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Abstract

Production maintenance ensures equipment remains in good working order, enabling the generation of goods complying with specifications.
The purpose of this research was to assess and evaluate the machine performance in one of the plastic industries. This research will determine
how machine performance is correlated with OEE, MTBF, and MTTR, optimise the OEE variables and forecast the future OEE values. The
relationship between OEE, MTBF, and MTTR has been analysed by linear and non-linear regression using polynomial and artificial neural
networks (ANN). Meanwhile, the OEE optimization is performed using SciPy optimizer on linear and nonlinear objective functions, whereas
the OEE forecasting employs Convolutional Neural Network (CNN) in addition to the ANN and the polynomials. All regression analysis
indicate OEE is well explained by MTBF and MTTR as all R-squared values are above 95%. Specifically, those R-squared values are 98.25%,
97.78%, 97.64%, and 95.56%, for ANN, polynomial degree 3, degree 2 and degree 1, respectively. Furthermore, the optimal value of MTBF
is found to be at least 3.706 whereas that of MTTR is at most 0.899 hours to achieve an OEE value of at least 0.85. Lastly, the accuracy of
OEE predictions using CNN achieves the best performance by having the lowest RMSE of 0.0156, followed by ANN with an RMSE of
0.0166, and the polynomials with RMSEs of around 0.02.

Keywords: OEE; MTBF; MTTR; Regression; Neural network

imperative to enhance the quality of efficient machine
maintenance (Nurcahyo, Winanda, et al.,, 2023).
Reliability, operating rate, and maintenance costs are
considered while developing maintenance strategies for
automated manufacturing lines (Li et al., 2018). The costs
of downtime, redundancy, and item reliability
characteristics are some of the elements that influence the
choice of maintenance method (Stenstrém et al., 2016) .
The time allotted for preventive maintenance is dependent
on the critical component reliability values. Preventive
maintenance will be performed to obtain and increase the
reliability value in the future (Pamungkas et al., 2021).

The mean time between a machine's first failure is known
as MBTF. A system component or piece of equipment fails
when it can't operate as intended in a given situation.
energy demand _(Pathak_ etal., 2023?)' . Furthermore, thg average time between g failure and a
The mgnufacturmg busme_ss establishes p_roduct|on targets device's ability to function again is called the maintenance
o s_amsfy customer _dellver_y expectations. Susta!nmg time to repair (MTTR) (Ahmadi et al., 2019a). MTBF and
consistent and hygienic machine conditions is essential to MTTR are crucial for production system analysis
maintaining output in proportion to production capacity. sustainable improvement, and design (Alavian et al.7
Production _maintenance ensures that equipme.nt remains in 2018). An earlier studg/ proposed a framework fo;
good’ workln.g order, enabling the ggneratlon' of good conducting a study on reliability, availability, and
meeting specifications. The dependability of an industry’s maintainability (RAM) to evaluate the performance of
machinery significantly influences its capacity to compete. power generation machines in office infrastructure
Morg extensive maintenance procedL_Jres are undoubte_dly (Nurcahyo, Tri Nugroho, et al., 2023). RAM are the three
required for older, heavily used machinery. When the final metrics utilized for evaluating maintenance performance

products fail to meet expectations, the production machine and assessing machine performance (Pamungkas et al.,
is not operating optimally. Therefore, to ensure that the 2021)

production process is efficient and high-quality, it is

1. Introduction

Plastics have become an essential component in every
technology sector to make human life simple and
comfortable (Pathak et al., 2023). Plastic is inexpensive
and its properties make it a popular alternative to metals
and wood in various applications. It is also advantageous
in production due to their ease of softening or melting and
their ease of being molded into many shapes (Islam, 2012).
The plastics industry has grown due to low production
costs and energy-efficient techniques and is one of the main
users of non-renewable resources and sustainability aspects
that should be considered (Mwanza & Mbohwa, 2017).
The plastics sector is a large contributor to the world
economy, exceeding both Gross domestic product and
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Beside that, overall equipment effectiveness (OEE),
measures how well the current production and
manufacturing process units operate over a given period
with their intended capability(Ahmadi et al ., 2019b). The
probability that a device or system will function properly
at a given time when used under certain ideal conditions is
known as availability (Simon et al., 2014). MTBF, MTTR,
OEE, and Auvailability are preliminary analyses used to
identify faults and define the machine's condition
(Pamungkas et al., 2021; Ribeiro et al., 2019).

Iran Khodro, the leading automotive producer in Iran and
the Middle East, has transitioned to using compressed air,
derived from contaminated air, as an alternative to energy
to optimize its production processes. To achieve this goal,
the corporation has created a polluted air department
equipped with 50 air compressors, including screw and
centrifugal models. Over time, the department has
consistently expanded in size. They calculate OEE to find
out the effectiveness of the compressors used (Larky &
Javidrad, 2019).-Another example in the railway industry,
the cost-benefit analysis method is used to conduct cost-
based analysis for maintenance performance assessment
(Stenstrém et al., 2016). In the broader logistics context,
this approach can be useful to assess the cost-effectiveness
of various processes and interventions. However, the
assessment scope in earlier research was somewhat
constrained, with a primary emphasis on the conventional
OEE components. In rather large research aimed at
broadening the area of OEE applications, the scope of
evaluation has mostly been limited to taking equipment or
process utilization, operating speed (performance), and
quality into account as part of an overall efficiency
evaluation (Garza-Reyes, 2015).

Taking into account the challenges and prevailing trends,
this corporate performance study focused on maintenance
operations in the plastics industry will be conducted by
calculating the OEE, maintainability, and reliability.
Hence, this study attempts to determine the OEE based on
the MTBF and MTTR values instead of all determinant
variables consisting of availability, quality, and
performance. The feasibility of our approach will be
validated using regression analysis with polynomial
functions and Artificial Neural Networks (ANN). The
suitability of polynomial functions and ANN for regression
has been presented in several literatures (Kim et al., 2020;
Krulicky & Brabenec, 2020; Lee et al., 2017; Mattas et al.,
2021).

