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Abstract 

Production maintenance ensures equipment remains in good working order, enabling the generation of goods complying with specifications. 

The purpose of this research was to assess and evaluate the machine performance in one of the plastic industries. This research will determine 

how machine performance is correlated with OEE, MTBF, and MTTR, optimise the OEE variables and forecast the future OEE values. The 

relationship between OEE, MTBF, and MTTR has been analysed by linear and non-linear regression using polynomial and artificial neural 

networks (ANN). Meanwhile, the OEE optimization is performed using SciPy optimizer on linear and nonlinear objective functions, whereas 

the OEE forecasting employs Convolutional Neural Network (CNN) in addition to the ANN and the polynomials. All regression analysis 

indicate OEE is well explained by MTBF and MTTR as all R-squared values are above 95%. Specifically, those R-squared values are 98.25%, 

97.78%, 97.64%, and 95.56%, for ANN, polynomial degree 3, degree 2 and degree 1, respectively. Furthermore, the optimal value of MTBF 

is found to be at least 3.706 whereas that of MTTR is at most 0.899 hours to achieve an OEE value of at least 0.85. Lastly, the accuracy of 

OEE predictions using CNN achieves the best performance by having the lowest RMSE of 0.0156, followed by ANN with an RMSE of 

0.0166, and the polynomials with RMSEs of around 0.02. 
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1. Introduction 

Plastics have become an essential component in every 

technology sector to make human life simple and 

comfortable (Pathak et al., 2023). Plastic is inexpensive 

and its properties make it a popular alternative to metals 

and wood in various applications. It is also advantageous 

in production due to their ease of softening or melting and 

their ease of being molded into many shapes (Islam, 2012). 

The plastics industry has grown due to low production 

costs and energy-efficient techniques and is one of the main 

users of non-renewable resources and sustainability aspects 

that should be considered (Mwanza & Mbohwa, 2017). 

The plastics sector is a large contributor to the world 

economy, exceeding both Gross domestic product and 

energy demand (Pathak et al., 2023).  

The manufacturing business establishes production targets 

to satisfy customer delivery expectations. Sustaining 

consistent and hygienic machine conditions is essential to 

maintaining output in proportion to production capacity. 

Production maintenance ensures that equipment remains in 

good working order, enabling the generation of good 

meeting specifications. The dependability of an industry’s 

machinery significantly influences its capacity to compete. 

More extensive maintenance procedures are undoubtedly 

required for older, heavily used machinery. When the final 

products fail to meet expectations, the production machine 

is not operating optimally. Therefore, to ensure that the 

production process is efficient and high-quality, it is 

imperative to enhance the quality of efficient machine 

maintenance (Nurcahyo, Winanda, et al., 2023). 

Reliability, operating rate, and maintenance costs are 

considered while developing maintenance strategies for 

automated manufacturing lines (Li et al., 2018). The costs 

of downtime, redundancy, and item reliability 

characteristics are some of the elements that influence the 

choice of maintenance method (Stenström et al., 2016) . 

The time allotted for preventive maintenance is dependent 

on the critical component reliability values. Preventive 

maintenance will be performed to obtain and increase the 

reliability value in the future (Pamungkas et al., 2021).  

The mean time between a machine's first failure is known 

as MBTF. A system component or piece of equipment fails 

when it can't operate as intended in a given situation. 

Furthermore, the average time between a failure and a 

device's ability to function again is called the maintenance 

time to repair (MTTR) (Ahmadi et al., 2019a). MTBF and 

MTTR are crucial for production system analysis, 

sustainable improvement, and design (Alavian et al., 

2018). An earlier study proposed a framework for 

conducting a study on reliability, availability, and 

maintainability (RAM) to evaluate the performance of 

power generation machines in office infrastructure 

(Nurcahyo, Tri Nugroho, et al., 2023). RAM are the three 

metrics utilized for evaluating maintenance performance 

and assessing machine performance (Pamungkas et al., 

2021). 
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Beside that, overall equipment effectiveness (OEE), 

measures how well the current production and 

manufacturing process units operate over a given period 

with their intended capability(Ahmadi et al ., 2019b). The 

probability that a device or system will function properly 

at a given time when used under certain ideal conditions is 

known as availability (Simon et al., 2014). MTBF, MTTR, 

OEE, and Availability are preliminary analyses used to 

identify faults and define the machine's condition 

(Pamungkas et al., 2021; Ribeiro et al., 2019).  

Iran Khodro, the leading automotive producer in Iran and 

the Middle East, has transitioned to using compressed air, 

derived from contaminated air, as an alternative to energy 

to optimize its production processes. To achieve this goal, 

the corporation has created a polluted air department 

equipped with 50 air compressors, including screw and 

centrifugal models. Over time, the department has 

consistently expanded in size. They calculate OEE to find 

out the effectiveness of the compressors used (Larky & 

Javidrad, 2019). Another example in the railway industry, 

the cost-benefit analysis method is used to conduct cost-

based analysis for maintenance performance assessment 

(Stenström et al., 2016). In the broader logistics context, 

this approach can be useful to assess the cost-effectiveness 

of various processes and interventions. However, the 

assessment scope in earlier research was somewhat 

constrained, with a primary emphasis on the conventional 

OEE components. In rather large research aimed at 

broadening the area of OEE applications, the scope of 

evaluation has mostly been limited to taking equipment or 

process utilization, operating speed (performance), and 

quality into account as part of an overall efficiency 

evaluation (Garza-Reyes, 2015). 

Taking into account the challenges and prevailing trends, 

this corporate performance study focused on maintenance 

operations in the plastics industry will be conducted by 

calculating the OEE, maintainability, and reliability. 

Hence, this study attempts to determine the OEE based on 

the MTBF and MTTR values instead of all determinant 

variables consisting of availability, quality, and 

performance. The feasibility of our approach will be 

validated using regression analysis with polynomial 

functions and Artificial Neural Networks (ANN). The 

suitability of polynomial functions and ANN for regression 

has been presented in several literatures (Kim et al., 2020; 

Krulický & Brabenec, 2020; Lee et al., 2017; Mattas et al., 

2021). 

Furthermore, it is necessary to undertake numerical 

analysis because the industry frequently encounters excess 

stock and product delivery shortages(Haber & Fargnoli, 

2022; Hosseini et al., 2024; Sayuti et al, 2019)  due to 

unforeseen equipment breakdowns. OEE provides an 

overview of a company's performance based on historical 

data, but it does not optimize or predict future performance, 

which is useful for anticipating problems(Kechaou et al., 

2024).  

