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Abstract 

This paper presents an efficient numerical method for approximating variable-order fractional 

derivatives using an Integro spline quasi-interpolation approach. The proposed technique is extended 

to address nonlocal variable-order weakly singular integro-differential equations. Several illustrative 

examples are provided to validate the effectiveness and performance of the numerical scheme. 

Additionally, the optimal error orders are determined by minimizing the mean absolute error, 

demonstrating the method’s accuracy and computational efficiency  . 
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1 Introduction 

Integro-differential equations have emerged as a powerful tool for describing complex 

phenomena over recent decades [1-3]. These equations have found widespread applications in diverse 

fields, including physics, chemical kinetics, heat transfer, biological sciences, and viscoelasticity [4-7]. 

Various numerical methods have been developed to solve these equations, with notable approaches 

including Chebyshev collocation [8], Chebyshev pseudospectral methods [9], hat functions [10], and 

Haar wavelets  [11, 12]. 

The concept of variable-order fractional operators, also known as nonlocal variable-order 

operators, was first introduced by [13]. These nonlocal operators are distinguished by their ability to 

preserve memory hereditary characteristics in dynamical systems. While fixed-order nonlocal operators 

characterize system memory using a uniform template, variable-order operators offer the flexibility to 

represent memory effects with varying templates. This has led to extensive research in both differential 

and integro-differential equations incorporating nonlocal operators of fixed and variable orders   [14-

19]. 

We study the nonlocal variable-order weakly singular integro-differential equation 

(NVOWSIDE), which takes the form : 
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 with initial conditions  : 

 
( ) (0) = , = 0,1, , 1,w
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where q   is a positive integer and the solution function ( )u t   is assumed to possess continuous 

derivatives up to order ( 1)q −   .The function Q   is defined as a jointly continuous mapping from 

   to   ,where    denotes the interval [0, ]T   .Additionally, ( )P t   represents a known 

continuous function on  . In this formulation, we utilize Variable-Order (VO) nonlocal operators, 
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which were originally introduced by [20] and subsequently expanded upon in [21]. These operators are 

characterized as follows: 

Definition 1  The VO nonlocal derivative is stated as   
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 and the VO nonlocal integral is stated as  
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where ,t R +  and ( )   denotes the Gamma function.  

This research advances the field of numerical methods for NVOWSIDEs through three significant 

contributions. First, the study introduces novel numerical techniques that demonstrate enhanced 

computational accuracy and improved convergence order compared to current methodological 

approaches. Second, the research comprehensively examines the impact of different fractional orders 

on the mathematical modeling and solution of these complex differential equations. Third, the work 

systematically identifies and determines the optimal fractional orders that maximize computational 

efficiency and precision in NVOWSIDEs, thereby providing a robust methodological framework for 

researchers and practitioners working in this specialized domain. 

The remainder of this paper is organized as follows. In Section 2, we present a novel and 

effective methodology for discretizing nonlocal operators through the application of integro spline quasi 

interpolation techniques. Section 3 serves two main purposes: first, we demonstrate the process of 

determining optimal Variable-orders through detailed analysis of two representative functions; second, 

we thoroughly investigate how our proposed algorithms can be effectively applied to approximate 

NVOWSIDEs. Finally, Section 4 synthesizes our key findings, discusses the implications of our 

research, and presents our concluding remarks. 

2 Theoretical Results  

In this section, we present a numerical approach to solve NVOWSIDE (1). For this purpose, let 

us consider a discrete time interval    where =mt m   for = 0,1,..,m M   .Here,    represents the 

uniform step size, and h  denotes the size of each subinterval. The values of m  and M  are positive 

integers. 

We define ( )t   as a quadratic polynomial on each subinterval 1[ , ]j jt t +   ,where 

0 10 = < < < =mt t t T   .Specifically, ( )t   is referred to as an integro quadratic spline quasi-

interpolant (IntQuaSpline-QI) function, constructed with respect to the given mesh points 

0 1= [ , , , ]mt t t t  .Assuming that lJ  represents the integral of ( )u t  over each subinterval 1[ , ]l lt t +  ,we 

can express this relationship as follows : 
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 consequently, l  is solely determined by the integral values over the interval 3[ , ]l lt t + . 