Furthermore, it is necessary to undertake numerical
analysis because the industry frequently encounters excess
stock and product delivery shortages(Haber & Fargnoli,
2022; Hosseini et al., 2024; Sayuti et al, 2019) due to
unforeseen equipment breakdowns. OEE provides an
overview of a company's performance based on historical
data, but it does not optimize or predict future performance,
which is useful for anticipating problems(Kechaou et al.,
2024).

Optimization of OEE parameters, namely the availability,
quality, and performance, has been analyzed through
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various methods, including Genetic  Algorithms

(VivekPrabhu et al., 2014) and Response Surface

Methodology (Chikwendu et al., 2020; Tonny et al., 2023)

Similarly, the optimal values of stock keeping units for

OEE has been computed by Linear Programming using

LINGO Optimizing Software and Excel Solver

(Encarnacion et al., 2022). In this study, the OEE

parameters to optimize are the MTBF and MTTR while the

method to optimize is the SciPy which can handle both

linear and non-linear optimization (Virtanen et al., 2020),

as the objective functions of MTBF and MTTR are formed

using linear function (Polynomial of degree 1) as well as
non-linear functions (Polynomial of degree 2 and 3, and

Artificial Neural Networks).

In addition, OEE calculations are often performed by the

end of the production cycle, which makes it quite late to

provide necessary improvements. Hence, it is necessary to
predict the estimate of OEE value in advance to allow
managers to examine the inputs of the production process.

Machine learning-based models have been used to predict

future OEE values, such as SVM, random forest, gradient

boosting, and deep neural networks (EI Mazgualdi et al.,

2020), a combination of ANN and genetic algorithm (Al-

Toubi, 2023) and a combination of moving average and

adaptive neuro-fuzzy inference system. Convolutional

neural networks (CNN) have produced excellent results for
time series domains, according to recent studies (Asesh &

Dugar, 2023; Hou et al., 2018; Markova, 2022).

Meanwhile, Artificial Neural Network (ANN) has become

more popular for fitting statistical models and research

aimed at deep learning to forecast, predict, and capture time
trends production (Jahn, 2018; Wang, et al, 2023). Hence,
this study investigates CNN's and ANN’s suitability for

OEE forecasting based on MTBF and MTTR values.

Since there has been no previous research discussing

machine performance assessment using OEE, MTTR, and

MTBR indicators, as well as optimizing and forecasting

these OEE, MTTR, and MTBF indicators, this research is

conducted. The aim of this research includes:

1. Determining machine performance based on OEE,
MTBF, and MTTR by examining the relationship
between OEE, MTBF, and MTTR.

2. Optimizing the MTBF and MTTR to achieve the OEE
threshold value as an indicator of machine
effectiveness.

3. Forecasting the future values of OEE based on the
previous values of OEE or the previous values of
MTBF and MTTR as a basis for management
decision-making.

The contributions of this paper are as follows:

1. Instead of using all variables which determine the
OEE, this study stresses on the use of MTBF and
MTTR.

2. The use of linear and non-linear functions as the
objective functions during the optimization of OEE
based on MTBF and MTTR values.

3. Comparing the feasibility of CNN, ANN and
polynomial functions to forecast the OEE values.
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2. Literature Review
2.1. Machine Performance

The most important and widely used performance metrics
in manufacturing are productivity and quality and OEE is
a quantitative metric that is increasingly used in the
industry not only to control and monitor the productivity of
production equipment but also as an indicator and driver of
process and performance improvement. OEE is capable of
measuring  performance, identifying  development
opportunities, and directing improvement efforts towards
areas related to equipment or process utilization
(availability) such as MTBF, MTTR, operational level
(performance), and quality (Arturo Garza- Reyes et al.,
2010)

2.1.1 Overall Effectiveness Equipment (OEE)

Compared with when it was first developed, the OEE
application is now more extensive. At the point, OEE is a
method for efficient corrective maintenance actions before
significant failure occurs and can be used as an indicator in
a process to determine whether to conduct process
improvement activities (Nurcahyo, et al., 2023). OEE is
one of the performance evaluation methods that are most
common and popular in the production industries (S.
Nayak et al., 2020). Organizations, in this case the industry
and other businesses, make these attempts to carry out
continual improvements, which ultimately lead to further
advances. Each industry is expected to grow and endure
into the future while keeping up with the times thanks to
growing power and competition (Nurcahyo et al., 2019) To
guide remedial action, OEE seeks to identify lost time in
the production system (Kechaou et al., 2024). Furthermore,
organizations can evaluate their current state and begin to
enhance them using OEE (Kifta & Putri, 2021). OEE offers
a quantitative matrix to assess the efficiency of machinery
and process performance based on availability,
performance, and quality (Garza-Reyes, 2015). The OEE
calculation is as follows (Nakajima, S., 1988):

OEE = AV x PE x QR 1)

where AV is Availability, PE is Performance Efficiency,
QR is Quality Rate.
The relationship between the time available for production
and the actual time that production equipment is employed
is referred to as availability (Kechaou et al., 2024).
According to (Kechaou et al., 2024), scheduled downtime
can be acquired through rest, meetings, preventive
maintenance, and machine cleaning. The availability
calculation is as follows (Nakajima, S., 1988):

_ Planned Production Time — Down Time

(2)

x 100%

Planned Production Time

The link between production time and time available for
production is referred to as performance efficiency
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(Kechaou et al., 2024). To show the relationship between
the quantity produced and the production time of the
machine, the number of products also influences the
Performance Efficiency rating (Nakajima, S., 1988)

= Total Product x Ideal Rate Run
" Planned Production Time — Down Time

3)

x 100%

The quality factor or quality rate calculates the number of
faults. When there is a production failure, defective
products impact production. The quality rate was
calculated using the following formula (Nakajima, S.,
1988):

QR ©

__ Good Product
~ Total Product

x 100%

2.1.2 Mean Time Between Failure (MTBF)

The reliability of machines takes regular machine failures
and planned downtime into account. The equation is used
to calculate reliability wusing the MTBF formula
(Dervitsiotis, 1981):

Planned Production Time — Down Time (5

MTBF =

Breakdown Frequency

2.1.3 Maintenance Time To Repair (MTTR)

The maintainability of the machine is influenced by the
time and frequency of machine breakdowns. Equation is
used to calculate maintainability using the MTTR formula
(Dervitsiotis, 1981):

Breakdown Time (6)

MTTR =

Breakdown Frequency

2.2 Optimizing and forecasting

Calculations for optimizing and forecasting analysis can
use, among others, linear regression, polynomial
regression, and ANN. However, for forecasting, CNN
analysis can be added.

