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Abstract 

 

Effective planning and execution of humanitarian aid logistics activities ensure that disaster-

related losses are minimized. This study addresses a tactical-level pre-disaster humanitarian 

logistics problem where a decisionmaker decides on cross-dock locations by taking potential 

vehicle routes into account. A decision support model is proposed for the location selection and 

distribution operations in humanitarian logistics with explicit fuel consumption estimation. In the 

addressed problem, the demand amount of each node depends on probabilistic disaster scenarios. 

Probabilities of whether each arc/road is open or closed and heterogeneous vehicle fleet in terms 

of vehicle sizes are also respected. The model is formulated as probabilistic bi-objective mixed 

integer linear programming, whose objectives are minimization of the total cost (i.e., fuel cost, 

vehicle fixed cost, and fixed opening cost) and total travel time. To the best of our knowledge, the 

proposed decision support model is unique in terms of the features considered simultaneously. 

The application of this process deals with a case study and subsequent numerical analysis of a 

possible earthquake in Tehran. Throughout the paper, it has been proven that the proposed model 

has the potential to assist managers in preparing for a natural disaster. A solution approach based 

on the clustering method is also proposed to solve the larger problems of the problem. The 

effective application of this heuristic method is demonstrated by presenting it to real-scale 

problems. 

 

Keywords: meta heuristic; location-routing problem; heuristic; heterogeneous vehicle  

 

1. Introduction 

 

Humanitarian logistics involve the set of activities to plan, implement, and control the flow of 

people to evacuate from a disaster area to safer places and the flow and storage of aid materials 

efficiently and cost-effectively (Boonmee et al., 2017; Oruc and Kara, 2018; Kawase and Iryo, 

2023). Meeting the needs of the victims, such as medical assistance, shelter, water, food, 

sanitation, and hygiene products, as soon as possible is crucial to minimize losses caused by 

disasters (Mansoori et al., 2020; Burkhardt et al., 2023). However, due to the increasing amount 

of needs and victims who are scattered in different places during or immediately after a disaster, 

different resources (fleet, drivers, fuel, etc.) must be used effectively to help victims. Meeting 

demand with the fewest number of vehicles ensures that resources are available to fulfill any 

further unexpected requirements that may occur. Ensuring that the vehicles return to their initial 

points serves a similar purpose provided that vehicles have been distributed to their beginning 

locations due to the potential needs of these neighborhoods. Moreover, minimizing the fuel 

required for logistics activities contributes to the effective use of fuel resources, which can 

become scarce in the event of a disaster. 

 

Allocation of scarce resources in an efficient manner is one of the main priorities of 

humanitarian organizations (van Wassenhove and Pedraza Martinez, 2012). Several constraints 

have to be handled in the processes such as complete or partial collapse of the road infrastructure 

or transport system (Cotes and Cantillo, 2019). Moreover, uncertainty in the problems (e.g., 

uncertain type, time and place of disasters, number of victims and, correspondingly, 

needs/demand, etc.) may further complicate the decision processes, increasing the problem 

difficulty (Tavana et al., 2018; Cotes and Cantillo, 2019; Bilir, 2023; Turkeš et al., 2023). 



Distribution systems need to be capable of handling these challenges while trying to achieve the 

main goal, meeting at least the minimum/vital demands of disaster victims (Sabouhi et al., 2021). 

 

There are two basic problems in the classical humanitarian system. The location selection 

problem is a strategic-level decision problem about facility location, while the vehicle routing 

problem (VRP) is an operational-level decision problem about vehicle routing. These problems 

can be considered separately or simultaneously, the location routing problem (LRP) integrates 

these two sets of decisions.  

In summary, the LRP case addresses both decisions and makes location selection by respecting 

actual routing costs rather than direct distances of facility demand–location points pairs, which 

only allude to routing cost. Making these two decisions independently can lead to suboptimal 

planning outcomes, whereas simultaneously decision-making enables to improve delivery 

efficiency (Tordecilla et al., 2023). The LRP aims to determine facility locations among the 

potential alternatives and to construct vehicle routes for distribution. In humanitarian logistics 

cases, both facility location and routing decisions are significant for shortening delivery time and 

reducing costs (Nagy and Salhi, 2007; Moshref-Javadi and Lee, 2016). 

 This research addresses a pre-incident tactical relief logistics problem in which a manager 

(government, municipality, non-profit organization, etc.) decides on different center locations 

considering possible vehicle routes. Cross-dock locations refer to assembling areas for aid 

materials that will be delivered to disaster victims. The idea here is similar to that of assembling 

points for evacuation purposes. So, any available flat and containable area can be a potential 

cross-dock point. Accordingly, location and routing decisions need to be made simultaneously. 

Note that the routing decisions here correspond to the distribution of vital aid materials, and hence 

the pre-disaster plan is made so as to meet all of the potential vital needs of the victims. A 

decision planning is described for the presented problem, which deals with facility location 

selection and distribution operations in relief logistics with explicit estimation of fuel 

consumption under uncertain demand and road closure and heterogeneous vehicle fleet 

assumptions. The heterogeneous fleet may consist of several vehicles that differ in size, capacity 

or operating costs. The method is expressed as a probabilistic bi-objective mixed integer linear 

programming (BOMILP), whose objectives are to minimize the system cost - which includes 

vehicle costs, fuel consumption, fixed cost and vehicle utilization for relief operations. (eg, 

maintenance). rent, opportunity, etc and fixed opening cost (e.g. area reservation for transfer 

operations) - and total travel time. The model accounts for potential uncertainties in disaster 

victim demand and road closures due to road damage. Additionally, a solution approach utilizing 

a clustering algorithm has been suggested for addressing cases of larger scale, compared to those 

accommodated by the BOMILP model. The heuristic approach integrates the advantageous 

aspects of both a clustering algorithm and MIP-based heuristics to reduce the problem size and 

shorten the computation time. The effectiveness of these proposed techniques and the potential 

advantages derived from their implementation are demonstrated through numerical analyses 

conducted on a case study and a series of larger instances. From this point of view, the aim of this 

study is to develop a decision support model that simultaneously takes into account explicit fuel 

consumption estimation, heterogeneous fleet, and demand and road closure uncertainties in the 

context of pre-disaster humanitarian logistics. As far as is known, such an attempt for LRP has 

not been made yet. 