Corollary 1 [22]. Assume 
3( ) ( )u t C   ,hence  
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Corollary 2 [23]. Assume =
T

M
      ,is divided to m   uniform sub-intervals and 

( ) ( )u t C   ,we have  
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For the time points mt  ,where =1,..., 1m M −  ,we have the following relationships : 
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For each = 0,1, , 1l m−  ,we utilize an IntQuaSpline-QI function ( )t  with mesh points at 

lt  to approximate the function ( )u t  ,resulting in the expressionss: 
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By substituting Eq. (14) into Eq. (11), we obtain:  

  

      (

)

( ) 11
1( )

0,

=0

( ) 11
1 2 ( )

1 23
=0

( ) 2 ( )

1 1 2 1

( )
( ) ( )

( ( ))

( )
= ( )

12 ( ( ))

(( )( ) ( )( )) ( ) .

q tm t
lv t m

t l
m t

ll

q tm t
l qm

l l
t
ll

q q

l l l l l l l

t
u t d

q t

t
t

q t

t t t t t d


  


 

       

− −−
+

− −−
+

+ −

− + + −

−


 −

−
−

  −

− − − + − − + −





 (15)  

 

Moreover, by substituting Eq. (13) into Eq. (12), we obtain : 
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Consequently, we derive the following propositions : 

Proposition 1  Assume that 
4( ) ( )qu t C +   be a function, 1< ( )q t q−   .The discretization of the 

nonlocal derivative can be stated from the IntQuaSpline-QI approximation as shown below  

 

11
( ) ( ) ( ) ( )

0, , 2 2 , 1 1 ,

=0

( ) = ( ),
6 ( 3)

qm m
v t q q q

t l l l l l l l l l
m

l m

u t
q

     

− −−

− − − −


+ +

 − +
  (17) 

where, for = 0,1, ,l m  l  ,is defined in (7), and  
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Proposition 2  Assume that 
4( ) ( )u t C    be a function, ( ( )) > 0Re t   .The discretization of the 

nonlocal integral can be stated from the IntQuaSpline-QI approximation as shown below  
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where, for = 0,1, ,l m  l  ,is defined in (7), and  
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Proposition 3  Let 
3( ) ( )qu t C +    be a function, 1< ( )q t q−    ,and 

( 3) ( )q

t u t+

     ,where 

> 0   .Under these assumptions, the truncated error of presented algorithm is bounded, satisfying the 

following inequality : 
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Proof. Suppose ( )t  is an IntQuaSpline-QI function that approximates ( )u t  within the subinterval 

1[ , ]l lt t +    ,where = 0,1,..., 1l m−   .For an arbitrary value 1( , )l l lt t +   ,we can establish the 

following relationship : 
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Proposition 4  Let 
4

1( ) ( )qu t C +   be a function defined on the interval 1 2 2= [ , ]Mt t −   .Here, 
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where = 2,3, , 3m M −  . 

Proof. Consider 
1
( )t   as an IntQuaSpline-QI function utilized to approximate ( )u t   within the 

subinterval 1[ , ]l lt t +    ,where = 2,3,...,l m   .Hence, for any arbitrary value 1( , )l l lt t +   ,the 

following relation holds : 
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Proposition 5  Let 
3( ) ( )u t C    be a function, and 

3 ( )t u t     ,where > 0   .Under these 

assumptions, the truncated error of presented algorithm is bounded, satisfying the following inequality  : 
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Proof. Suppose ( )t  is an IntQuaSpline-QI function that approximates ( )u t  within the subinterval 

1[ , ]l lt t +    ,where = 0,1,..., 1l m−   .For an arbitrary value 1( , )l l lt t +   ,we can establish the 

following relationship : 
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Proposition 6  Let 
4
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1
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It is worth noting that if the values of 
( ) ( ), = 0,1, ,q

mu t m M  are not available, we can apply the 

following backward finite difference quotient : 
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 where q +  is an arbitrary number and   represents the step size. 

3 Numerical Demonstrations  

Volterra integro-differential equations have found widespread applications across various 

scientific domains, as documented extensively in the literature. These applications span diverse 

phenomena, including diffusion processes, the formation of wind ripples in desert landscapes, heat 

transfer mechanisms, and neutron transport dynamics [24]. To validate the effectiveness of our 

proposed methodology, this section presents several carefully selected examples focusing on Nonlinear 

Variable-Order Weakly Singular Integro-Differential Equations (NVOWSIDEs). All numerical 

computations and simulations were performed using MATLAB version 2019 on a computing system 

equipped with an Intel (R) Core (TM) i7-8850 H processor operating at 2.60 GHz. To provide a 

comprehensive evaluation of our approach, we conduct detailed comparative analyses against existing 

numerical methods, examining both computational efficiency and solution accuracy. These 

comparisons serve to highlight the advantages and potential limitations of our proposed methodology 

in handling such complex mathematical systems. 

