarly, the amount
of conveyance capacity is unknown due to blockages and traffic congestion, ps1 and ps2 are the odds that
the capacity of two conveyances is available. The decision makers might select these probabilities based on
insights or forecasts. 

Minimize Z1 =

4∑
k1=1

3∑
k2=1

2∑
k3=1

Ct
k1k2k3

Yk1k2k3

4∑
k1=1

3∑
k2=1

2∑
k3=1

Dt
k1k2k3

Yk1k2k3

,

Minimize Z2 =

4∑
k1=1

3∑
k2=1

2∑
k3=1

Ct
k1k2k3

Yk1k2k3

4∑
k1=1

3∑
k2=1

2∑
k3=1

Dt
k1k2k3

Yk1k2k3

,

subject to :

P (
3∑

k2=1

2∑
k3=1

Yk1k2k3) ≤ pqk1 , k1 = 1, 2, 3, 4

P (
4∑

k1=1

2∑
k3=1

Yk1k2k3) ≥ prk2 , k2 = 1, 2, 3

P (
4∑

k1=1

3∑
k2=1

Yk1k2k3) ≤ psk3 , k3 = 1, 2

Yk1k2k3 ≥ 0, ∀ k1, k2, k3.
and constraint(4)

(27)

Table 1(a,b) and 3(a,b) present the transportation costs c1k1k21 and c1k1k22 for two conveyance, respectively.
Table 2(a,b) and 4(a,b) present the transportation costs c2k1k21 and c2k1k22 for two conveyance, respectively.

For the numerical experiments in the following sections, the nominal values of uncertain are given as
q1 = 8.24, q2 = 9.28, q3 = 9.73, q4 = 10.73, r1 = 21.16, r2 = 20.95, r3 = 20.54, s1 = 22.00 and s2 = 22.44.

Also, random probabilities are provided as pq1 = 0.96, pq2 = 0.94, pq3 = 0.93, pq4 = 0.91, pr1 = 0.54, pr2 =
0.53, pr3 = 0.51, ps1 = 0.42 and Ps2 = 0.40. The differences in the parameters of the Weibull distribution are
seen as ϑqk1 = ϑrk2 = ϑsk3 = 2.5 and δqk1 = δrk2 = δsk3 = 2.5 and ψqk1 = ψrk2 = ψsk3 = 20.65 given that
it is expected that the constants qk1 , rk2 , and sk3 all have Weibull distributions. It is simple to transform
the probabilistic restrictions into their deterministic kinds by applying equations (4). For the reason of
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Table 1: Transportation Cost

c1k1k21
r1 r2 r3

q1 1 2 3

q2 4 5 6

q3 9 8 7

q4 11 10 12

Table 1(a). Transportation cost for conveyance e2(i.e., c
1
k1k21

)

c1k1k22
r1 r2 r3

q1 4 5 6

q2 8 2 3

q3 10 1 2

q4 3 4 5

Table 1(b). Transportation cost for conveyance e2(i.e., c
1
k1k22

)

Table 2: Transportation Time

c2k1k21
r1 r2 r3

q1 6 hour 5 hour 3 hour

q2 5 hour 1 hour 2 hour

q3 4 hour 2 hour 6 hour

q4 4 hour 3 hour 2 hour

Table 2(a). Transportation time for conveyance e2(i.e., c
2
ij1)

c2k1k22
r1 r2 r3

q1 5 hour 2 hour 2 hour

q2 7 hour 3 hour 4 hour

q3 5 hour 4 hour 2 hour

q4 3 hour 7 hour 3 hour

Table 2(b). Transportation time for conveyance e2(i.e., c
2
k1k22

)

Table 3: Transportation Cost

c1k1k21
r1 r2 r3

q1 2 2 3

q2 3 5 6

q3 8 9 1

q4 4 5 1

Table 3(a). Transportation cost for conveyance e2(i.e., c
1
k1k21

)

c1k1k22
r1 r2 r3

q1 3 17 14

q2 8 9 16

q3 24 23 27

q4 12 13 14

Table 3(b). Transportation cost for conveyance e2(i.e., c
2
k1k21

)
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Table 4: Transportation Time

c2k1k21
r1 r2 r3

q1 1 hour 3 hour 4 hour

q2 2 hour 4 hour 6 hour

q3 2 hour 2 hour 6 hour

q4 5 hour 4 hour 2 hour

Table 4(a). Transportation time for conveyance e2(i.e., c
1
k1k22

)

c2k1k22
r1 r2 r3

q1 2 hour 5 hour 6 hour

q2 1 hour 7 hour 3 hour

q3 5 hour 5 hour 8 hour

q4 4 hour 4 hour 2 hour

Table 4(b). Transportation time for conveyance e2(i.e., c
2
k1k22

)

conciseness, the full formulation for this numerical example has been left out.