 

The rest of the paper is structured as follows. The second section of the paper presents the 

relevant literature. Section 3 includes the problem definition for the addressed LRP in 



humanitarian logistics, presents the proposed model for the defined problem, and introduces the 

solution approach. Section 4 provides numerical analyses performed on a case study. Section 5 

summarizes managerial insights. The concluding section presents general comments on the Study 

and future research directions. 

 

2. Literature review 

 

This section presents a literature review to reveal the contribution of the study. The addressed 

problem in this study lies primarily in the area of humanitarian logistics. Several problem types 

have been addressed in the field of humanitarian logistics, such as allocation problems (Natarajan 

and Swaminathan, 2017; Chang et al., 2023), network problems (Zhang et al., 2022), production 

routing- inventory problems (Zargary and Samouei, 2022), and assignment problems (Rabiei et 

al., 2023). This study proposes a quantitative decision model for an LRP in humanitarian 

logistics. A number of studies similarly addresses LRP variants for humanitarian and emergency 

logistics (see e.g., Ahmadi et al., 2015; Bozorgi-Amiri and Khorsi, 2016; Ghasemi et al., 2022; 

Wang et al., 2022). However, instead of focusing only on the problems of the humanitarian 

system, all LRP literature was randomly reviewed in order to gain a broader perspective, also 

studies in other fields can also be used in humanitarian logistics.  

 

As observed from the literature review, various studies deal with LRP variants from different 

application areas such as disaster management (Beiki et al., 2020a; Zhong et al., 2020), 

environmental externalities management (Mohammadi et al., 2013; Delfani et al., 2020; Vakili et 

al., 2021; Alamatsaz et al., 2021; Araghi et al., 2021), or waste management (Delfani et al., 2020; 

Nikzamir and Baradaran, 2020; Saeidi-Mobarakeh et al., 2020; Delfani et al., 2021; Zhao et al., 

2021). In addition to varying application areas, several problem aspects have been studied as well, 

such as inventory (e.g., Aghighi et al., 2021; Harati et al., 2021), allocation (e.g., Javid and Azad, 

2010; Shiripour et al., 2015), or reverse flow management (e.g., Zhalechian et al., 2016). 

Researchers formulate and solve the addressed problems through different operations research 

approaches such as linear or nonlinear optimization techniques, multi-objective models, stochastic 

programming, or various heuristic algorithms (Panadero et al., 2023). 

 

Rather than relying on rough numbers, several studies use explicit calculations while estimating 

fuel consumption amounts from freight transportation operations (e.g., Rafie-Majd et al., 2018; Li 

et al., 2021). Explicit calculation of energy consumption allows for estimating fuel cost and 

resulting emissions more accurately. The literature was also examined according to whether the 

vehicle fleet consisted of homogeneous (e.g., Vural et al., 2021; Aghighi et al., 2021; Wang et al., 

2023) or heterogeneous vehicle fleet that comprises vehicles differing in terms of capacities (e.g., 

Delfani et al., 2021; Harati et al., 2021; Li et al., 2021; Hashemi et al. 2022; Khoshgehbari and 

Mirzapour Al-e-Hashem, 2023). 

 

 Demand is the most frequently tackled uncertainty dimension (see e.g., Zarandi et al., 2014; 

Marinakis et al., 2016; Pekel and Kara, 2019; Zhang et al., 2020; Martinez-Reyes et al., 2021; 

Tordecilla et al., 2021; Roosta et al. 2023). A few studies deal with uncertainty on road conditions 

and closures. For instance, Xu et al. (2016) present a model for 72-hour post-earthquake 

Abbreviations: BOMP, bi-objective mathematical programming; BOMILP, bi-objective mixed 

integer linear programming; BOMINLP, bi-objective mixed-integer non-linear programming; 

CCP, chance-constrained programming; EL, emergency logistics; F, fuel consumption; H, 



heterogeneous fleet; HL, humanitarian logistics; IP, integer programming; LAR, 

locationallocation- routing; LARI, location-allocation-routing-inventory; LR, location-routing; 

LRI, location-routing-inventory; MIP, mixed integer programming; MILP, mixed integer linear 

programming; MINLP, mixed integer nonlinear programming; MISP, mixed integer stochastic 

programming;MOFP,multi-objective fuzzy programming;MOMILP,multi-objectivemixed integer 

linear programming; MOMINLP, multi-objective mixed integer nonlinear programming; 

MOMIP, multi-objective mixed-integer programming; MONLM, multi-objective nonlinear 

model; MOP, multi-objective programming; NLIP, nonlinear integer programming; SILP, 

stochastic integer linear programming; SP, stochastic programming. 