Optimization of OEE parameters, namely the availability, 

quality, and performance, has been analyzed through 

various methods, including Genetic Algorithms 

(VivekPrabhu et al., 2014) and Response Surface 

Methodology (Chikwendu et al., 2020; Tonny et al., 2023) 

Similarly, the optimal values of stock keeping units for 

OEE has been computed by Linear Programming using 

LINGO Optimizing Software and Excel Solver  

(Encarnacion et al., 2022). In this study, the OEE 

parameters to optimize are the MTBF and MTTR while the 

method to optimize is the SciPy which can handle both 

linear and non-linear optimization (Virtanen et al., 2020), 

as the objective functions of MTBF and MTTR are formed 

using linear function (Polynomial of degree 1) as well as 

non-linear functions (Polynomial of degree 2 and 3, and 

Artificial Neural Networks). 

In addition, OEE calculations are often performed by the 

end of the production cycle, which makes it quite late to 

provide necessary improvements. Hence, it is necessary to 

predict the estimate of OEE value in advance to allow 

managers to examine the inputs of the production process. 

Machine learning-based models have been used to predict 

future OEE values, such as SVM, random forest, gradient 

boosting, and deep neural networks (El Mazgualdi et al., 

2020), a combination of ANN and genetic algorithm (Al-

Toubi, 2023) and a combination of moving average and 

adaptive neuro-fuzzy inference system. Convolutional 

neural networks (CNN) have produced excellent results for 

time series domains, according to recent studies (Asesh & 

Dugar, 2023; Hou et al., 2018; Markova, 2022). 

Meanwhile, Artificial Neural Network (ANN) has become 

more popular for fitting statistical models and research 

aimed at deep learning to forecast, predict, and capture time 

trends production (Jahn, 2018; Wang, et al, 2023). Hence, 

this study investigates CNN's and ANN’s suitability for 

OEE forecasting based on MTBF and MTTR values. 

Since there has been no previous research discussing 

machine performance assessment using OEE, MTTR, and 

MTBR indicators, as well as optimizing and forecasting 

these OEE, MTTR, and MTBF indicators, this research is 

conducted. The aim of this research includes: 

1. Determining machine performance based on OEE, 

MTBF, and MTTR by examining the relationship 

between OEE, MTBF, and MTTR. 

2. Optimizing the MTBF and MTTR to achieve the OEE 

threshold value as an indicator of machine 

effectiveness. 

3. Forecasting the future values of OEE based on the 

previous values of OEE or the previous values of 

MTBF and MTTR as a basis for management 

decision-making. 

The contributions of this paper are as follows: 

1. Instead of using all variables which determine the 

OEE, this study stresses on the use of MTBF and 

MTTR. 

2. The use of linear and non-linear functions as the 

objective functions during the optimization of OEE 

based on MTBF and MTTR values. 

3. Comparing the feasibility of CNN, ANN and 

polynomial functions to forecast the OEE values. 
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2. Literature Review 

2.1. Machine Performance 

The most important and widely used performance metrics 

in manufacturing are productivity and quality and OEE is 

a quantitative metric that is increasingly used in the 

industry not only to control and monitor the productivity of 

production equipment but also as an indicator and driver of 

process and performance improvement. OEE is capable of 

measuring performance, identifying development 

opportunities, and directing improvement efforts towards 

areas related to equipment or process utilization 

(availability) such as MTBF, MTTR, operational level 

(performance), and quality (Arturo Garza‐ Reyes et al., 

2010) 

2.1.1 Overall Effectiveness Equipment (OEE) 

Compared with when it was first developed, the OEE 

application is now more extensive. At the point, OEE is a 

method for efficient corrective maintenance actions before 

significant failure occurs and can be used as an indicator in 

a process to determine whether to conduct process 

improvement activities (Nurcahyo, et al., 2023). OEE is 

one of the performance evaluation methods that are most 

common and popular in the production industries (S. 

Nayak et al., 2020). Organizations, in this case the industry 

and other businesses, make these attempts to carry out 

continual improvements, which ultimately lead to further 

advances. Each industry is expected to grow and endure 

into the future while keeping up with the times thanks to 

growing power and competition (Nurcahyo et al., 2019) To 

guide remedial action, OEE seeks to identify lost time in 

the production system (Kechaou et al., 2024). Furthermore, 

organizations can evaluate their current state and begin to 

enhance them using OEE (Kifta & Putri, 2021). OEE offers 

a quantitative matrix to assess the efficiency of machinery 

and process performance based on availability, 

performance, and quality (Garza-Reyes, 2015). The OEE 

calculation is as follows (Nakajima, S., 1988): 

 

𝑂𝐸𝐸 = 𝐴𝑉 𝑥 𝑃𝐸 𝑥 𝑄𝑅               (1) 

 

where AV is Availability, PE is Performance Efficiency, 

QR is Quality Rate. 

The relationship between the time available for production 

and the actual time that production equipment is employed 

is referred to as availability (Kechaou et al., 2024). 

According to (Kechaou et al., 2024), scheduled downtime 

can be acquired through rest, meetings, preventive 

maintenance, and machine cleaning. The availability 

calculation is as follows (Nakajima, S., 1988): 

 

𝐴𝑉 =
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛 𝑇𝑖𝑚𝑒

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
 𝑥 100% 

(2) 

 

The link between production time and time available for 

production is referred to as performance efficiency  

(Kechaou et al., 2024). To show the relationship between 

the quantity produced and the production time of the 

machine, the number of products also influences the 

Performance Efficiency rating (Nakajima, S., 1988) 

 

𝑃𝐸 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑥 𝐼𝑑𝑒𝑎𝑙 𝑅𝑎𝑡𝑒 𝑅𝑢𝑛

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛 𝑇𝑖𝑚𝑒
 𝑥 100% 

(3) 

 

The quality factor or quality rate calculates the number of 

faults. When there is a production failure, defective 

products impact production. The quality rate was 

calculated using the following formula (Nakajima, S., 

1988):  

.𝑄𝑅 =
𝐺𝑜𝑜𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡
 𝑥 100% 

(4) 

 

2.1.2 Mean Time Between Failure (MTBF) 

 

The reliability of machines takes regular machine failures 

and planned downtime into account. The equation is used 

to calculate reliability using the MTBF formula  

(Dervitsiotis, 1981): 

 

𝑀𝑇𝐵𝐹 =
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛 𝑇𝑖𝑚𝑒

𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

(5) 

 

2.1.3 Maintenance Time To Repair (MTTR) 

 

The maintainability of the machine is influenced by the 

time and frequency of machine breakdowns. Equation is 

used to calculate maintainability using the MTTR formula 

(Dervitsiotis, 1981): 

 

𝑀𝑇𝑇𝑅 =
𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 𝑇𝑖𝑚𝑒

𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

(6) 

2.2 Optimizing and forecasting  

Calculations for optimizing and forecasting analysis can 

use, among others, linear regression, polynomial 

regression, and ANN. However, for forecasting, CNN 

analysis can be added. 