2.2.1 Linier regression

Regression analysis is typically employed in forecasting
and prediction, where its use closely parallels the field of
machine learning (Jia et al., 2019). Crucially, regression
analysis by itself only reveals relationships between a
dependent variable and a defined dataset made up of many
variables (Maulud & Abdulazeez, 2020). According to
(Kumari & Yadav, 2018), linear regression is a type of
regression that displays a linear relationship and further
determines the correlation between the dependent variable
and the independent variable predictor. Simple regression
is a form of linear regression that involves using only one
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predictor variable to determine the target variable (Patil &
Patil, 2021). While the independent variables may be
categorical or continuous, the target value must be real or
continuous (Patil & Patil, 2021). The equation for simple
regression is as follows:

@

Where, ap = intercept of line, a; = slope of line, e = error/
miscalculation, x, y = predictor and target respectively.
Multiple linear regression analysis is conducted when there
are multiple predictor values that have a cause-and-effect
connection with the target value (Uyanik & Giler, 2013).
In the context of simple regression, multicollinearity—the
lack of intercorrelation between the values of the
predictors—occurs infrequently or never at all. The
equation for multiple regressions is as follows:

y =a,tax+te

Yy = by+bix; +byx, + byxs+....+byxy, ®)

Where, y = output/response variable, b0, b1, b2, b3, bn =
coefficients of the model, and x1, x2, x3, xn = predictor
value.

2.2.2 Polynomial regression

Polynomial regression is a specific form of linear
regression that is used when the linear regression model has
low accuracy or efficiency because of numerous errors or
miscalculations (Patil & Patil, 2021). To obtain the highest
accuracy while minimizing the effects of over-fitting or
under-fitting, we often fit the regression line using a
polynomial equation that fits the data in the best curvilinear
form. Since linear regressions do not perform well in this
situation, the dataset that was run through the model was
primarily nonlinear (Patil & Patil, 2021). The equation for
multiple regressions is as follows:

y = by +byxt 4+ byx% 4 byxP+.... +byx™ )

Where, y = output/response variable, b0, b1, b2, b3, bn =
coefficients of the model, and x1, x2, x3, xn = predictor
value.

2.2.3 Artificial Neural Networks (ANN)

ANN, which has been used successfully in both
classification and regression problems (Jacob Hallman,
2019; Jahn, 2018) typically consists of multiple layers of
nodes with an input layer that receives data having various
features and an output layer for the final output. Fig 1
illustrates a fully connected neural network with one input
layer, two hidden layers, and an output layer. The general
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function of an ANN, as stated in (Crone & Kourentzes,
2009), can be written as follows:

H 1
Faw =t ) Fabot) yux)  (10)

Where x = [X0, X1, ..., xn] is the vector of input data having
n features and w = (B, y) are the weights. Where I and H
are the number of input and hidden units in the network,
respectively, and g is a nonlinear transfer function. During
the experiment, the transfer functions used in hidden nodes
are the Rectified Linear Unit (ReLU), which produces 0 as
an output when x < 0 and produces a linear with a slope of
1 when x > 0, as stated in (Agarap, 2018). A multilayer
neural network with only one hidden layer is capable of
approximating a continuous function of n real variables
arbitrary well (Cs4ji, 2001; Hsu et al., 2021)

2.2.4 Convolutional neural networks (CNN)

CNNs are a analysis technique that may be applied to
environmental and climate change data to identify,
categorize, and predict patterns (Haidar & Verma, 2018;
Shuetal., 2021). In addition, the CNN module is employed
to detect the local trend of the load data pattern (Rafi et al.,
2021). CNN are network topologies commonly utilized in
machine vision and classification applications (Haidar &
Verma, 2018). As a result, several activation functions
have been n used to map the input features into a set of
categories. A CNN comprises of three layers:
convolutional, pooling, and fully connected. A 2-
dimensional CNN is usually used for image classification
while 1-dimensional CNN can be employed for time series
forecasting. (Haidar & Verma, 2018; Asesh & Dugar,
2023).

3. Methods

The purpose of this study was to assess machine
performance in the plastic industry. The steps to assess
such performance include collecting and analyzing data
related to OEE from the plastic industry that supplies
straws for the packaged beverage industry. The next step is
to determine the relationship between the independent
variables (MTBF and MTTR), and its dependent variables
(OEE). The optimum values of the dependent variables are
then determined by the optimization function. Finally, the
future values of OEE are forecasted based on either the
dependent variables or the previous value of OEE itself.
The afore mentioned steps are illustrated in Fig 1.

One production line uses the following four machines: an
extruder machine, a flexible machine, a wrapping machine,
and a packing machine. Considered factors for evaluating
performance include total machine efficiency, maintenance
capability, and machine reliability. MTBF is used to
measure the ability and reliability of a machine, MTTR for
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machine maintenance, and OEE to measure the overall
effectiveness of the machine.

Data collection was taken from the industrial maintenance
division data for a period of 1 year, January-December
2023. The data used are the planned production time, down
time, ideal run time, breakdown time, breakdown
frequency, total product, and Good Product. To make
changes increase performance, the first step is to identify
issues in order to determine the reason for poor engine

performance. Finding the most recent study based on issues
that emerge is how literature reviews are completed. To
identify the machines that required ongoing improvement,
data processing was performed on four of the machines
before the study was conducted.

Fig 2 shows the relationship among the parameters
availability, performance efficiency, quality rate,
reliability, and maintainability.