A key objective of this research is to determine the optimal nonlocal variable-order (ONVO) 

that minimizes the mean absolute error (MAE). To evaluate the performance of our approach, we 

employ two crucial metrics: the mean absolute error ( M ) and the convergence order ( ECO ), defined 

as follows: 
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The MAE serves as a measure of the average discrepancy between the numerical approximation 

and the exact solution, while the ECO quantifies the method’s convergence rate. These metrics are 

calculated using the error formulations presented in equations (21) and (23), where MAE  represents 
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the absolute difference between the exact and numerical solutions at each point, and M  denotes the 

number of interior mesh points. To construct the ONVO for our examples, we consider two decreasing 

functions with several unknown parameters, specifically structured as follows. 
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To determine the optimal values of the parameters 
ic  , ( =1,2, ,5)i  we employ a genetic 

optimization algorithm. The algorithm operates by minimizing the MAE across all discretized points 

for various step sizes   ,expressed mathematically as  
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It is important to note that during this optimization process, the values of ic  are constrained to 

ensure that both functions 1( )t  and 2 ( )t  remain strictly bounded within the interval ( 1, )q q−   .This 

constraint is essential for maintaining the mathematical validity and physical significance of our 

solution. 

 

 

Example 1  Consider the NVOWSIDE  

 
( )

0, 2( )0 sin

( )
( ) = ( ) , 0 < ( ) 1,

( )

t
v t

t t

u
u t Q t d t

t





+ 

−
  (29) 

with initial condition (0) = 0u  ,where  
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 and , ( )s t   is the Lommel function. It should be noted that ( ) = sin( )u t t  is the exact solution of  (29).  

For Example 1, Table 1 presents the optimized values of coefficients ic   and the corresponding 

minimum MAE values for B-spline [25] and proposed approachs, computed with parameters = 1q  and 

1
=

32
  over the interval [0,2 ]t  . A comparative analysis between our proposed method, the B-

spline approach [25], and the exact solution is provided in Table 2. The results demonstrate that our 

numerical solutions exhibit excellent agreement with the exact solution. Furthermore, the proposed 

algorithm achieves superior accuracy compared to the B-spline method presented in [25]. 
 

Table  1: The minimum values of MAE and optimal parameters of example 1 with 1 1 2= c c t+  and 

2 3 4 5( ) = exp( )t c c c t+  for 
1

=
32

  in [0,2 ]t  . 

MAE [25] MAE 1c  2c  3c  4c  5c  

1.60×10-4 2.32×10-5 0.16 -0.0008 0 0 0 

1.70×10-4 1.78×10-8 0 0 0.5 0.001 0.00025 
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Table  2: Performance comparison between the B-spline method [25] and our developed 

algorithm for Example 1, showing maximum error ( M ), convergence order ( ECO ), and computational 

time (in seconds). Results obtained using optimal variable-order functions 1( ) = 0.16 0.0008t t−  and 

2( ) = 0.5 0.01exp(0.00025 )t t+  for various step sizes   over [0,2 ]t   

    B-spline algorithm [25] Developed algorithm 

( )t    M  ECO  CPu time  M  ECO  CPu time  

 
1

 
16

 45.72 10−  2.69 2.686 54.57 10−  3.60 3.844 

1( )t  
1

 
32

 41.60 10−  2.52 9.000 52.32 10−  3.08 14.562 

 
1

 
64

 53.51 10−  2.48 36.030 51.17 10−  2.74 60.063 

 
1

 
16

 46.63 10−  2.64 2.594 72.17 10−  5.50 3.953 

2 ( )t  
1

 
32

 41.70 10−  2.51 9.532 81.78 10−  5.13 16.156 

 
1

 
64

 43.48 10−  2.48 2.047 94.23 10−  4.64 65.016 

Figure 1 illustrates two key comparisons for equation (29) with variable-order function 

( ) = 0.5 0.01exp(0.00025 )t t+   over the interval [0,2 ]t    using step size 
1

=
32

   :the 

comparison between exact and approximate solutions obtained by our developed algorithm, and the 

logarithmic absolute errors (
10

( )log AE ) for both our method and the B-spline approach  [25]. 
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Figure  1: (Top panel) Comparison of the numerical and exact solutions of (29), (Bottom panel) 

magnitude of the 
10

( )log AE  ,with the B-spline [25] and proposed schemes, 

( ) = 0.5 0.01exp(0.00025 )t t+  and step size 
1

=
32

 . 