2.2.1 Linier regression 

Regression analysis is typically employed in forecasting 

and prediction, where its use closely parallels the field of 

machine learning (Jia et al., 2019). Crucially, regression 

analysis by itself only reveals relationships between a 

dependent variable and a defined dataset made up of many 

variables  (Maulud & Abdulazeez, 2020). According to 

(Kumari & Yadav, 2018), linear regression is a type of 

regression that displays a linear relationship and further 

determines the correlation between the dependent variable 

and the independent variable predictor. Simple regression 

is a form of linear regression that involves using only one 
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predictor variable to determine the target variable (Patil & 

Patil, 2021). While the independent variables may be 

categorical or continuous, the target value must be real or 

continuous (Patil & Patil, 2021). The equation for simple 

regression is as follows: 

𝑦 =  𝑎0 + 𝑎1𝑥 + 𝜀 
(7) 

Where, a0 = intercept of line, a1 = slope of line, e = error/ 

miscalculation, x, y = predictor and target respectively. 

Multiple linear regression analysis is conducted when there 

are multiple predictor values that have a cause-and-effect 

connection with the target value (Uyanık & Güler, 2013). 

In the context of simple regression, multicollinearity—the 

lack of intercorrelation between the values of the 

predictors—occurs infrequently or never at all. The 

equation for multiple regressions is as follows: 

 

𝑦 =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3+. . . . +𝑏𝑛𝑥𝑛 (8) 

 

Where, y = output/response variable, b0, b1, b2, b3, bn = 

coefficients of the model, and x1, x2, x3, xn = predictor 

value. 

2.2.2 Polynomial regression 

Polynomial regression is a specific form of linear 

regression that is used when the linear regression model has 

low accuracy or efficiency because of numerous errors or 

miscalculations (Patil & Patil, 2021). To obtain the highest 

accuracy while minimizing the effects of over-fitting or 

under-fitting, we often fit the regression line using a 

polynomial equation that fits the data in the best curvilinear 

form. Since linear regressions do not perform well in this 

situation, the dataset that was run through the model was 

primarily nonlinear (Patil & Patil, 2021). The equation for 

multiple regressions is as follows: 

 

𝑦 =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3+. . . . +𝑏𝑛𝑥𝑛 
(9) 

 

Where, y = output/response variable, b0, b1, b2, b3, bn = 

coefficients of the model, and x1, x2, x3, xn = predictor 

value. 

 

2.2.3 Artificial Neural Networks (ANN) 

ANN, which has been used successfully in both 

classification and regression problems (Jacob Hallman, 

2019; Jahn, 2018) typically consists of multiple layers of 

nodes with an input layer that receives data having various 

features and an output layer for the final output. Fig 1 

illustrates a fully connected neural network with one input 

layer, two hidden layers, and an output layer. The general 

function of an ANN, as stated in (Crone & Kourentzes, 

2009), can be written as follows: 

𝑓(𝑋, 𝑤) = 𝛽0 + ∑ 𝛽ℎ𝑔(𝛾0 + ∑ 𝛾ℎ𝑖𝑥𝑖

𝐼

𝑖=0
)

𝐻

ℎ=1
 (10) 

  

Where x = [x0, x1, ..., xn] is the vector of input data having 

n features and w = (β, γ) are the weights. Where I and H 

are the number of input and hidden units in the network, 

respectively, and g is a nonlinear transfer function. During 

the experiment, the transfer functions used in hidden nodes 

are the Rectified Linear Unit (ReLU), which produces 0 as 

an output when x < 0 and produces a linear with a slope of 

1 when x > 0, as stated in (Agarap, 2018). A multilayer 

neural network with only one hidden layer is capable of 

approximating a continuous function of n real variables 

arbitrary well (Csáji, 2001; Hsu et al., 2021) 

 

2.2.4 Convolutional neural networks (CNN) 

 

CNNs are a analysis technique that may be applied to 

environmental and climate change data to identify, 

categorize, and predict patterns (Haidar & Verma, 2018; 

Shu et al., 2021). In addition, the CNN module is employed 

to detect the local trend of the load data pattern (Rafi et al., 

2021). CNN are network topologies commonly utilized in 

machine vision and classification applications (Haidar & 

Verma, 2018). As a result, several activation functions 

have been n used to map the input features into a set of 

categories. A CNN comprises of three layers: 

convolutional, pooling, and fully connected. A 2-

dimensional CNN is usually used for image classification 

while 1-dimensional CNN can be employed for time series 

forecasting. (Haidar & Verma, 2018; Asesh & Dugar, 

2023). 

3. Methods 

The purpose of this study was to assess machine 

performance in the plastic industry. The steps to assess 

such performance include collecting and analyzing data 

related to OEE from the plastic industry that supplies 

straws for the packaged beverage industry. The next step is 

to determine the relationship between the independent 

variables (MTBF and MTTR), and its dependent variables 

(OEE). The optimum values of the dependent variables are 

then determined by the optimization function. Finally, the 

future values of OEE are forecasted based on either the 

dependent variables or the previous value of OEE itself. 

The afore mentioned steps are illustrated in Fig 1. 

One production line uses the following four machines: an 

extruder machine, a flexible machine, a wrapping machine, 

and a packing machine. Considered factors for evaluating 

performance include total machine efficiency, maintenance 

capability, and machine reliability. MTBF is used to 

measure the ability and reliability of a machine, MTTR for 



Journal of Optimization in Industrial Engineering, Vol.17, Issue 2, Summer & Autumn 2024, 287-302 

291 

 

machine maintenance, and OEE to measure the overall 

effectiveness of the machine. 