 

LRP that considers road condition uncertainty. The study places significant emphasis on road 

network reliability between points as a crucial performance measure. To accurately represent road 

reliability, a random fuzzy variable is adopted. Subsequently, an improved genetic algorithm is 

utilized to solve the model. The case study demonstrates the efficiency of the proposed model and 

algorithm. The aim in the study of Sabouhi et al. (2021) is to minimize the expected arrival times 

of relief vehicles to the affected areas, taking into account the possible destruction of roads due to 

disasters. The relief supplies required in each affected area and on disrupted routes are considered 

mas uncertain parameters. In the study, a two-stage stochastic programming model is proposed 

for the distribution of relief supplies from distribution centers to the affected areas. The model is 

applied to a case study to demonstrate its applicability. Zhang et al. (2021) proposed a model for a 

multi-objective LRP, which aims to tackle uncertainty in the transportation networks and the 

time-varying demands. The primary objective of the study is to develop a time-varying planning 

approach to effectively respond to emergency situations, particularly oil spills. To solve the 

model, the researchers devised a hybrid heuristic algorithm. Beiki et al. (2021) proposed a multi-

objective mixed integer mathematical model for the location routing of a medical assistance 

problem considering route reliability. Considering several different routes, determining the 

reliability of each route according to the percentage of route failures increases the applicability 

and efficiency of the model. An epsilon constraint method is used to solve the model. The 

performance of the model is tested on different scenarios, and results demonstrate its efficiency in 

minimizing costs. De Veluz et al. (2023) proposed a model for the stochastic multi-objective pre-

disaster LRP. The model uses a scenario-based approach to determine the minimum number of 

distribution centers and evacuation centers to minimize the evacuation and relief distribution time. 

To demonstrate the applicability of the model, a case study of typhoons in the Philippines was 

conducted. The purpose of this case study was the assessment of the probability of road closure 

after a typhoon. The probability of roads being destroyed or blocked by landslides, fallen trees, or 

flooding varies depending on the strength of the typhoon. A multi-objective particle swarm 

optimization approach is used to solve the developed mathematical model. The results are 

expected to contribute to the planning of decision-makers prior to a disaster. 

 

The related literature review shows that this study contributes to the field of humanitarian 

logistics by formulating and solving an LRP with explicit fuel consumption estimation, 

heterogeneous fleet, and demand and road closure uncertainties under bi-objectives of cost and 

time. The applicability of the proposed decision support model and potential benefits obtained 

from its use have been demonstrated on an exemplar humanitarian logistics problem confronted in 

Tehran, Iran. Moreover, an alternative solution method utilizing a clustering algorithm for 

addressing large-scale cases has been proposed. The performance of the heuristic has been shown 



on larger problems. To the best of the authors’ knowledge, this is the first attempt to address the 

LRP with the aforementioned features simultaneously. 

 

3. Problem description, formulation, and solution approach 

 

This section includes the problem definition for the LRP considered in humanitarian logistics, 

presents the proposed model for the defined problem, and introduces a solution methodology 

designed to efficiently tackle larger instances of the problem. 

 

3.1. Formal problem description 

 

This study addresses a tactical-level pre-disaster humanitarian logistics problem where cross-dock 

locations (available empty areas that can be reserved and could be utilized for transfer operations 

after a disaster) and potential routes are determined as a preparation prior to any potential 

disasters. The corresponding probabilistic LRP is defined on a graph that comprises a set of 

potential facilities (cross-dock nodes) VF = {1,2, …, C}, a set of demand nodes VC = {1,2, …, D}, 

and sets of capacitated vehicles Kn, located initially at each cross-dock points n ∈ VF. The set of 

available arcs on the graph is denoted by 𝐴 =  (𝑖, 𝑗) ∶  𝑖 ∈  𝑉𝐹 , 𝑗 ∈  𝑉𝐶  𝑜𝑟 𝑖 ∈  𝑉𝐶 , 𝑗 ∈  𝑉𝐹  ∪ 𝑉𝐶. 

 

The problem involves two main decisions: (i) where to locate cross-dock facilities that will be 

employed to distribute aid materials to the locations of victims in case of an emergency or disaster 

and (ii) how to derive vehicle routes that form a distribution plan for meeting the minimum/vital 

demands of victims. The minimum/vital demands of the victims, which can be met by one or 

more cross-dock points, are not known in advance; however, occurrence probabilities of a 

predefined set of demand scenarios are pre-calculated based on several metrics such as population 

density, susceptibility to disasters, magnitude likelihoods of disasters, and so forth. 

 

Due to unexpected circumstances, roads existing on the logistics network may become 

unavailable. Here, it is assumed that road closure probabilities, Nij assigned to each arc (i, j) ∈ A, 

can be anticipated. According to the defined road closure probabilities, a tactical planning-level 

target is derived as constructing robust distribution plans, that is, the probability that the plans will 

be required to be altered in the operational planning phase due to road closures should be limited. 

In other words, the probability for each route that the route will be completed without any detour 

needs should meet a predefined target. In summary, the aim is to find a route for each vehicle that 

starts from and ends at its assigned parking, which satisfies a predefined condition on the 

minimum probability that no arcs in the route are going to be closed/disrupted, ɣ. 

 

The problem has two objectives that need to be considered. The first objective minimizes the 

total cost comprising fuel cost, the vehicle fixed cost, and the fixed opening cost. The vehicle 

fixed cost is confronted once a vehicle is used for distribution operations and may comprise 

maintenance cost, rental cost, opportunity cost, and so forth. A fixed opening cost is assumed to 

be yielded for each selected cross-dock location in the resultant location routing plan, related to 

various costs such as renting an area, grading the field, or the opportunity cost of reserving the 

area for transfer operations. The second objective minimizes the total travel time of distribution 

operations. The cost minimization objective ensures sustaining the efficiency of the aid chain for 

the operations to be carried out, whereas the time minimization objective ensures meeting the 

needs of the disaster victims as soon as possible after the disaster occurs. 