Studyving the related literatures

h 4

Data from maintenance division | == = <

Collecting and calculating OEE

values

h 4

Analyzing the relationship between OEE andits independent
wvariables (MTEF, MTTR)

/\

Finding the optimum values of MTBF and

Forecasting the OEE values

MITR
Fig 1. Study stages
Planned Production Time Mean Time E
Availability Between | &
Failure ;:
Down Time
g Ideal Run Rate J
E
& =
= Performance Breakdown Frequency g
2 Efficiency Mean Tir?le B
= To Repair o
% | Breakdown Time ; <
4
> [ Total Product ]
Quality Rate
: Good Product J

Fig 2. Production maintenance data correlation

The computation of machine performance involves the
interdependence of OEE, reliability, and maintainability.
The OEE calculation includes an important element known
as availability, which is strongly tied to reliability and is
dependent on reliability and maintainability (Schiraldi,
2013). The OEE calculation measures asset management
effectiveness based on reliability, availability, and
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maintainability indicators (Arturo Garza- Reyes et al.,
2010; Gibbons & Burgess, 2010). The OEE availability
equation emphasizes on maintenance, which is classified as
MTTR, whereas OEE availability focuses on the total time
between failures, classified as MTBF (Gibbons & Burgess,
2010)
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Table 1
Calculation of OEE criteria
Mec. Extruder
Month Av PE OR OEE
January 95,29% 85,40% 99,60% 81,05%
February 95,36%, 80,26% 99,20%, 75,92%
March 95,44%, 80,53% 98,40%, 75,63%
April 95,42%, 90,13% 98,90%, 85,05%
May 95,29% 92,75% 98,80%, 87,32%
June 95,42%, 89,32% 99,00%, 84,37%
July 95,29% 84,32% 99,11%, 79,64%
August 95,29% 83,65% 98,80%, 78,76%
September 95,42%, 77,14% 99,00%, 72,86%
October 95,29% 79,34% 98,10%, 74,16%
November 95,56% 84,71% 98,70% 79,90%
December 95,44%, 84,70% 98,00% 79,22%
Average 95,38% 84,35% 98,80%, 79,49%
Mc. Flexible

January Av PE QR OEE

February 95,29% 85,06% 98,99% 80,23%
March 95,36%, 79,61% 98,91% 75,09%
April 95,13% 84,98% 98,85% 79,91%
May 95,42%, 89,14% 98,98% 84,19%
June 95,29% 91,63% 98,99% 86,44%
July 95,42%, 88,42% 98,82% 83,38%
August 95,29% 83,57% 98,21% 78,21%
September 95,29% 82,65% 98,86% 77,86%
October 95,42%, 76,36% 98,90%, 72,06%
November 95,44%, 75,20% 98,91% 70,99%
December 95,42%, 86,53% 97,92% 80,85%
Average 95,44%, 83,00% 98,90%, 78,35%

Mc. Wrapping
January 94,35% 102,05% 98,30% 94,64%
February 95,36%, 78,74% 98,90%, 74,26%
March 95,13% 84,01% 98,10%, 78,40%
April 95,42%, 88,23% 98,80%, 83,18%
May 95,29% 90,71% 98,40%, 85,05%
June 95,42%, 87,38% 98,44% 82,08%
July 95,29% 82,08% 98,44% 76,99%
August 95,29% 81,71% 98,91% 77,01%
September 95,42%, 75,53% 99,22% 71,50%
October 95,44%, 74,38% 97,70% 69,36%
November 95,42%, 84,73% 97,90% 79,15%
December 95,44%, 82,09% 98,21% 76,95%
Average 95,27% 84,30% 98,44% 79,05%
Mc. Packing
January 95,29% 82,77% 98,60%, 77,77%
February 95,67% 72,45% 98,09% 67,99%
March 95,29% 79,53% 98,99% 75,02%
April 95,09% 93,72% 98,80%, 88,05%
May 95,29% 89,26% 98,93% 84,14%
June 95,42%, 86,02% 98,92% 81,19%
July 95,29% 80,80% 99,10% 76,30%
August 95,29% 80,82% 99,01% 76,25%
September 95,42%, 74,94% 98,90%, 70,72%,
October 95,29% 75,21% 98,91% 70,89%
November 95,42%, 82,95% 98,77% 78,18%
December 95,29% 83,44% 98,10%, 78,00%
Average 95,34% 81,82% 98,76% 77,04%
9538% G§533% 2T §B534% 8435% 83.85% B8430% §181% 03.80%: G93.77% G9844% SR U6%

Extmder Flemible Wrapping Packine Fxtmder  Flewible  Wrappine Packine  Emtnder  Flexible Werappine Packine
Availabiity Performance Eficiency Quality Rae
Fig. 3. Calculation of the OEE values
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4. Results and Discussion
4.1. OEE calculation

The information gathered was derived from production and
maintenance log sheet data and interviews with
maintenance professionals. Calculation of OEE criteria is
shown Table 1. The average OEE of every machine for
each criterion, if shown as a graph, is described in Fig 3.
Out of all OEE variables and the three supporting sub-
variables, the extruder machine has the highest value in
availability (95,38%), performance efficiency (84,35%)
and quality rate (98,80%) and shows that out of the four
machines, the extruder machine is the best condition, can
produce the most items as planned and fewest rejected
products. The lowest OEE (77,04%), including the
performance efficiency sub-variable, packing machine
requires greater attention. Packing machine has the lowest
anticipated production time because they are the most
likely to breakdown. One of the machines has the highest
repair time (4 h 42 min and 36 s) and the highest breakdown
frequency (32 times a year).

and improved quality control procedures are required to
increase operational efficiency. A business needs a quality
improvement plan if the OEE value is below the value
(Kifta & Putri, 2021).