Minimize Z1

= 11x111+21x−121+22x131+13x211+10x221+19x231+18x311+25x321+15x331+23x411+14x421+21x431+
10x111+9x121+8x131+16x211+27x221+21x231+23x311+31x321+4x331+12x411+16x421+13x431+

13x112+6x122+20x132+11x212+22x222+15x232+12x312+23x322+14x332+15x412+24x422+21x432
32x112+17x122+14x132+8x212+9x222+16x232+24x312+23x322+27x332+12x412+13x422+14x432

Minimize Z2

= 6x111+5x121+3x131+5x211+9x221+2x231+10x311+8x321+6x331+4x411+7x421+2x431+
1x111+3x121+4x131+9x211+8x221+11x231+2x311+2x321+6x331+5x411+4x421+8x431+

5x112+2x122+2x132+7x212+3x222+4x232+5x312+4x322+2x332+8x412+7x422+3x432
2x112+5x122+6x132+8x212+7x222+9x232+5x312+5x322+8x332+4x412+4x422+2x432

subject to:

x111 + x112 + x121 + x122 + x131 + x132 ≤ 8.2448;

x211 + x212 + x221 + x222 + x231 + x232 ≤ 9.2846;

x311 + x312 + x321 + x322 + x231 + x232 ≤ 9.7314;

x411 + x412 + x421 + x422 + x431 + x432 ≤ 10.5305;

x111 + x211 + x311 + x411 + x112 + x212 + x312 + x412 ≥ 21.1630;

x121 + x221 + x321 + x421 + x122 + x222 + x322 + x422 ≥ 20.9545;

x131 + x231 + x331 + x431 + x132 + x232 + x332 + x432 ≥ 20.5401;

x111 + x211 + x311 + x411 + x121 + x221 + x321 + x421 + x131 + x231 + x331 + x431 ≤ 22.0086;

x112 + x212 + x312 + x412 + x122 + x222 + x322 + x422 + x132 + x232 + x332 + x432 ≤ 22.4403;

Yk1k2k3 ≥ 0,∀ k1, k2, k3

(28)

(a) Every single-objective transportation problem has an answer that is

[X111 = 8, X131 = 21, X211 = 9, X411 = 1, X412 = 4, X421 = 21],

[X111 = 4, X131 = 2, X211 = 1, X221 = 8, X311 = 3, X321 = 6, X421 = 7, X112 = 4, X412 = 10].
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(b) The values of the objective function are

Z1 = 587, Z2 = 96.

(c) The following can be used to express the upper and lower limits of each objective function;

L = 96, U = 587.

(d) The following is the model
Minimize Φ

subject to :

Φ ≤ 1
2 tanh

[[
Ut+Lt

2 −
n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

Ct
k1k2k3

Dt
k1k2k3

Yk1k2k3
]
αt

]
+ 1

2 +D−
t −D+

t = 1.

(29)

After applying the linear interactive global optimization (LINGO) program to solve the problem, an ideal
compromise was found to be as follows.
Z1 = 587, Z2 = 96.
D+ = [0.5];D− = [0] and Minimize Φ=0.1.

5 Comparison and Discussion

This section presents optimal solutions that account for changes in probability on uncertain parameters such
as supply, demand and conveyance capacity in the MOFSSTP. Using the Lingo 18.0 software for the resolution
and listing of the mixed integer problem. We derive the ideal answer as follows: X111 = 8, X131 = 21, X211 =
9, X411 = 1, X412 = 4, X421 = 21, X111 = 4, X131 = 2, X211 = 1, X221 = 8, X311 = 3, X321 = 6, X421 =
7, X112 = 4, X412 = 10 and all other decision variables are zero. The objective functions least cost and time
are Z1 = 587 and Z2 = 96, respectively. Das and Lee [2], using lingo once more, resolved and listed the
mixed integer solution. The following is the ideal answer: X111 = 1.09, X121 = 0.22, X131 = 0.25, X112 =
0.25, X122 = 18.42, X132 = 0.24, X211 = 18.52, X221 = 0.24, X231 = 0.25, X212 = 0.25, X222 = 0.22, all other
decision variables are zero. The objective function’s minimum cost and time are Z1 = 589.85 and Z2 = 112,
respectively. The results boldly mark the minimal objective values. After obtaining the ideal answer, the
decision maker determines the cost and time for each route, as well as the specific supply and demand for
the presented problem. We cannot directly address the proposed issue without employing the MOFSSTP.