 

3.2. A probabilistic bi-objective mixed integer linear programming model 

 

The introduced problem is first formulated as a probabilistic BOMILP model. Table 1 presents 

the notation table that shares information related to the sets, parameters, technical parameters, and 

variables required for the description of the proposed model. 

The proposed model has two objective functions (1.1, 1.2) and 16 constraint sets (2, …,16). The 

mathematical model is as follows:  
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡) 

∑ ∑ ∑ ∑ 𝑃𝑠 [𝜆 (𝑦𝑛𝑚 (
𝑎𝑖𝑗

𝑔𝑖𝑗

) 𝑋𝑖𝑗𝑛𝑚 + 𝛾𝛽𝑛𝑚𝑎𝑖𝑗𝑔𝑖𝑗
2 𝑋𝑖𝑗𝑛𝑚 + 𝛾𝑟(𝜇𝑛𝑚𝑋𝑖𝑗𝑛𝑚 + 𝐹𝑖𝑗𝑛𝑚𝑠)𝑎𝑖𝑗)]

𝑠∈𝑆𝑚∈𝐾𝑛𝑛∈𝑉𝐹𝑖,𝑗∈𝐴

+ 𝑙 + ∑ 𝑧𝑖𝑌𝑖

𝑖∈𝑉𝐹

+ ∑ ∑ ∑ 𝑋𝑖𝑗𝑛𝑚𝜋𝑖𝑚 ,

𝑚∈𝐾𝑛𝑗∈𝑉𝐶:(𝑖,𝑗)∈𝐴𝑖∈𝑉𝐹

     (1.1)   

 

Table 1 

Notation table 
Symbol Description 

Sets 
VF  

 
Set of potential cross-dock points {1,2, …, C} 

VC Set of demand points {1,2, …, D} 

Kn Set of vehicles at each cross-dock point 𝑛 ∈ VF {1,2, …, E} 

A Set of arcs, (𝑖, 𝑗)  ∈ VF ∪VC: i ∈ VF, j ∈ VC or 𝑖 ∈ VC, 𝑗 ∈ VF ∪ VC 

S Set of scenarios, {1,2, … , 𝐹} 

Parameters  

dis Demand of point 𝑖 ∈  𝑉𝐶  under scenario 𝑠 ∈  𝑆 in kg 

ti j Travel time from 𝑖 to 𝑗, (𝑖, 𝑗) ∈  𝐴 in second 

zi Fixed opening cost of cross-dock point, 𝑖 ∈  𝑉𝐹 in € 

ps Probability of occurrence of the demand scenario, 𝑠 ∈  𝑆 

bnm Capacity of vehicle 𝑚 ∈  𝐾𝑛 at cross-dock point n ∈ VC in kg 

ai j Distance between 𝑖 and j, (𝑖, 𝑗) ∈  𝐴 𝑖𝑛 𝑘𝑚 

gi j Vehicle speed between 𝑖 and 𝑗, (𝑖, 𝑗) ∈  𝐴 𝑖𝑛 𝑚
𝑠⁄  

πim Fixed cost of using vehicle 𝑚 ∈  𝐾𝑛 from cross-dock point 𝑖 ∈ VF in € 

Nij Probability of road closure, (𝑖, 𝑗) ∈  𝐴, [0 − 1) 

ɣ Probability target that no arcs in each obtained route is going to be closed/disrupted, (0,1) 

l  Fuel cost in € 

Technical parameters  

ynm Technical parameter, knmVnmNnm 

βnm Technical parameter, 0.5CnmdAnmρ in kg 

μnm Technical parameter, curb weight of vehicle in kg 

λ Technical parameter, ξ/κψ 

γ Technical parameter, 1/(1000 ηntf) in €/liter 

r Technical parameter, 𝜏 +  𝛿𝑠𝑖𝑛𝜑 +  𝛿𝐻𝑟𝑐𝑜𝑠 𝜑 

Decision variables  

Xi jnm Binary variable equals to 1 if vehicle 𝑚 ∈ Kn travels from cross-dock point 𝑛 ∈ VF, in arc 

(𝑖, 𝑗)  ∈  𝐴, and 0 otherwise, {0,1} 

Yi Binary variable equals to 1 if cross-dock points i ∈ VF opens and 0 otherwise, {0,1} 

Fi jnms Amount of load carried by vehicle m ∈ Kn from cross-dock point 𝑛 ∈ VF, in arc (𝑖, 𝑗)  ∈  𝐴 

under scenario 𝑠 ∈  𝑆 in kg 

Qinms Amount of load delivered by vehicle 𝑚 ∈ Kn from cross-dock point 𝑛 ∈ VF to demand point 

𝑖 ∈ VC, under scenario s ∈ S in kg 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒)  

∑ ∑ ∑ 𝑋𝑖𝑗𝑛𝑚t𝑖𝑚𝑠

𝑚∈𝐾𝑛𝑖,𝑗∈𝐴𝑖∈𝑉𝐹

,     (1,2) 



𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 
 

∑ ∑ 𝑄𝑖𝑛𝑚𝑠  =  𝑑𝑖𝑠 ,

𝑚∈𝐾𝑛𝑛∈𝑉𝐹

  ∀𝑖 ∈  𝑉𝐶 , 𝑠 ∈  𝑆,                                                              (2) 