Table 2
Ideal OEE versus calculated OEE

Ideal
Value Extruder  Flexible  Wrapping Packing

Calculation results

Criteria

Availability >90%  95,38% 95,35% 95,27%  95,34%

Performance
Efficiency

Quality Rate >99% 98,80%, 98,77% 98,44%  98,76%

>95%  84,35% 83,85% 84,30%  81,82%

OEE >85% 79,49%  78,96% 79,05%  77,04%

Table 2 shows the comparison of ideal values calculation
of OEE. In contrast to the ideal OEE value is 85%
(Nakajima, S., 1988), four machines in the plastic industry
satisfy the availability criteria with an ideal value of >90%
but none satisfy it; none of them satisfy the performance
efficiency criteria with an ideal value of >95%; and also
none of them satisfy the quality rate criteria with an ideal
value of >99%. In conclusion, none of the equipment used
in the plastic industry satisfies the optimal OEE value. This
demonstrates that even though there is hardly any
downtime for machines, output quality and operational
efficiency are still top priorities. The lack of tools that
provide the optimal OEE value indicates that availability,
performance efficiency, and quality level are not balanced.
Machine performance audits, improved maintenance,
increased operational training,

Because it entails judgments about corporate policy that
must be developed, top management approval is required.
Availability of machines to produce products as planned.
From the planned time, almost all machines can be used
and operated within the planned production time. The
performance efficiency of the machines in the plastic

industry is below the ideal value because to determine the
ideal run rate value, more analysis must be done in
accordance with production capacity and available
resources, which will make the ideal run rate value more
representative.

The quality rate is still within the adequate limits even
though it is below the ideal value because the plastic
industry management policy provides a maximum product
rejection target of 2%.

The OEE results from the plastic industry are below ideal
values; therefore, companies need to increase machine
capacity, train operators, and develop preventive
maintenance to ensure the best machine performance (Kifta
& Putri, 2021). The next step is to determine a strategy to
increase the OEE value because

not all machines have the same maintenance strategy
depending on the type of machine, operating conditions,
and the time value of the machine (Garcia & Salgado,
2022).

Table 3 shows the calculations of OEE, MTBF and MTTR
over the course of a year by looking at the details per
month. The OEE in 2023 is 0.786 (78.6%). The value is
still below the ideal OEE so that requires evaluation and
improvement measures for the performance of the next
machine by continuous improvement in their products,
processes, production facility and identify the important
components in the system (D. M. Nayak, 2013; Sayuti et
al, 2019; Simon et al., 2014)

Table 3
OEE values per months
Month Av PE QR (Av x(IDDEEx OR)

January 0,951 0,888 0,988 0,834
February 0,954 0,778 0,988 0,733
March 0,952 0,823 0,986 0,772
April 0,953 0,903 0,989 0,851
May 0,953 0,911 0,988 0,857
June 0,954 0,878 0,988 0,828
July 0,953 0,827 0,987 0,778
August 0,953 0,822 0,989 0,775
September 0,954 0,760 0,990 0,718
October 0,954 0,760 0,984 0,714
November 0955 0,847 0,983 0,795
December 0954 0,833 0,983 0,781
Average 0,953 0,836 0,987 0,786




Ratna Mayasari & et al. / Determining and forecasting oee based on reliability and...

Table 4

Comparison MTBF, MTTR, and OEE
Month Mc. Extruder Mc.Flexible Mc.Wrapping Mc. Packing

MTBF MTTR OEE MTBF MTTR  OEE MTBF  MTTR OEE MTBF MTTR OEE

January 4,765 0,180 0,811 0,000 0,000 0,802 0,000 0,000 0,946 2,382 0,180 0,778
February 2,967 1,070 0,759 0,742 0,857 0,751 1,483 0,853 0,743 4,783 1,740 0,680
March 0,000 0,000 0,756 0,000 0,000 0,799 0,000 0,000 0,784 2,382 0,060 0,750
April 4,771 0,066 0,851 0,000 0,000 0,842 2,385 0,102 0,832 0,000 0,000 0,880
May 3,176 0,030 0,873 0,000 0,000 0,864 4,765 0,059 0,851 3,176 0,475 0,841
June 4,771 0,161 0,844 0,000 0,000 0,834 0,000 0,000 0,821 1,908 0,195 0,812
July 3,176 0,137 0,796 0,000 0,000 0,782 3,176 0,027 0,770 2,382 0,319 0,763
August 0,000 0,000 0,788 2,382 0,258 0,779 0,000 0,000 0,770 0,000 0,000 0,763
September 0,000 0,000 0,729 0,000 0,000 0,721 1,590 1,023 0,715 3,181 1,658 0,707
October 3,176 1533 0,742 0,000 0,000 0,710 1,409 0,543 0,694 0,000 0,000 0,709
November 4,938 0,380 0,799 0,000 0,000 0,808 3,181 0,045 0,792 1,363 0,082 0,782
December 0,000 0,000 0,792 0,000 0,000 0,784 3,288 1,261 0,769 0,000 0,000 0,780
Average 3,967 0,445 0,7949 0,2603 0,558 0,7896 2,660 0,489 0,7905 2,695 0,589 0,770

4.2. Relationship between OEE, MTBF, MTTR,

The average values of the OEE MTBF, and MTTR of the
four machines collected from the industrial maintenance
division over a one-year period are shown in Table 4.

The machine with the highest MTBF is the most reliable
because the distance between each failure and other
damage is the furthest, namely, on the extruder machine.
The extruder machine also has a high availability value
compared with the other three machines, however, based
on the frequency of machine failure, which are rare,
flexible machines have the best MTBF because
breakdowns occur only in February and August.

MTTR with the value is the one with the smallest value.
The extruder machine has the smallest MTTR value,
indicating the fastest repair process. The highest OEE value
is owned by the extruder machine, indicating that the
extruder machine can be considered the most effective
compared to other machines. Therefore, based on the
results of the extruder machine, it can be concluded that the
OEE value is directly proportional to the MTBF and
inversely proportional to the MTTR.