Data collection was taken from the industrial maintenance 

division data for a period of 1 year, January-December 

2023. The data used are the planned production time, down 

time, ideal run time, breakdown time, breakdown 

frequency, total product, and Good Product. To make 

changes increase performance, the first step is to identify 

issues in order to determine the reason for poor engine 

performance. Finding the most recent study based on issues 

that emerge is how literature reviews are completed. To 

identify the machines that required ongoing improvement, 

data processing was performed on four of the machines 

before the study was conducted.  

Fig 2 shows the relationship among the parameters 

availability, performance efficiency, quality rate, 

reliability, and maintainability. 

 

 
Fig 1. Study stages 

 

 
Fig 2. Production maintenance data correlation 

 

The computation of machine performance involves the 

interdependence of OEE, reliability, and maintainability. 

The OEE calculation includes an important element known 

as availability, which is strongly tied to reliability and is 

dependent on reliability and maintainability (Schiraldi, 

2013). The OEE calculation measures asset management 

effectiveness based on reliability, availability, and 

maintainability indicators (Arturo Garza‐ Reyes et al., 

2010; Gibbons & Burgess, 2010). The OEE availability 

equation emphasizes on maintenance, which is classified as 

MTTR, whereas OEE availability focuses on the total time 

between failures, classified as MTBF (Gibbons & Burgess, 

2010) 
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                                                    Table 1 

                                               Calculation of OEE criteria 

Month 
Mc. Extruder 

Av PE QR OEE 

January 95,29% 85,40% 99,60% 81,05% 

February 95,36%, 80,26% 99,20%, 75,92% 

March 95,44%, 80,53% 98,40%, 75,63% 

April 95,42%, 90,13% 98,90%, 85,05% 

May 95,29% 92,75% 98,80%, 87,32% 

June 95,42%, 89,32% 99,00%, 84,37% 

July 95,29% 84,32% 99,11%, 79,64% 

August 95,29% 83,65% 98,80%, 78,76% 

September 95,42%, 77,14% 99,00%, 72,86% 

October 95,29% 79,34% 98,10%, 74,16% 

November 95,56% 84,71% 98,70% 79,90% 

December 95,44%, 84,70% 98,00% 79,22% 

Average 95,38% 84,35% 98,80%, 79,49% 

 Mc. Flexible    

January Av PE QR OEE 

February 95,29% 85,06% 98,99% 80,23% 

March 95,36%, 79,61% 98,91% 75,09% 

April 95,13% 84,98% 98,85% 79,91% 

May 95,42%, 89,14% 98,98% 84,19% 

June 95,29% 91,63% 98,99% 86,44% 

July 95,42%, 88,42% 98,82% 83,38% 

August 95,29% 83,57% 98,21% 78,21% 

September 95,29% 82,65% 98,86% 77,86% 

October 95,42%, 76,36% 98,90%, 72,06% 

November 95,44%, 75,20% 98,91% 70,99% 

December 95,42%, 86,53% 97,92% 80,85% 

Average 95,44%, 83,00% 98,90%, 78,35% 

 Mc. Wrapping    

January 94,35% 102,05% 98,30% 94,64% 

February 95,36%, 78,74% 98,90%, 74,26% 

March 95,13% 84,01% 98,10%, 78,40% 

April 95,42%, 88,23% 98,80%, 83,18% 

May 95,29% 90,71% 98,40%, 85,05% 

June 95,42%, 87,38% 98,44% 82,08% 

July 95,29% 82,08% 98,44% 76,99% 

August 95,29% 81,71% 98,91% 77,01% 

September 95,42%, 75,53% 99,22% 71,50% 

October 95,44%, 74,38% 97,70% 69,36% 

November 95,42%, 84,73% 97,90% 79,15% 

December 95,44%, 82,09% 98,21% 76,95% 

Average 95,27% 84,30% 98,44% 79,05% 

 Mc. Packing    

January 95,29% 82,77% 98,60%, 77,77% 

February 95,67% 72,45% 98,09% 67,99% 

March 95,29% 79,53% 98,99% 75,02% 

April 95,09% 93,72% 98,80%, 88,05% 

May 95,29% 89,26% 98,93% 84,14% 

June 95,42%, 86,02% 98,92% 81,19% 

July 95,29% 80,80% 99,10% 76,30% 

August 95,29% 80,82% 99,01% 76,25% 

September 95,42%, 74,94% 98,90%, 70,72%, 

October 95,29% 75,21% 98,91% 70,89% 

November 95,42%, 82,95% 98,77% 78,18% 

December 95,29% 83,44% 98,10%, 78,00% 

Average 95,34% 81,82% 98,76% 77,04% 

 

 

Fig. 3. Calculation of the OEE values 
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4. Results and Discussion 

4.1. OEE calculation 

The information gathered was derived from production and 

maintenance log sheet data and interviews with 

maintenance professionals.  Calculation of OEE criteria is 

shown Table 1. The   average OEE of every machine for 

each criterion, if shown as a graph, is described in Fig 3. 

Out of all OEE variables and the three supporting sub-

variables, the extruder machine has the highest value in 

availability (95,38%), performance efficiency (84,35%) 

and quality rate (98,80%) and shows that out of the four 

machines, the extruder machine is the best condition, can 

produce the most items as planned and fewest rejected 

products. The lowest OEE (77,04%), including the 

performance efficiency sub-variable, packing machine 

requires greater attention. Packing machine has the lowest 

anticipated production time because they are the most 

likely to breakdown. One of the machines has the highest 

repair time (4 h 42 min and 36 s) and the highest breakdown 

frequency (32 times a year). 

and improved quality control procedures are required to 

increase operational efficiency. A business needs a quality 

improvement plan if the OEE value is below the value 

(Kifta & Putri, 2021).  

 

Table 2 

Ideal OEE versus calculated OEE 

Criteria 
Ideal 

Value 

Calculation results 

Extruder Flexible Wrapping Packing 

Availability >90% 95,38% 95,35% 95,27% 95,34% 

Performance 

Efficiency 
>95% 84,35% 83,85% 84,30% 81,82% 

Quality Rate >99% 98,80%, 98,77% 98,44% 98,76% 

OEE >85% 79,49% 78,96% 79,05% 77,04% 

 

Table 2 shows the comparison of ideal values calculation 

of OEE. In contrast to the ideal OEE value is 85% 

(Nakajima, S., 1988),  four machines in the plastic industry 

satisfy the availability criteria with an ideal value of >90% 

but none satisfy it; none of them satisfy the performance 

efficiency criteria with an ideal value of >95%; and also 

none of them satisfy the quality rate criteria with an ideal 

value of >99%. In conclusion, none of the equipment used 

in the plastic industry satisfies the optimal OEE value. This 

demonstrates that even though there is hardly any 

downtime for machines, output quality and operational 

efficiency are still top priorities. The lack of tools that 

provide the optimal OEE value indicates that availability, 

performance efficiency, and quality level are not balanced. 