∑ ∑ 𝐹𝑖 𝑗𝑛𝑚𝑠

𝑚∈𝐾𝑛𝑗∈𝑉𝐶:(𝑖,𝑗)∈𝐴

≤ ∑ 𝑏𝑛𝑚𝑌𝑖 ,

𝑚∈𝐾𝑛

   ∀𝑖 ∈  𝑉𝐹  , 𝑠 ∈  𝑆, 𝑛 =  𝑖,   (3) 

∑ ∑ 𝑋𝑖𝑗𝑛𝑚

𝑚∈𝐾𝑛𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

≤ 0  ∀𝑖 ∈  𝑉𝐹  , 𝑛 ∈  𝑉𝐹  , 𝑛 ≠ 𝑖 ,          (4) 

∑ ∑ 𝑋𝑖𝑗𝑛𝑚

𝑚∈𝐾𝑛𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

≤ 0   ∀ 𝑖 ∈  𝑉𝐹  , 𝑛 ∈  𝑉𝐹  , 𝑛 ≠  𝑖,       (5) 

∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

≤ 𝑌𝑖  ,   ∀𝑖 ∈  𝑉𝐹  , 𝑛 ∈  𝑉𝐹  , 𝑛 =  𝑖, 𝑚 ∈ 𝐾𝑛 ,          (6) 

∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

= ∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

 ,    ∀𝑖 ∈  𝑉𝐶 , 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 ,          

 

(7) 

∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐶:(𝑖,𝑗)∈𝐴

= ∑ 𝑋𝑗𝑖𝑛𝑚

𝑗∈𝑉𝐶:( 𝑗,𝑖)∈𝐴

 , ∀𝑖 ∈  𝑉𝐹  , 𝑛 =  𝑖, 𝑚 ∈  𝐾𝑛 ,         (8) 

∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

= 1 ,   ∀𝑖 ∈  𝑉𝐹  ∪ 𝑉𝐶 , 𝑛 ∈ 𝑉𝐹  , 𝑚 ∈  𝐾𝑛 ,             (9) 

∑ 𝐹𝑖 𝑗𝑛𝑚𝑠

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

= ∑ 𝐹𝑖 𝑗𝑛𝑚𝑠  −  𝑄𝑖𝑛𝑚𝑠

𝑗∈𝑉𝐹 ∪𝑉𝐶:( 𝑗,𝑖)∈𝐴

  ∀𝑖 ∈  𝑉𝐶 , 𝑠 ∈  𝑆, 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 ,   (10) 

  𝐹𝑖 𝑗𝑛𝑚𝑠  ≤  𝑋𝑖𝑗𝑛𝑚𝑏𝑛𝑚,          ∀𝑠 ∈  𝑆, 𝑛 ∈  𝑉𝐹  , 𝑚 ∈ 𝐾𝑛 , (𝑖, 𝑗)  ∈  𝐴,        

 

(11) 

∏ (1 −  𝑁𝑖𝑗  𝑋𝑖𝑗𝑛𝑚  )  ≥  ɣ,

(𝑖,𝑗)∈𝐴

  ∀ 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 ,                    (12) 

𝑋𝑖𝑗𝑛𝑚  ∈  {0, 1} ,                        ∀ (𝑖, 𝑗)  ∈  𝐴, 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 , 𝑠 ∈  𝑆,                      

 

(13) 

𝑌𝑖 ∈  {0, 1} ,                              ∀𝑖 ∈  𝑉𝐹  ,                                                                                 

 
(14) 

𝑌𝑖  𝐹𝑖 𝑗𝑛𝑚𝑠  ≥  0,                                 ∀ (𝑖, 𝑗)  ∈  𝐴, 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 , 𝑠 ∈  𝑆,        

 

(15) 

𝑄𝑖𝑛𝑚𝑠  ≥  0,                                   ∀𝑖 ∈  𝑉𝐹  , 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 , 𝑠 ∈  𝑆.           (16) 

 

The objective function (1.1) includes fuel cost, fixed opening cost (i.e., reserving the area for 

transfer operations), and vehicle fixed cost of employing a vehicle for distribution operations (i.e., 

maintenance, rental, opportunity, etc.). Here, fuel consumption amounts are estimated by the 

approach used by Barth et al. (2005). The objective function (1.2) calculates the total travel time 

of the distribution operation. Constraint (2) guarantees that the demand points are satisfied in all 

scenarios. The total amount of cargo sent from any point in the region with the limit (3) does not 

exceed the capacity of that point.  With the help of constraints (4) and (5), vehicles return to the 

cross-dock points where they were initially located. Constraint (4) ensures that only the vehicles 

that belong to the particular cross-dock point leave the cross-dock point, preventing all other 



vehicles’ departures. Constraint (5) similarly ensures that only the vehicles that belong to the 

particular cross-dock point arrive at the cross-dock point, preventing all other vehicles’ arrivals. 

Constraint (6) prevent flow from unopened cross-dock points. Constraint set (3) and constraint set 

(11) include constraint set (6). However, constraint set (6) is used to tighten the formulation of the 

model and accelerate the convergence to the optimal solution. Flow conservation in the logistics 

network is ensured by constraints (7) and (8). Constraint (9) enables that each vehicle can visit 

each point at most once. The load of each vehicle in all scenarios can be tracked by constraint 

(10). Constraint (11) ensures that no cargo is transported on an arc that is not traversed by any 

vehicle. The minimum probability condition that no arcs in the route are going to be 

closed/disrupted is imposed by constraint (12). Constraints (13)–(16) represent the restrictions 

imposed on the decision variables. 