This section presents optimal solutions that account for changes in probability on uncertain parameters
such as supply, demand and conveyance capacity in the MOFSSTP. Using the Schrage [28], Lingo 18.0
software for the resolution and listing of the mixed integer problem. We derive the ideal answer as follows:
X111 = 8, X131 = 21, X211 = 9, X411 = 1, X412 = 4, X421 = 21, X111 = 4, X131 = 2, X211 = 1, X221 =
8, X311 = 3, X321 = 6, X421 = 7, X112 = 4, X412 = 10 and all other decision variables are zero. The objective
functions least cost and time are Z1 = 587 and Z2 = 96, which are given in figure 1 respectively. Das and
Lee [2], using lingo once more, i resolved and listed the mixed integer solution. The following is the ideal
answer: X111 = 1.09, X121 = 0.22, X131 = 0.25, X112 = 0.25, X122 = 18.42, X132 = 0.24, X211 = 18.52, X221 =
0.24, X231 = 0.25, X212 = 0.25, X222 = 0.22, all other decision variables are zero. The objective function’s
minimum cost and time are Z1 = 589.85 and Z2 = 112, which are given in table (5) respectively. The results
boldly mark the minimal objective values. After obtaining the ideal answer, the decision maker determines
the cost and time for each route, as well as the specific supply and demand for the presented problem. We
cannot directly address the proposed issue without employing the MOFSSTP.
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Table 5: Compromise solution of the Proposed method of Existing method of MCSFTP

z1 z2 Hyperbolic Membership Function

Proposed Approach 587 96 0.5, 0

Existing Approach 589.87 112 -

Figure 1: Optimal transportation cost and time in relation to the probability of demand availability

5.1 Analysis and Discussions of Sensitivity

This section exhibits a sensitivity analysis of the most effective solutions in the MOFSSTP with regard to
variations in probability on the three unknown factors (supply, demand, and conveyance capacity). For
the sensitivity analysis, we simply changed the probability on qk1 , rk2 , and sk3 . Otherwise, we employed
the identical test problems. By changing the probability for one parameter while keeping the other two
probabilities at 0.49, we were able to solve Case IV of MOFSSTP for the test problem. For every stochastic
setting, the best solutions’ transportation costs and times were found and are shown in Table 6, Table 7 and
Table 8. The minimal objective values are marked by the results in bold.

There are several intriguing trends in the sensitivity with regard to the likelihood of qk1 . The transporta-
tion cost and time related to the likelihood for qk1 are illustrated in Figures 2(a,b), respectively.

The lowest transportation cost was noted in Figure 2(a) for pqk1 = 0.69. When (0 ≥ pqk1 < 0.69), the
cost of transportation either stays the same or steadily rises. A significant increase in transportation costs
occurs when pqk1 > 0.69. The shortest transportation time was attained when pqk1 = 0.7 in Figure 2(b).
There is no change in the transportation time for (0 ≥ pqk1 < 0.7). The transportation time rises when
pqk1 = 0.69. The results of this sensitivity analysis show that the test problem’s two objective functions are
very responsive to changes in the probability for qk1 . A decision-maker can select a suitable probability for
the supply availability with the aid of this analysis.

Table 7 summarizes the results of the sensitivity analysis for the probability for rk2 . Figure 3(a,b) displays
the graphical depictions of the transportation cost and time in relation to the likelihood for rk2 . As can be
seen in Figure 3(a), the transportation cost progressively rises as the probability for rk2 increases. Be aware
that the cost of transportation is affected by changes in the likelihood of demand requirements. It can be
seen from Figure 3(b) that for 0 ≥ pqk1 < 0.7, the transportation time is constant. The transportation time
drops to the lowest value when prk2 = 0.7, and it stays there for 0 ≥ rk2 ≥ 0.69. If decision-makers possess a
comprehensive comprehension of the probability sensitivity patterns for the unknown parameters, they could
be better equipped to construct the transportation network.

A sensitivity study of the conveyance capacity reveals that while there was no effect on the transportation
time, there was a considerable impact on the transportation cost. This is so because the speed of a trans-
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Figure 2: Sensitivity analysis of the best possible transportation time (b) and cost (a) in relation to the
likelihood of demand availability

Figure 3: Analysis of the sensitivity of the coast (a) and optimal transit time (b) to the probability of
demand availability

Figure 4: Analysis of the sensitivity of the cost (a) and optimal transit time (b) to the probability of demand
availability
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Table 6: Sensitivity analysis concerning the probability for qk1

Probability for
qk1(Pqk1 )

Probability for
rk2(Prk2 )

Probability for
sk3(Psk3 )

Transportation
Cost

Transportation
Time(h)