Machine performance audits, improved maintenance, 

increased operational training, 

Because it entails judgments about corporate policy that 

must be developed, top management approval is required. 

Availability of machines to produce products as planned. 

From the planned time, almost all machines can be used 

and operated within the planned production time. The 

performance efficiency of the machines in the plastic 

industry is below the ideal value because to determine the 

ideal run rate value, more analysis must be done in 

accordance with production capacity and available 

resources, which will make the ideal run rate value more 

representative.  

The quality rate is still within the adequate limits even 

though it is below the ideal value because the plastic 

industry management policy provides a maximum product 

rejection target of 2%. 

The OEE results from the plastic industry are below ideal 

values; therefore, companies need to increase machine 

capacity, train operators, and develop preventive 

maintenance to ensure the best machine performance (Kifta 

& Putri, 2021). The next step is to determine a strategy to 

increase the OEE value because 

not all machines have the same maintenance strategy 

depending on the type of machine, operating conditions, 

and the time value of the machine  (García & Salgado, 

2022). 

Table 3 shows the calculations of OEE, MTBF and MTTR 

over the course of a year by looking at the details per 

month. The OEE in 2023 is 0.786 (78.6%). The value is 

still below the ideal OEE so that requires evaluation and 

improvement measures for the performance of the next 

machine by continuous improvement in their products, 

processes, production facility and  identify the important 

components in the system  (D. M. Nayak, 2013; Sayuti et 

al, 2019; Simon et al., 2014) 

 
Table 3 

OEE values per months 

Month Av PE QR 
OEE   

(Av x PE x QR) 

January 0,951 0,888 0,988 0,834 

February 0,954 0,778 0,988 0,733 

March 0,952 0,823 0,986 0,772 

April 0,953 0,903 0,989 0,851 

May 0,953 0,911 0,988 0,857 

June 0,954 0,878 0,988 0,828 

July 0,953 0,827 0,987 0,778 

August 0,953 0,822 0,989 0,775 

September 0,954 0,760 0,990 0,718 

October 0,954 0,760 0,984 0,714 

November 0,955 0,847 0,983 0,795 

December 0,954 0,833 0,983 0,781 

Average 0,953  0,836  0,987  0,786 
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Table 4 

Comparison MTBF, MTTR, and OEE 

Month Mc. Extruder Mc.Flexible Mc.Wrapping Mc. Packing 

 MTBF MTTR OEE MTBF MTTR OEE MTBF MTTR OEE MTBF MTTR OEE 

January 4,765 0,180 0,811 0,000 0,000 0,802 0,000 0,000 0,946 2,382 0,180 0,778 

February 2,967 1,070 0,759 0,742 0,857 0,751 1,483 0,853 0,743 4,783 1,740 0,680 

March 0,000 0,000 0,756 0,000 0,000 0,799 0,000 0,000 0,784 2,382 0,060 0,750 

April 4,771 0,066 0,851 0,000 0,000 0,842 2,385 0,102 0,832 0,000 0,000 0,880 

May 3,176 0,030 0,873 0,000 0,000 0,864 4,765 0,059 0,851 3,176 0,475 0,841 

June 4,771 0,161 0,844 0,000 0,000 0,834 0,000 0,000 0,821 1,908 0,195 0,812 

July 3,176 0,137 0,796 0,000 0,000 0,782 3,176 0,027 0,770 2,382 0,319 0,763 

August 0,000 0,000 0,788 2,382 0,258 0,779 0,000 0,000 0,770 0,000 0,000 0,763 

September 0,000 0,000 0,729 0,000 0,000 0,721 1,590 1,023 0,715 3,181 1,658 0,707 

October 3,176 1,533 0,742 0,000 0,000 0,710 1,409 0,543 0,694 0,000 0,000 0,709 

November 4,938 0,380 0,799 0,000 0,000 0,808 3,181 0,045 0,792 1,363 0,082 0,782 

December 0,000 0,000 0,792 0,000 0,000 0,784 3,288 1,261 0,769 0,000 0,000 0,780 

Average 3,967 0,445 0,7949 0,2603 0,558 0,7896 2,660 0,489 0,7905 2,695 0,589 0,770 

4.2. Relationship between OEE, MTBF, MTTR,  

The average values of the OEE MTBF, and MTTR of the 

four machines collected from the industrial maintenance 

division over a one-year period are shown in Table 4.  

The machine with the highest MTBF is the most reliable 

because the distance between each failure and other 

damage is the furthest, namely, on the extruder machine. 

The extruder machine also has a high availability value 

compared with the other three machines, however, based 

on the frequency of machine failure, which are rare, 

flexible machines have the best MTBF because 

breakdowns occur only in February and August. 

MTTR with the value is the one with the smallest value. 

The extruder machine has the smallest MTTR value, 

indicating the fastest repair process. The highest OEE value 

is owned by the extruder machine, indicating that the 

extruder machine can be considered the most effective 

compared to other machines. Therefore, based on the 

results of the extruder machine, it can be concluded that the 

OEE value is directly proportional to the MTBF and 

inversely proportional to the MTTR. 

 
Fig. 4. Relationship between the MTBF, MTTR, and OEE values 
 

Fig 4 shows a graph of the relationship between the MTBF, 

MTTR, and OEE values for each machine in the plastic 

industry, and no corrective action has been  

taken for problems related to machine failure. The MTBF 

values appear to be more fluctuating in the four machines 

when compared with the values of MTTR and OEE. 

4.3. Multiple linear regression for OEE,MTBF, TTR 

In addition to the calculation and observation of OEE 

results, validation of the relationship between OEE, 

MTBF, and MTTR is necessary. The SPSS (Statistical 

Package for the Social Sciences) software is the instrument 

used for testing. Based on the SPSS output, the 

Entered/Removed Variables column indicates the variables 

used in this study, and the Entered Variables column shows 

the independent variables used. It can be seen that the 

independent variables are MTTR and MTBF. It can be 

explained that R-Square is the proportion of variance in the 

independent variables that can be explained by the 

dependent variable. There was a 96.6% variation in MTTR 

and MTBF, as explained by the OEE value 

 Table 5.  