3,967
2.660 2.695
0.7949 Joer 0790 0.790 0.770
0.445 0.558 EBQ IO.589
| —
Extruder Flexible Wrapping Packing

s MTBF mMTTR = OEE

Fig. 4. Relationship between the MTBF, MTTR, and OEE values

Fig 4 shows a graph of the relationship between the MTBF,
MTTR, and OEE values for each machine in the plastic
industry, and no corrective action has been

taken for problems related to machine failure. The MTBF
values appear to be more fluctuating in the four machines
when compared with the values of MTTR and OEE.
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4.3. Multiple linear regression for OEE,MTBF, TTR

In addition to the calculation and observation of OEE
results, validation of the relationship between OEE,
MTBF, and MTTR is necessary. The SPSS (Statistical
Package for the Social Sciences) software is the instrument
used for testing. Based on the SPSS output, the
Entered/Removed Variables column indicates the variables
used in this study, and the Entered Variables column shows
the independent variables used. It can be seen that the
independent variables are MTTR and MTBF. It can be
explained that R-Square is the proportion of variance in the
independent variables that can be explained by the
dependent variable. There was a 96.6% variation in MTTR
and MTBF, as explained by the OEE value

Table 5.
SPSS results of the coefficients
Unstandardized Standardized

Model Coefficients Coefficients t Sig.
Std.
B Beta
Error
. (Constant) .614 .024 26.067  .000
MTBF .065 .007 122 8.986 .000
MTTR -.039 .008 -413 -5.145  .001

a. Dependent Variable: OEE

Table 5 demonstrates that the significance level (sig,)
<0.05, indicating that the variable has a high influence on
the dependent variable. MTBF has a considerable positive
effect (8.986) on OEE, however MTTR has a significant
negative impact (-5.145).

Based on the results of multiple linear regression analysis
calculations using SPSS, the following equation is
obtained:

y = 0,065x1 — 0,039x2 + 0.614 an

where y is the OEE value, x1 represents the MTBF, and x2
represents the MTTR.
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4.4. Polynomial and Neural Network Regression
for Fitting OEE, MTBF, and MTTR values

To complement the SPSS validation result on multivariate
linear regression, this study also attempts to determine the
nonlinear relationship between OEE as a dependent
variable and MTBF and MTTR as independent variables.
This nonlinear relationship is simulated using polynomials
of degrees 2, 3, and the ANN. The polynomial of degree 1
was also computed for comparison with the previous
calculation. The values of MTBF, MTTR, and OEE were
first averaged before data processing with Python, as
indicated in Table 6.

From these average values, multivariate polynomial
regression computations with a degree of three are then
performed in Python, yielding the following equation:

Order :u=ax+by+c (12)
Order 2:u = ax + by + cx? + dxy + ey? - (13)
Order 3:u = ax + by + cx? + dxy + ey? - (14)

+ gx® + hxy* +iy> +j

Table 7 displays the constant coefficient values that were
discovered throughout the data processing. Subsequently,
the multivariate polynomial regression equation is adjusted
to include their constant coefficients. For illustration, the
third-order polynomial regression equation takes the
following form after the constant coefficient values are
substituted:

u = —3,21064 (MTBF) + 0,01508 (MTTF) +
1,04639 (MTBF)? — 0,02208 (MTBF)(MTTR) -
0,01416 (MTTR)? — 0,10968 (MTBF)3 +
0,00839 (MTBF)? (MTTR) —

0,01886 (MTBF) (MTTR)? —

0,00284 (MTTR)® + 3,96221

(15)

Equation 15 is an optimization equation using the third-
order multivariate polynomial regression method, where
the coefficient values are based on calculations in Table 7.
Meanwhile, for the Neural Networks, the number of inputs
is 2, which represents MTBF and MTTR, while the number
of nodes in both hidden layers is set to 32, as suggested by
the experiments in (Thomas et al., 2015). The output layer
requires only one node for the regression problem. Data
standardization was performed by eliminating the mean
and scaling to unit variance. The standard score of a sample
X is determined as z = (X - u) / s, where u is the mean of the
training samples and s is the standard deviation. The scaled
regression result is later converted back to its original scale.
The monthly predicted values of OEE based on the MTBF
and MTTR values from the polynomials and ANN are
shown in Table 8. For in-sample accuracy, where the
testing and training are the same monthly data, the best R2
is produced by Polynomial 3, followed closely by ANN
and then Polynomials 2 and 1. For out-of-sample accuracy,
where the testing data are set aside from the training data,
daily data, which is interpolated from the monthly data, is
used because the monthly data are insufficient for further
splitting into training and testing. Setting 20% of the data
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as testing, the best regression accuracy is given by ANN,
followed by Polynomial 3, Polynomial 2, and Polynomial
1.

The study uses spline smoothing to fill the time series gaps
and obtain the interpolated daily data, as shown in Fig 5.
As suggested by (Wang, 2013), spline interpolation, which
uses several formulas of a low degree polynomial to pass
through all the data points, is preferred over polynomial
interpolation because the interpolation error can be
minimized. The interpolated daily data of MTBF, MTTR,
and OEE are superimposed in two aligned subgraphs in Fig
5 to see the relationship among those variables. As
emphasised by the correlation graph in Fig 6, MTBF and
OEE are positively correlated whereas MTTR and OEE are
negatively correlated.
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Fig 5. The trends of MTBF, MTTR, and OEE
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4.5. Optimizing OEE

The optimal values of MTBF, MTTR, and OEE are
determined by setting a minimal OEE value of at least

85%, while MTBF should be as high as possible and
MTTR as low as possible. During the experiment, Python’s
SciPy function, which provides optimization functions for
minimizing (or maximizing) objective functions, possibly
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subject to constraints, is used to determine the optimal
values of x variables with the following specification:
Obijective function: y = f(x)
Constraint: 0,85 <y <1

min (MTBF values) <x1 <1000

0 <x2 <max of (MTTR values)

Where f is either a polynomial function or a neural network
for regression. The initial values of MTBF and MTTR can
be set to arbitrary numbers and start with the maximum
value of MTBF and MTTR. The COBYLA (Constrained
Optimization BY Linear Approximation) optimization
method is used because it takes the inequality constraints
and a scalar value for the objective function. The optimal

MTBF, MTTR, and OEE values determined by the SciPy
function are shown in Table 9.