 

3.3. Clustering-based solution approach 

 

A solution method that employs a route-based myopic clustering idea has been proposed to 

implement  the BOMILP model in particularly large-sized instances. The clustering approach in 

routing  problems is traditionally based on partitioning the points to be visited into clusters  

according to  certain characteristics and determining routes separately for each cluster before 

combining them (Erdo˘gan and Miller-Hooks, 2012; Sutrisno and Yang, 2023). Partitioning the 

points to be visited  reduces the problem size and shortens the computation time. As a result, the 

BOMILP model can  be used in any problem size since the size of subproblems (clusters) will be 

user-defined based on the computational availabilities. 

     The developed solution approach, which is based on the idea of solving large-sized problems  

by breaking them down into smaller parts, for the addressed problem can be summarized as  

follows: 

 

• The clustering process starts with assigning one potential cross-dock point to each cluster. The  

process initially checks the travel times between potential cross-dock points. One cross-dock, the  

total distance (in terms of travel time) of which is the highest from selected cross-docks for other  

clusters, is selected as a starting node of a cluster to form initial routes with one node (depot,  

cross-dock, depot). 

• Cross-docks are iteratively added to these routes. In each iteration, all remaining  cross-dock  

points are checked for each arc (𝑖, 𝑗) in each route whether traveling from i to j  indirectly through  

the cross-dock increases the total travel time the least( 
𝑚𝑖𝑛
 𝑖 𝑗𝑛

 (tin + tn j − ti j ),where n represents 

candidate  cross-docks, and (𝑖, 𝑗) represents current  arcs). The cross-dock point with minimum 

cost increase is added to the determined route, replacing the determined arc. 

• To prevent too large clusters that would remain unsolvable with the BOMILP model, each 

cross-dock  route within a cluster can be at most twice the average route length. 

• Once cross-docks are clustered into routes, demand points are added to the routes using the same  

least-time-increase approach. The demand points here can be added to clusters subject to the  total 

capacity of the cross-docks in the route. Note that there still will be a single milk run in each  

cluster, as the purpose is not to form routes but only is to form clusters. 

• The problem is solved by addressing each cluster as a sub-problem in the BOMILP model. 

 

 
Algorithm 1 

Initialize parameters 



Define number of clusters, Nc 

Define number of cross-dock points, Ncd 

Define number of demand points, Nd 

Define maximum route length 

Define soft route length limit 

Define soft route length violation penalty coefficient, pen 

Define starting cross-docks set, SN involving the most distant Nc cross-dock nodes from each other 

Insert depot to SN 

For n = 1 to Ncd 

Insert to SN cross-dock node m satisfying 
𝑚𝑎𝑥

𝑚
∑ 𝑡𝑛𝑚 

Assume that there are Nc routes that start from depot visiting one cross-dock node from SN and return to depot 

Iteratively insert other cross-docks that myopically increase the traveled time the least 

     For n = 1 to Ncd - Nc 

        For sn = 1 to Nc 

           If route sn reached to maximum route length, break 

Let Z be the number of arcs in route sn 

For z = 1 to Z (for each arc in route sn) 

Let 𝑖, 𝑗 be the starting and ending nodes of arc z 

Calculate the travel time increase tinc = tin + tn j - ti j 

If route length is reached to soft route length limit, multiply tinc with the penalty coefficient 

(tinc = tinc * pen) 

       If minimum tinc, record which cross-dock is added to which arc of which route 

Add the latest recorded insertion plan 

Iteratively insert demand nodes that myopically increase the traveled time the least 

     For n = 1 to Nd 

        For sn = 1 to Nc 

If route sn reached to maximum demand capacity of its cross-docks, break 

Let 𝑍 be the number of arcs in route sn 

For 𝑧 =  1 to 𝑍 (for each arc in route sn) 

Let 𝑖, 𝑗 be the starting and ending nodes of arc z 

Calculate added the travel time increase tinc = tin + tn j - ti j 

If minimum tinc, record which demand node is added to which arc of which route 

Add the latest recorded insertion plan 

 

 

 

4. Numerical analyses 

 

This section presents the application of the proposed model to a humanitarian logistics problem 

based on real data obtained in Tehran, Iran. First, the case description is presented and then the 

numerical analysis is presented. 

 

4.1. Base case data description 

 

Many earthquakes have occurred throughout history because many fault lines pass through Iran. 

These earthquakes had destructive effects. Using the studies, nine locations out of 81 potential 

intersection point locations (VF = {1,2,...,9}) are selected, which are expressed as empty areas in 

the kartal region. 20 neighborhoods (VC= {1,2, …, 20}) in the region were considered as demand 

points. It is assumed that there is one vehicle at each cross-dock point for delivery operations: a 

small vehicle at F1, F4, F7. A medium vehicle in F2, F5, F8. And a large vehicle in F3, F6, F9 be 

available . 

 



The demand values of the points have been determined by taking into account the "Earthquake 

Potential Loss Estimation Booklet". Using a table called "number of houses damaged by 

earthquake", four equally probable scenarios (ps = 0.25, 𝑠 ∈  𝑆, | 𝑆|  =  4) are designed according 

to the damage status of the buildings. In a possible Tehran earthquake with an instantaneous 

magnitude of 7.5. The damage conditions of the buildings are severe damage, severe damage, 

moderate damage and minor damage. Based on each scenario, the amount of demand (dis) for 

providing aid packages to 3.75 people (estimated in the study of Unal, 2011) has been calculated 

for each household. In addition, the weight of each aid package is considered to be 1 kg per 

person when calculating the demand values. The obtained figures are rounded after calculation. 