  SPSS results of the coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

B 
Std. 

Error 
Beta 

1 (Constant) .614 .024  26.067 .000 
MTBF .065 .007 .722 8.986 .000 

MTTR -.039 .008 -.413 -5.145 .001 

a. Dependent Variable: OEE 

 

Table 5 demonstrates that the significance level (sig,) 

<0.05, indicating that the variable has a high influence on 

the dependent variable. MTBF has a considerable positive 

effect (8.986) on OEE, however MTTR has a significant 

negative impact (-5.145). 

 

Based on the results of multiple linear regression analysis 

calculations using SPSS, the following equation is 

obtained: 

 

𝑦 = 0,065𝑥1 − 0,039𝑥2 + 0.614 
(11) 

 

where y is the OEE value, x1 represents the MTBF, and x2 

represents the MTTR. 

3,967

1.562

2.660 2.695

0.445
0.558 0.489 0.589

0.7949 0.790 0.790 0.770

Extruder Flexible Wrapping Packing

MTBF MTTR OEE
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4.4.  Polynomial and Neural Network Regression 

for Fitting OEE, MTBF, and MTTR values 

 

To complement the SPSS validation result on multivariate 

linear regression, this study also attempts to determine the 

nonlinear relationship between OEE as a dependent 

variable and MTBF and MTTR as independent variables. 

This nonlinear relationship is simulated using polynomials 

of degrees 2, 3, and the ANN. The polynomial of degree 1 

was also computed for comparison with the previous 

calculation. The values of MTBF, MTTR, and OEE were 

first averaged before data processing with Python, as 

indicated in Table 6. 

From these average values, multivariate polynomial 

regression computations with a degree of three are then 

performed in Python, yielding the following equation: 

𝑂𝑟𝑑𝑒𝑟 1: 𝑢 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 
(12) 

𝑂𝑟𝑑𝑒𝑟 2: 𝑢 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥2 + 𝑑𝑥𝑦 + 𝑒𝑦2 + 𝑓 
(13) 

𝑂𝑟𝑑𝑒𝑟 3: 𝑢 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥2 + 𝑑𝑥𝑦 + 𝑒𝑦2 + 𝑓𝑥3

+ 𝑔𝑥2 + ℎ𝑥𝑦2 + 𝑖𝑦3 + 𝑗 
(14) 

 

Table 7 displays the constant coefficient values that were 

discovered throughout the data processing. Subsequently, 

the multivariate polynomial regression equation is adjusted 

to include their constant coefficients. For illustration, the 

third-order polynomial regression equation takes the 

following form after the constant coefficient values are 

substituted: 
 

𝑢 = −3,21064 (𝑀𝑇𝐵𝐹) + 0,01508 (𝑀𝑇𝑇𝐹) +
1,04639 (𝑀𝑇𝐵𝐹)2 − 0,02208 (𝑀𝑇𝐵𝐹)(𝑀𝑇𝑇𝑅) +
0,01416 (𝑀𝑇𝑇𝑅)2 − 0,10968 (𝑀𝑇𝐵𝐹)3 +
0,00839 (𝑀𝑇𝐵𝐹)2 (𝑀𝑇𝑇𝑅) −
0,01886 (𝑀𝑇𝐵𝐹) (𝑀𝑇𝑇𝑅)2 −
 0,00284 (𝑀𝑇𝑇𝑅)3 +  3,96221  

(15) 

 

Equation 15 is an optimization equation using the third-

order multivariate polynomial regression method, where 

the coefficient values are based on calculations in Table 7.  

Meanwhile, for the Neural Networks, the number of inputs 

is 2, which represents MTBF and MTTR, while the number 

of nodes in both hidden layers is set to 32, as suggested by 

the experiments in (Thomas et al., 2015).  The output layer 

requires only one node for the regression problem. Data 

standardization was performed by eliminating the mean 

and scaling to unit variance. The standard score of a sample 

x is determined as z = (x - u) / s, where u is the mean of the 

training samples and s is the standard deviation. The scaled 

regression result is later converted back to its original scale. 

The monthly predicted values of OEE based on the MTBF 

and MTTR values from the polynomials and ANN are 

shown in Table 8. For in-sample accuracy, where the 

testing and training are the same monthly data, the best R2 

is produced by Polynomial 3, followed closely by ANN 

and then Polynomials 2 and 1. For out-of-sample accuracy, 

where the testing data are set aside from the training data, 

daily data, which is interpolated from the monthly data, is 

used because the monthly data are insufficient for further 

splitting into training and testing. Setting 20% of the data 

as testing, the best regression accuracy is given by ANN, 

followed by Polynomial 3, Polynomial 2, and Polynomial 

1.  

The study uses spline smoothing to fill the time series gaps 

and obtain the interpolated daily data, as shown in Fig 5. 

As suggested by (Wang, 2013), spline interpolation, which 

uses several formulas of a low degree polynomial to pass 

through all the data points, is preferred over polynomial 

interpolation because the interpolation error can be 

minimized. The interpolated daily data of MTBF, MTTR, 

and OEE are superimposed in two aligned subgraphs in Fig 

5 to see the relationship among those variables. As 

emphasised by the correlation graph in Fig 6, MTBF and 

OEE are positively correlated whereas MTTR and OEE are 

negatively correlated. 

 
Fig 5. The trends of MTBF, MTTR, and OEE 

 
Fig.  6. Correlation coefficients between MTBF, MTTR, and 

OEE 

4.5. Optimizing OEE 

The optimal values of MTBF, MTTR, and OEE are 

determined by setting a minimal OEE value of at least  

85%, while MTBF should be as high as possible and 

MTTR as low as possible. During the experiment, Python’s 

SciPy function, which provides optimization functions for 

minimizing (or maximizing) objective functions, possibly 
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subject to constraints, is used to determine the optimal 

values of x variables with the following specification: 

 

Objective function: y = f(x) 

Constraint: 0,85 ≤ y ≤ 1 

min (MTBF values) ≤ x1 ≤ 1000 

0 ≤ x2 ≤ max of (MTTR values) 
 

Where f is either a polynomial function or a neural network 

for regression. The initial values of MTBF and MTTR can 

be set to arbitrary numbers and start with the maximum 

value of MTBF and MTTR. The COBYLA (Constrained 

Optimization BY Linear Approximation) optimization 

method is used because it takes the inequality constraints 

and a scalar value for the objective function. The optimal 

MTBF, MTTR, and OEE values determined by the SciPy 

function are shown in Table 9. 