0.01 0.49 0.49 1366 429

0.04 0.49 0.49 1374 439

0.09 0.49 0.49 1382 447

0.12 0.49 0.49 1386 449

0.16 0.49 0.49 1390 453

0.20 0.49 0.49 1390 455

0.24 0.49 0.49 1394 457

0.28 0.49 0.49 1394 459

0.32 0.49 0.49 1398 461

0.36 0.49 0.49 1398 463

0.40 0.49 0.49 1402 465

0.44 0.49 0.49 1402 467

0.47 0.49 0.49 1406 470

0.51 0.49 0.49 1406 473

0.55 0.49 0.49 1406 473

0.59 0.49 0.49 1410 477

0.63 0.49 0.49 1410 481

0.67 0.49 0.49 1414 485

Table 7: Analysis of sensitivity with regard to chances for rk2

Probability for
qk1(Pqk1 )

Probability for
rk2(Prk2 )

Probability for
sk3(Psk3 )

Transportation
Cost

Transportation
Time(h)

0.49 0.01 0.49 318 96

0.49 0.04 0.49 477 151

0.49 0.09 0.49 599 224

0.49 0.12 0.49 668 248

0.49 0.16 0.49 737 272

0.49 0.20 0.49 816 296

0.49 0.24 0.49 902 320

0.49 0.28 0.49 984 344

0.49 0.32 0.49 1070 368

0.49 0.36 0.49 1152 392

0.49 0.40 0.49 1238 416

0.49 0.44 0.49 1320 440

0.49 0.47 0.49 1320 440

0.49 0.51 0.49 1405 470

0.49 0.55 0.49 1488 500

0.49 0.59 0.49 1574 560

0.49 0.63 0.49 1656 560

0.49 0.67 0.49 1742 590
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Table 8: Sensitivity analysis of sk3 with respect to probability

Probability for
qk1(Pqk1 )

Probability for
rk2(Prk2 )

Probability for
sk3(Psk3 )

Transportation
Cost

Transportation
Time(h)

0.49 0.49 0.01 1269 466

0.49 0.49 0.04 1274 466

0.49 0.49 0.09 1278 466

0.49 0.49 0.12 1279 466

0.49 0.49 0.16 1281 466

0.49 0.49 0.20 1292 466

0.49 0.49 0.24 1310 466

0.49 0.49 0.28 1324 466

0.49 0.49 0.32 1342 466

0.49 0.49 0.36 1356 466

0.49 0.49 0.40 1374 466

0.49 0.49 0.44 1388 466

0.49 0.49 0.47 1406 470

0.49 0.49 0.51 1420 475

0.49 0.49 0.55 1420 475

0.49 0.49 0.59 1438 480

0.49 0.49 0.63 1452 485

0.49 0.49 0.67 1470 490

portation conveyance is independent of its capacity. Table 8 shows that while the transportation duration is
constant throughout all experiments, the cost of transportation decreases progressively as the likelihood of a
conveyance capacity increases for sk3 . The sensitivity against the likelihood for the conveyance capacity for
sk3 is shown in Figure 4(a,b), correspondingly. The transportation cost is seen to grow progressively with
the probability for sk3 in Figure 4(a). It is demonstrated that for 0 ≥ pqk1 < 0.45, the transit time in Figure
4(b) stays constant. The distance traveled falls to the shortest when psk3 = 0.45, and it stays at that point
for 0 ≥ rk2 ≥ 0.7. Considering the test problem, the conveyance limits have a significant impact on the
transportation cost.

The study advised MOFSSTP models, it is stated and provide the best results in an uncertain setting. In
situations with a great deal of uncertainty, it is insignificant to take the more cautious course of action. As a
result, it is seen that the STP becomes increasingly questionable as the probability for qk1 , rk2 , and sk3 drop.
It makes sense to select more conservative solutions when the optimization problem has more uncertainty.
When the uncertainty caused by the probability for qk1 , rk2 , and sk3 is modeled with MOFSSTP, the most
conservative solutions are adopted. The sensitivity analysis, however, demonstrates how important it is to
comprehend how sensitive different objectives are to rising levels of uncertainty. It gives a decision-maker
information about which probability levels are appropriate for unclear parameters.

6 Conclusion

In multi-objective optimization, a hyperbolic membership function and a fractional fuzzy goal programming
technique are shown to be effective methods for managing the problem’s intrinsic uncertainty. The proposed
models and techniques are not only theoretically sound but also practically applicable, by using computational
results. The sensitivity analysis provides insights into the robustness of the proposed model. Overall, this
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research contributes to the field by offering a comprehensive framework that combines fractional programming,
fuzzy goal programming, and stochastic modeling to tackle a practical transportation problem with inherent
uncertainties. Stochastic optimization approaches, like simulation-based optimization, robust optimization,
and stochastic programming, are frequently used to solve this challenge in order to discover dependable,
strong solutions that function well under uncertainty in the future achieve global solution. The optimization
challenge is solved with the Lingo software.
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