 

    The data regarding the distance among all cross-dock and demand points (ai j) are arranged by 

considering the connection status between the roads because not all roads are interconnected. The 

speed parameter (𝑔 𝑖 𝑗) is uniformly random in a range of 50–90 km/h. Travel time (𝑡 𝑖 𝑗) was 

calculated using the distance and speed parameters. 

 

    The road closure probabilities in the network were calculated based on the map prepared by 

considering the estimated number of damaged buildings when an earthquake of Mw  = 7.5 

occurred in the district. Arbitrary road closure probability indicators are assigned to each  node, 

according to the color of the area the node belongs to (i.e., 0 to the lightest color, which  refers to 

no road closure, 0.04, 0.05, and 0.06 to the darker colors in line with the higher number  of road 

closure expectations). Then, road closure probabilities are calculated for each arc (Ɲi j) as  average 

of road closure probability indicators of starting (𝑖) and ending (𝑗) nodes of the arc. The  

probability target that no arcs in each route of each vehicle are going to be closed/disrupted (Ɣ) is  

assumed to be 60%.    

 

   The initial fixed opening fee for each potential cross-dock point is $150. There is direct 

transport between the depot and berthing points. The costs of this direct shipment will be added to 

the initial opening cost if the cross-dock point is used. When calculating transportation costs here, 

cars assume 20 liters of fuel per 100 km at a fuel price of $1.57 per liter. 

                                                            

4.2. Base case solution 

 

The probabilistic BOMILP comprises two objective functions, which can be solved by means of 

∈-constraint method (Haimes, 1971). This section first introduces the solution approach, and then 

the results for the base case are presented. This approach has also been utilized in several studies 

involving multi-objective models within the realm of humanitarian logistics (Kimms and 

Maiwald, 2018; Oruc and Kara, 2018; Zhang and Chen, 2023). 

 

4.2.1. ∈-constraint-based solution approach 

The ∈-constraint method facilitates the generation of Pareto optimal solutions in multi-objective 

optimization problems. This approach involves treating each objective function iteratively as the 

primary focus while formulating the remaining objectives as inequality constraints (Kazanc et al., 

2021; Curtis et al., 2023). 

The base case is addressed through the solution of two ∈-constraint variants derived from the 

proposed model. In the first variant, the objective is to minimize the total cost, subject to the 

constraint on the maximum travel time (∈1). Conversely, the second variant focuses on 



minimizing the total travel time required for delivery operations, with a constraint imposed on the 

maximum cost (∈2). 

 

Table 2 

The summary results for the base case 
KPIs Total cost minimizationa Total travel time 

minimizationb 

Total fixed opening cost (€) 588.1 1001.2 

Total vehicle cost (€) 189.9 284.3 

Total fuel cost (€) 68.6  72.9 

Total cost (€) 846.7  1358.4 

Total travel time (seconds) 6954.1  5317.5 

Opened cross-docks F5, F6, F9  F1, F4, F5, F6, F9 

 
Total cost minimization variant   Total travel time minimization variant 

Minimize total cost (1.1):   Minimize total travel time (1.2): 

S.t.   S.t. 

Constraints (2)–(11), (13)–(16), and (17.3)   Constraints (2)–(11), (13)–(16), and (17.3) 

The total travel time (1.2)≤ ∈1 (18)  The total cost (1.1)≤ ∈2 (19) 

 

     The probabilistic BOMILP model offers two variants: the total cost minimization variant 

incorporates the objective function (1.1) focused on minimizing the total cost, along with 

constraints (2)–(11), (13)–(16), (17.3), and (18). On the other hand, the total travel time 

minimization variant features the objective function (1.2) aimed at minimizing total time, along 

with the set of constraints (2)–(11), (13)–(16), (17.3), and (19). 

 

      The initial values of ∈1 and ∈2 can be established by assigning suitably large numerical 

values to them. Subsequently, the respective values can be updated at fixed intervals during a 

Pareto analysis. IBM ILOG CPLEX Optimization Studio 20.1 has been used to formulate and 

solve the problem. 

 

4.2.2. Numerical results for the base case 

Table 2 presents the summary results in terms of the defined Key Performance Indicators (KPIs).  

The results reveal that the type of objective function employed alters the location and routing 

decisions. The time minimization objective requires opening relatively more facilities to reduce 

travel times, though total cost increases due to fixed costs. The cost minimization objective 

ensures finding a delivery plan with a significantly reduced total cost. Table 3 presents the routes 

obtained in both scenarios. 

 

According to the results, the desired probability target (Ɣ), which is set to 60%, is satisfied for 

all vehicle routes since the aggregate route non-closure probability for each route is higher than 

0.6. 

 

Note that the proposed BOMILP model can be easily adapted to respect additional scenario 

pending parameters and decisions. The sample model respects travel time, vehicle speed and road 

closure probability parameters and scenario-dependent routing decisions. 

 

a The optimal solution’s computation time is approximately 17 minutes. 
b The optimal solution’s computation time is approximately two minutes. 