The optimal OEE values, which are obtained by applying 

Polynomials 1, 2, and 3 as well as ANN, are representation 

of the optimal values for MTBF, MTTR, all 0,85 or 85%, 

as shown in Table 8. Fig 7 shows the possible paths of 

MTBF and MTTR to get an optimal OEE value. The area 

above the optimal point of MTBF and MTTR in these 

figures indicates the possibility of OEE improvement by 

increasing the MTBF values beyond that optimal point or 

by decreasing the MTTR values below that optimal point. 
 

 

Table 6 

Average values of MTBF, MTTR, and OEE 

Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

MTBF 3,57 2,49 2,38 3,58 3,71 3,34 2,91 2,38 2,39 2,29 3,16 3,29 

MTTR 0,18 1,13 0,06 0,08 0,19 0,18 0,16 0,26 1,34 1,04 0,17 1,26 

OEE 0,83 0,73 0,77 0,85 0,86 0,83 0,78 0,77 0,72 0,71 0,8 0,78 

 

Table 7 

Coefficient values of the multivariate polynomial regression  
Constant A B C D E F G H I J 

Polynomial order 
coefficients 1 

0,06776 -0,0403 0,60937 - - - - - - - 

Polynomial order 

coefficients 2 
0,21357 0,04185 0,04668 0,00888 0,01476 1,01636 - - - - 

Polynomial order 

coefficients 3 
3,21064 0,01508 1,04639 0,02208 0,01416 0,10968 0,00839 0,01886 0,00284 3,96221 

 

Table 8 

Predicted value of OEE 

Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

In-Sample 

Accuracy 

(R2) 

Out-of-

Sample 

Accuracy 

(R2) 

Polynomial 1 0,84 0,73 0,76 0,84 0,85 0,82 0,8 0,76 0,71 0,72 0,81 0,78 95.29% 95.56% 

Polynomial 2 0,84 0,72 0,77 0,85 0,86 0,82 0,79 0,76 0,72 0,72 0,8 0,78 97.58% 97.64% 

Polynomial 3 0,84 0,73 0,77 0,85 0,85 0,82 0,78 0,77 0,72 0,71 0,8 0,78 99.03% 97.78% 

ANN 0,84 0,73 0,77 0,85 0,86 0,82 0,78 0,77 0,72 0,72 0,8 0,78 98.56% 98.25% 

 

Table 9 

 Optimal of MTBF, MTTR, and OEE 

Methods Optimal Value of  MTBF Optimal Value of MTTR Optimal Value of OEE 

Polynomial 1 3,98891699 0,73548172 0,850 

Polynomial 2 3,70602097 0,78170041 0,850 

Polynomial 3 4,01644617 0,78624188 0,850 

ANN 3,91003168 0,89954117 0,850 

 

  

 
 

a) Polynomial degree 1 (b) Polynomial degree 2 (c) Polynomial degree 3 (d) ANN 

Fig 7. Representation of the optimal values of OEE. MTBF, MTTR 
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4.6. Forecasting OEE 

The main steps to perform forecasting consist of: (1) prepare 

the dataset, (2) run the predictors, and (3) evaluate the results. 

The OEE data, which are related to the values of MTBF and 

MTTR, were collected during a one-year period and 

aggregated every month. Hence, there are 12 data points 

available for each variable. To perform multipoint 

forecasting and properly evaluate the predictor’s 

performances, the number of points needs to be increased, 

such that it can represent daily data collection. Previously, 

several authors have suggested the use of interpolation 

methods to increase the number of time series data, such as 

in  (Lepot et al., 2017; Musial et al., 2011). In addition, during 

the experiment, the fluctuation of time series is simulated by 

adding random noise as much as 1% of its standard deviation. 

In time series forecasting, the prediction of its future values 

can be calculated based on its own previous values or based 

on the past values of the others (Daniel Pen  ̃a & Ismael Sa ́ 

nchez, 2006; William W. S. Wei, 2006) and explores both the 

use of univariate time series of the OEE dataset and 

multivariate dataset of the OEE and its corresponding MTBF 

and MTTR datasets. As shown in Fig 8, in the case of a 

univariate time series, its dataset is composed of a certain 

number of steps or lags (often denoted as x variable) to 

predict the outcome (denoted as y variable). These 

collections of (x, y) pairs are further selected as a subset of 

the training and testing datasets. Similarly, a multivariate 

time series is also partitioned into several (x, y) pairs; 

however, the x part is composed of several steps of MTBF 

and MTTR data, while the y part is that of OEE data. Lastly, 

the last x data is used to forecast the unknown future OEE 

values. 

 In addition to multiple forecasting outcomes, there is another 

alternative to forecasting just one future point (Marcellino et 

al., 2006; Taieb & Hyndman, 2012). Hence, to forecast 

several points, as much as n for example, n number of x data 

is needed and examines the feasibility of both options of 

direct multiple forecasting and iterative single forecasting. 

The neural networks used as forecasting methods have as 

many input nodes as the number of steps in the univariate 

time series and as many prediction points as the number of 

output nodes. 

On the other hand, in CNN for multivariate time series, each 

sample of sequence steps of given variables, such as MTBF 

and MTTR, is converted into feature maps by convolutional 

operation with the length of kernel size (Chandra et al., 2021; 

Hou et al., 2018; Pérez-Enciso & Zingaretti, 2019) . After the 

pooling and flattening operation, the one-dimensional feature 

map is fed into a dense ANN. Likewise, CNN can also be 

applied to univariate time series by substituting the two 

variables of MTBF and MTTR with a variable of OEE 

containing the previous values. Fig 9 illustrates the steps in 

the one-dimensional CNN to forecast the OEE values based 

on the previous values of MTBF and MTTR of a certain 

sequence length. 

 

 
Fig 8. Sequences of training and testing datasets derived from 

univariate versus multivariate time series 
 

 

 
Fig. 9. Architecture of a 1-D CNN 

 

The experiment was implemented using Python code, as 

described in (Jason Brownlee, 2020). The percentage of 

samples designated as training is 90%, whereas those 

designated for testing are 10%. To evaluate the performance 

of the forecasting methods, several measures are employed, 

namely the RMSE (Root Mean Square Error), MAE (Mean 

Absolute Error), MAPE (Mean Absolute Percentage Error), 

and SMAPE (Symmetric Mean Absolute Percentage Error). 