The optimal OEE values, which are obtained by applying
Polynomials 1, 2, and 3 as well as ANN, are representation
of the optimal values for MTBF, MTTR, all 0,85 or 85%,
as shown in Table 8. Fig 7 shows the possible paths of
MTBF and MTTR to get an optimal OEE value. The area
above the optimal point of MTBF and MTTR in these
figures indicates the possibility of OEE improvement by
increasing the MTBF values beyond that optimal point or
by decreasing the MTTR values below that optimal point.

Table 6
Average values of MTBF, MTTR, and OEE
Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
MTBF 3,57 2,49 2,38 3,58 3,71 3,34 2,91 2,38 2,39 2,29 3,16 3,29
MTTR 0,18 1,13 0,06 0,08 0,19 0,18 0,16 0,26 1,34 1,04 0,17 1,26
OEE 0,83 0,73 0,77 0,85 0,86 0,83 0,78 0,77 0,72 0,71 0,8 0,78
Table 7
Coefficient values of the multivariate polynomial regression
Constant A B C D E F G H | J
Polynomial order 006776  -0,0403  0,60937 - - - - - - -
coefficients 1
Polynomial order 021357 004185 0,04668 0,00888 0,01476 1,01636 - - - -
coefficients 2
Polynomial order 321064 001508 1,04639 0,02208 001416 0,10968 0,00839 0,01886 0,00284  3,96221
coefficients 3
Table 8
Predicted value of OEE
Out-of-
In-Sample Samole
Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Accuracy A P
2 ccuracy
Polynomial1 084 073 076 084 08 082 0,8 076 071 072 08L 078 95.29% 95.56%
Polynomial2 084 072 077 08 08 08 079 076 072 072 0,8 0,78 97.58% 97.64%
Polynomial3 084 073 077 08 08 08 078 077 072 071 0,8 0,78 99.03% 97.78%
ANN 08 073 077 08 08 08 078 077 072 0,72 0,8 0,78 98.56% 98.25%
Table 9
Optimal of MTBF, MTTR, and OEE
Methods Optimal Value of MTBF Optimal Value of MTTR Optimal Value of OEE
Polynomial 1 3,98891699 0,73548172 0,850
Polynomial 2 3,70602097 0,78170041 0,850
Polynomial 3 4,01644617 0,78624188 0,850
ANN 3,91003168 0,89954117 0,850
p /
X y “N‘ nsot N
e e Hoso
oee | - “5“
a) Polynomial degree 1 (b) Polynomial degree 2 (c) Polynomial degree 3 (d) ANN

Fig 7. Representation of the optimal values of OEE. MTBF, MTTR
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4.6. Forecasting OEE

The main steps to perform forecasting consist of: (1) prepare
the dataset, (2) run the predictors, and (3) evaluate the results.
The OEE data, which are related to the values of MTBF and
MTTR, were collected during a one-year period and
aggregated every month. Hence, there are 12 data points
available for each variable. To perform multipoint
forecasting and properly evaluate the predictor’s
performances, the number of points needs to be increased,
such that it can represent daily data collection. Previously,
several authors have suggested the use of interpolation
methods to increase the number of time series data, such as
in (Lepotetal., 2017; Musial etal., 2011). In addition, during
the experiment, the fluctuation of time series is simulated by
adding random noise as much as 1% of its standard deviation.
In time series forecasting, the prediction of its future values
can be calculated based on its own previous values or based
on the past values of the others (Daniel Pen a & Ismael Sa’
nchez, 2006; William W. S. Wei, 2006) and explores both the
use of univariate time series of the OEE dataset and
multivariate dataset of the OEE and its corresponding MTBF
and MTTR datasets. As shown in Fig 8, in the case of a
univariate time series, its dataset is composed of a certain
number of steps or lags (often denoted as x variable) to
predict the outcome (denoted as y variable). These
collections of (X, y) pairs are further selected as a subset of
the training and testing datasets. Similarly, a multivariate
time series is also partitioned into several (x, y) pairs;
however, the x part is composed of several steps of MTBF
and MTTR data, while the y part is that of OEE data. Lastly,
the last x data is used to forecast the unknown future OEE
values.

In addition to multiple forecasting outcomes, there is another
alternative to forecasting just one future point (Marcellino et
al., 2006; Taieb & Hyndman, 2012). Hence, to forecast
several points, as much as n for example, n number of x data
is needed and examines the feasibility of both options of
direct multiple forecasting and iterative single forecasting.
The neural networks used as forecasting methods have as
many input nodes as the number of steps in the univariate
time series and as many prediction points as the number of
output nodes.

On the other hand, in CNN for multivariate time series, each
sample of sequence steps of given variables, such as MTBF
and MTTR, is converted into feature maps by convolutional
operation with the length of kernel size (Chandra et al., 2021;
Hou et al., 2018; Pérez-Enciso & Zingaretti, 2019) . After the
pooling and flattening operation, the one-dimensional feature
map is fed into a dense ANN. Likewise, CNN can also be
applied to univariate time series by substituting the two
variables of MTBF and MTTR with a variable of OEE
containing the previous values. Fig 9 illustrates the steps in
the one-dimensional CNN to forecast the OEE values based
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on the previous values of MTBF and MTTR of a certain
sequence length.
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Fig 8. Sequences of training and testing datasets derived from
univariate versus multivariate time series
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Fig. 9. Architecture of a 1-D CNN

Time series dataset 1D-Convolutions

The experiment was implemented using Python code, as
described in (Jason Brownlee, 2020). The percentage of
samples designated as training is 90%, whereas those
designated for testing are 10%. To evaluate the performance
of the forecasting methods, several measures are employed,
namely the RMSE (Root Mean Square Error), MAE (Mean
Absolute Error), MAPE (Mean Absolute Percentage Error),
and SMAPE (Symmetric Mean Absolute Percentage Error).
The smaller the value of the error, the better the performance
of the predictor.