Example 2  Consider the NVOWSIDE  

 
( )

0, 2( )0 cos

( )
( ) = ( ) , 1 < ( ) 2,

( )

t
v t

t t

u
u t Q t d t

t





+ 

−
  (31) 

 with initial condition (0) = 0.25u  ,where 

 

2 2 2 ( )

2 2

2 4 ( )

2 2

2 2
22 ( )sin

2 2

2

1 ( ) 3 ( )
[ ,1],[2 , ]; ( ( ) 7 ( ) 12)
2 2 2 2

( ) =
2 (5 ( ))

3 ( ) 5 ( )
[ , 2],[3 , ];
2 2 2 2

(5 ( ))

1 ( ) 1 ( )sin sin
[ ,1],[1 , ];
2 2 2 2

,
4 ( )sin

t

t

t

t t
F t t t t

Q t
t

t t
F t t

t

t t
F t t

t

−

−

 
− − − − + 

 −
 −

 
− − − 

 +
 −

 
+ + − 

 
−

                                (32) 

 and 1 1( , , ; , , ; )s v s vF b b a a t   is the hypergeometric function. It should be noted that 

2exp( )
( ) =

4

t
u t

−
 is the exact solution of (31). 

Following the analysis approach used in Example 1, Table 3 presents the optimized coefficients ic  and 

corresponding minimum MAE values for Example 2 for IQS- [26] and proposed approachs, computed 

with parameters = 2q  and 
1

=
32

  over [0,10]t  .Table 4 demonstrates that our method achieves 

superior accuracy compared to the IQS algorithm [26]. Figure 2 provides a visual comparison for 



 

12 

 

1
=

32
   with variable-order function ( ) =1.63 0.1exp(0.01 )t t−   ,displaying the logarithmic 

absolute errors (
10

( )log AE ) of both our proposed method and the IQS approach [26] across the entire 

interval [0,10]t . 

 

Table  3: The minimum values of MAE and optimal parameters of example 2 with 1 1 2= c c t+  

and 2 3 4 5( ) = exp( )t c c c t+  for 
1

=
32

  in [0,10]t  . 

MAE [26] MAE 1c  2c  3c  4c  5c  

2.71×10-4 1.89×10-6 1.51 -0.001 0 0 0 

3.21×10-4 1.97×10-6 0 0 1.63 0. 1 0.01 

 

 

 

 

 

 

 

 

Table  4: Comparison of ,  and computational time (based on sec.) of 2 using the IQS- [26] and 

developed algorithms, with optimal values of 1 =1.51 0.001t−  and 2( ) =1.63 0.1exp(0.01 )t t+  

and  various values of  in [0,10]t .  

  

    IQS algorithm [26] Developed algorithm 

( )t    M  ECO  CPu time  M  ECO  CPu time  

 
1

 
16

 47.35 10−  2.59 22.562 63.11 10−  4.58 18.220 

1( )t  
1

 
32

 42.71 10−  2.36 80.718 61.89 10−  3.80 78.938 

 
1

 
64

 59.85 10−  2.22 350.188 79.73 10−  3.31 318.000 

 
1

 
16

 48.69 10−  2.53 25.718 63.25 10−  4.54 19.968 

2 ( )t  
1

 
32

 43.21 10−  2.32 91.938 61.97 10−  3.77 86.188 

 
1

 
64

 41.21 10−  2.16 413.844 79.96 10−  4.58 18.220 
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Figure  2: (Top panel) Comparison of the numerical and exact solutions of (31), (Bottom panel) 

magnitude of the , with the IQS- [26] and proposed schemes,  and step size   .  

4 Conclusion 

This study has presented an efficient explicit numerical approach based on Integro spline quasi-

interpolation for approximating variable-order fractional derivatives. The method was successfully 

extended to address nonlocal variable-order weakly singular integro-differential equations, offering a 

robust solution for complex fractional systems. Numerical results demonstrated the method’s high 

accuracy, with optimal error rates achieved by minimizing the mean absolute error. The computational 

efficiency and precision of the proposed approach make it a valuable tool for solving fractional 

differential equations, particularly in scenarios involving nonlocal effects and weak singularities. Future 

research directions may include extending this method to broader classes of integro-differential 

equations and further optimizing its performance for large-scale problems. 
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