The smaller the value of the error, the better the performance 

of the predictor.  

The optimal lengths of the sequence steps of the time series 

for all predictors were calculated using cross validation of 

several possible values, such as from 5 to 200 with a multiple 

of 5, on the training dataset. The optimal value is 150, as 

shown in Fig 10, as their RMSEs begin to taper off 

downward. Other settings use the default values as stated in 
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(Jason Brownlee, 2020). For example, the number of hidden 

nodes or filters in convolution layers is 64 and that in the 

dense layer is 50. These numbers are in accordance with the 

experimental result in  (Thomas et al., 2015). In addition, the 

kernel size and max pooling size are both set to a minimal 

value of 2 to capture the data locality, as suggested in (Nagi 

et al., 2014; Sabyasachi Sahoo, 2018). 

Table 10 shows the performance of each forecasting method 

according to these measures. Multiple Input in that table 

means that the independent variables, namely the MTBF and 

MTTR, are used as the input, while Multi-Step Output means 

that the specified number of predictions are directly 

calculated for each sample. Meanwhile, Univariate Input 

means that the input is the previous OEE values, and the 

Iterative single-step output refers to the one-point output of 

each sample that is repeated iteratively to obtain the specified 

number of predictions. 

 

 
Fig. 10. Optimal length of the time series sequence 

 
 

The experimental result indicates that CNN using univariate 

input and multi-step output yields the best result with an 

RMSE value of 0.0156. All other performance measures, 

such as SMAPE, MAE, and MAPE, also show the lowest 

number of errors for this method. Likewise, CNN using 

multivariate input and multi-step output and ANN using 

univariate input and multi-step output have very close RMSE 

results of 0.0157 and 0.0166, respectively. In addition, 

Polynomials of order 1, 2, and 3 also yield fairly good with 

RMSE values of 0.0206, 0.0226, 0.0224, respectively. 

 
Table 10 

Performance measures among the forecast methods 

No Forecast Methods RMSE SMAPE MAE MAPE 

1 ANN univariate input 0.0166 0.0177 0.0138 0.0182 

2 CNN univariate input 0.0156 0.0168 0.0130 0.0172 

3 CNN multivariate input 0.0157 0.0173 0.0133 0.0177 

4 Polynomial order 1 0.0206 0.0217 0.0169 0.0225 

5 Polynomial order 2 0.0226 0.0248 0.0186 0.0246 

6 Polynomial order 3 0.0224 0.0248 0.0184 0.0244 

 

The results of the prediction on the last data testing and the 

forecast of future OEE values are shown in Fig 11. To 

perform the 100-day forecast, it needs the last dataset with a 

certain length, based on the previously calculated optimum 

sequence which can be referred in Fig 10. Given a 365 point 

dataset, for the predictor with multivariate input, it is 

converted into matrix X with the size of (116, 150, 2) and 

vector y with the size of (116, 100), where 116 is the number 

of samples, 150 is the in-steps (or sequence) size, 2 is the 

number of variables, and 100 is the out-steps (or number of 

prediction) size. Likewise, for the predictor with univariate 

input, the matrix X will have the size of (116, 150) and the 

same size of vector y. 

The forecast pattern in Fig 11 indicates that the OEE values 

for the next 100 days fluctuate according to the future trends 

predicted by each predictor. Based on these trends, the policy 

makers in the organisation need to halt or even reverse, the 

possible downward trend of OEE by maintaining MTBF and 

MTTR at their optimum values. 

 

 

  

  

  
Fig 11. Results of prediction on data testing and future forecasts 

 

5. Conclusion 

This study evaluates the reliability, maintainability, 

availability, performance efficiency, and quality rate of 

machines in the plastic industry. Four machines were 

measured: extruder machines, flexible machines, wrapping 

machines, and packing machines.  
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Based on the calculation results, the extruder machine shows 

the best performance and the highest value for availability of 

OEE, performance efficiency of OEE, and reliability of 

MTBF. The extruder machines have the highest quality rate 

OEE and show that the number of good products produced 

by extruder machines has the smallest rejection rate and it 

also has the smallest value of maintainability MTTR 

compared to all other machines. Therefore, it is necessary to 

prioritize improvements and further analysis of the other 

machines, namely wrapping machine, packing machine, and 

flexible machine. 

Meanwhile, the relationship between OEE and its 

independent variables, namely MTBF and MTTR, was 

analysed by linear and nonlinear regression using polynomial 

and artificial neural networks (ANN). Using testing data, 

which is set aside from the training data, the regression 

accuracies in R-Square are 98.25%, 97.78%, 97.64%, and 

95.56% for ANN, polynomial degree 3, degree 2, and degree 

1, respectively. Furthermore, by using the SciPy optimization 

function, which takes a scalar objective function and 

inequality constraints, the optimal value of MTBF is found to 

be at least 3.706, whereas that of MTTR is at most 0.899 to 

achieve an OEE value of at least 0.85. 

Furthermore, the accuracy of OEE predictions using CNN 

achieves the best performance by having the lowest RMSE 

value of 0.0156, followed closely by ANN which also yields 

good results by having an RMSE value of 0.0166. The 

polynomials of degree 1, 2, and 3 also produce decent results 

as having the RMSE value of about 0.02. The values of the 

next 100 days’ forecast are then calculated based on the last 

testing dataset. 

This research findings can provide direction in the 

implementation of managerial tasks. By understanding future 

OEE patterns, management may optimize resource 

allocation, enhance productivity, and diminish operational 

expenses. Possible actions encompass maintenance planning, 

production optimization, problem detection, strategic 

decision-making, evaluation of improvement efforts' 

efficacy, and modification of performance targets. The 

study's findings indicate that machine efficiency 

management should prioritize machines exhibiting 

suboptimal performance. Management must perform 

additional analysis to ascertain the sources of inefficiency 

and implement suitable corrective actions, including 

minimizing downtime and enhancing machine reliability. 

Furthermore, the firm can employ the most suitable machine 

learning techniques with a high degree of precision for 

preventative maintenance planning and OEE monitoring. 

Hence, a data-driven methodology utilizing predictive 

models and enhanced maintenance can assist management in 

optimizing operational performance and maximizing 

productivity within the plastics manufacturing industry. 

For future study, a more comprehensive dataset and more 

diverse type of industries would validate the result even 

better. In addition, the use of the state-of-the-art of machine 

learning methods in forecasting would enhance the prediction 

accuracy. 
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