The optimal lengths of the sequence steps of the time series
for all predictors were calculated using cross validation of
several possible values, such as from 5 to 200 with a multiple
of 5, on the training dataset. The optimal value is 150, as
shown in Fig 10, as their RMSEs begin to taper off
downward. Other settings use the default values as stated in
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(Jason Brownlee, 2020). For example, the number of hidden
nodes or filters in convolution layers is 64 and that in the
dense layer is 50. These numbers are in accordance with the
experimental result in (Thomas et al., 2015). In addition, the
kernel size and max pooling size are both set to a minimal
value of 2 to capture the data locality, as suggested in (Nagi
et al., 2014; Sabyasachi Sahoo, 2018).

Table 10 shows the performance of each forecasting method
according to these measures. Multiple Input in that table
means that the independent variables, namely the MTBF and
MTTR, are used as the input, while Multi-Step Output means
that the specified number of predictions are directly
calculated for each sample. Meanwhile, Univariate Input
means that the input is the previous OEE values, and the
Iterative single-step output refers to the one-point output of
each sample that is repeated iteratively to obtain the specified
number of predictions.

=—Poly1 Univar

Poly2 Univar

Poly3 Univar

0.08 CNN Multivar
——CNN Univar

e ANN Uniivar

RMSE
°
&

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195

Days

Fig. 10. Optimal length of the time series sequence

The experimental result indicates that CNN using univariate
input and multi-step output yields the best result with an
RMSE value of 0.0156. All other performance measures,
such as SMAPE, MAE, and MAPE, also show the lowest
number of errors for this method. Likewise, CNN using
multivariate input and multi-step output and ANN using
univariate input and multi-step output have very close RMSE
results of 0.0157 and 0.0166, respectively. In addition,
Polynomials of order 1, 2, and 3 also yield fairly good with
RMSE values of 0.0206, 0.0226, 0.0224, respectively.

Table 10
Performance measures among the forecast methods

No Forecast Methods RMSE SMAPE MAE MAPE
1 ANN univariate input 0.0166 0.0177 0.0138  0.0182
2 CNN univariate input 0.0156 0.0168 0.0130 0.0172
3 CNN multivariate input ~ 0.0157 0.0173 0.0133  0.0177
4 Polynomial order 1 0.0206 0.0217 0.0169 0.0225
5 Polynomial order 2 0.0226 0.0248 0.0186  0.0246
6 Polynomial order 3 0.0224 0.0248 0.0184 0.0244

The results of the prediction on the last data testing and the
forecast of future OEE values are shown in Fig 11. To
perform the 100-day forecast, it needs the last dataset with a
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certain length, based on the previously calculated optimum
sequence which can be referred in Fig 10. Given a 365 point
dataset, for the predictor with multivariate input, it is
converted into matrix X with the size of (116, 150, 2) and
vector y with the size of (116, 100), where 116 is the number
of samples, 150 is the in-steps (or sequence) size, 2 is the
number of variables, and 100 is the out-steps (or number of
prediction) size. Likewise, for the predictor with univariate
input, the matrix X will have the size of (116, 150) and the
same size of vector y.

The forecast pattern in Fig 11 indicates that the OEE values
for the next 100 days fluctuate according to the future trends
predicted by each predictor. Based on these trends, the policy
makers in the organisation need to halt or even reverse, the
possible downward trend of OEE by maintaining MTBF and
MTTR at their optimum values.
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Fig 11. Results of prediction on data testing and future forecasts

5. Conclusion

This study evaluates the reliability, maintainability,
availability, performance efficiency, and quality rate of
machines in the plastic industry. Four machines were
measured: extruder machines, flexible machines, wrapping
machines, and packing machines.
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Based on the calculation results, the extruder machine shows
the best performance and the highest value for availability of
OEE, performance efficiency of OEE, and reliability of
MTBF. The extruder machines have the highest quality rate
OEE and show that the number of good products produced
by extruder machines has the smallest rejection rate and it
also has the smallest value of maintainability MTTR
compared to all other machines. Therefore, it is necessary to
prioritize improvements and further analysis of the other
machines, namely wrapping machine, packing machine, and
flexible machine.

Meanwhile, the relationship between OEE and its
independent variables, namely MTBF and MTTR, was
analysed by linear and nonlinear regression using polynomial
and artificial neural networks (ANN). Using testing data,
which is set aside from the training data, the regression
accuracies in R-Square are 98.25%, 97.78%, 97.64%, and
95.56% for ANN, polynomial degree 3, degree 2, and degree
1, respectively. Furthermore, by using the SciPy optimization
function, which takes a scalar objective function and
inequality constraints, the optimal value of MTBF is found to
be at least 3.706, whereas that of MTTR is at most 0.899 to
achieve an OEE value of at least 0.85.

Furthermore, the accuracy of OEE predictions using CNN
achieves the best performance by having the lowest RMSE
value of 0.0156, followed closely by ANN which also yields
good results by having an RMSE value of 0.0166. The
polynomials of degree 1, 2, and 3 also produce decent results
as having the RMSE value of about 0.02. The values of the
next 100 days’ forecast are then calculated based on the last
testing dataset.

This research findings can provide direction in the
implementation of managerial tasks. By understanding future
OEE patterns, management may optimize resource
allocation, enhance productivity, and diminish operational
expenses. Possible actions encompass maintenance planning,
production optimization, problem detection, strategic
decision-making, evaluation of improvement efforts'
efficacy, and modification of performance targets. The

study's findings indicate that machine efficiency
management should prioritize  machines exhibiting
suboptimal performance. Management must perform

additional analysis to ascertain the sources of inefficiency
and implement suitable corrective actions, including
minimizing downtime and enhancing machine reliability.
Furthermore, the firm can employ the most suitable machine
learning techniques with a high degree of precision for
preventative maintenance planning and OEE monitoring.
Hence, a data-driven methodology utilizing predictive
models and enhanced maintenance can assist management in
optimizing operational performance and maximizing
productivity within the plastics manufacturing industry.

For future study, a more comprehensive dataset and more
diverse type of industries would validate the result even
better. In addition, the use of the state-of-the-art of machine
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learning methods in forecasting would enhance the prediction
accuracy.
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