 
Table 3 

Obtained routes for the base case                                                      

Objectives Route # Aggregate 

route 

non-closure 

probabilities 

Delivery plans         

Total cost Route1 0.76  F5 DP11 DP3 DP12 DP7 F5     

minimization Route2 0.63  F6 DP10 DP15 DP8 DP2 DP19 DP16 DP18 DP20 F6 

 Route3 0.68  F9 DP17 DP5 DP9 DP4 DP14 DP6 DP13 DP1 F9 
Total travel time Route4 0.91  F1 DP19 F1        

minimization Route5 0.91  F4 DP13 F4        

 Route6 0.76  F5 DP10 DP12 DP3 DP11 F5     
 Route7 0.66  F6 DP20 DP18 DP16 DP2 DP8 DP7 DP15 F6  

 Route8 0.71  F9 DP1 DP6 DP14 DP4 DP9 DP5 DP17 F9  

 

 

4.3. Pareto analysis between the total travel time and total cost objectives 

 

The set of Pareto efficient solutions for the considered problem is obtained by using the ∈- 

constrained method. This subsection conducts a trade-off analysis between the objectives of total 

travel time and total cost. To achieve this, the value of ∈1, specified for the total travel time ∈- 

constraint, is varied within the range of 5400 to 7000 seconds, with intervals of 100 seconds. 

Note that the Pareto efficient solutions obtained are mutually indifferent. Trade-offs exist 

among them, indicating that to enhance performance in terms of one dimension, compromises 

must be made in the other one. The results show the cost of decreasing total distribution duration 

incrementally. The decision-makers may set the ∈-constraints according to their resources and 

urgency assessments for aid distribution. Note that the lowest total cost and travel time values that 

could be obtained are €846.7 and 5317.5 seconds, respectively. The reason that delivery plans 

with relatively lower total travel times have higher total logistics costs is the fact that to reduce 

total travel time, more cross-dock points are required, resulting in higher opening costs. 

The decision-makers may set the ∈-constraints according to their resources and  urgency 

assessments for aid distribution. Note that the lowest total cost and travel time values that  could 

be obtained are €846.7 and 5317.5 seconds, respectively. The reason that delivery plans with  

relatively lower total travel times have higher total logistics costs is the fact that to reduce total  

travel time, more cross-dock points are required, resulting in higher opening costs. 

 

4.4. Analysis on the effects of different aggregate route non-closure probabilities 

 
The constraint set (17.3) in the model allows to take route closure probabilities into  account. In  

the base case, an optimal delivery plan is obtained by assuming the minimum probability  that no  

arcs in the route are going to be closed/disrupted (Ɣ) as 0.6. In this section, delivery plans are  

obtained by considering three additional settings where Ɣ is set to 0.5, 0.7 and 0.8. Table 5 

presents the summary results for different aggregate route non-closure probabilities. 

   
Table 4 

Summary results for different aggregate route non-closure probabilities 

                             
 Total cost minimization Total travel time minimization 

KPIs ɣ = 0.5a  ɣ = 0.6a ɣ = 0.7b ɣ = 0.8c  ɣ = 0.5d ɣ = 0.6d ɣ = 0.7d ɣ = 0.8e 

Total fixed opening cost (€) 588.1  588.1 763.2 1173.2 1001.2 1001.2 1176.3 1601.9 

Total vehicle cost (€) 189.9  189.9 237.1 339.4 284.3 284.3 331.5 454.0 



Total fuel cost (€) 68.6 68.6 72.8 72.8 98.9 72.9 72.9 74.4 

Total cost (€) 846.7  846.7 1073.2 1611.5 1358.4 1358.4 1582.2 2152.6 

Total travel time (seconds) 6954.1   6954.1 8050.2 12863 5317.5 5317.5 5685.9 7695.0 

Opened cross-docks F5, F6, F5, F6, F5, F6, F1, F2, F1, F4, F1, F4, F1, F4, F1, F2, 

 F9 F9 F7, F9 F3, F5, F5, F5, F3, 

    F5, F6, F9 F6, F9 F6, F4, 

    F6, F7   F7, F9 F5, 

        F6, 

        F7, F9 

 

4.5. The effects of respecting vehicle heterogeneity 

 

In the base case, a heterogeneous vehicle fleet is employed, and it is assumed that in facilities, 

there  are small, medium, and large vehicles with different vehicle capacities, costs, and fuel 

consumption  rates. This subsection provides an analysis to compare the base case results with the 

results obtained  under the assumption that all vehicles are medium-sized. Tables 5 and 6, 

respectively, present the  KPI values and distribution plans under homogeneous and heterogeneous 

vehicles. 

 

      As can be observed from the results, the use of only medium-sized vehicles rather than a 

heterogeneous  fleet for delivery operations increases the number of vehicles required for both 

objectives (see Table 6). This change causes delivery plan updates and an increase in the total cost 

and travel  times. When the heterogeneous vehicle fleet is used under cost minimization, the 

model employs  large, high-capacity vehicles in long routes in order to reduce travels to and from 

cross-dock points,  and thus fixed opening, fixed vehicle, and fuel costs. The use of large vehicles 

provides an advantage  also in the case of time minimization through saving time by visiting 

points close to each other in  a single visit, while small vehicles can save fuel on short routes. 

Therefore, in both cases, the use of  the heterogeneous vehicle fleet has the potential to provide 

advantages to the decision maker. 

 
Table 5 

Summary results for homogeneous and heterogeneous vehicles 

  Total cost minimization  Total travel time minimization 

KPIs Heterogeneous Homogeneousa  Heterogeneous Homogeneousb 

Total fixed opening cost (€) 588.1 957.2 1001.2 1386.0 

Total vehicle cost (€) 189.9 275.3 284.3 385.4 

Total fuel cost (€) 68.6 57.4 72.9 59.6 

Total cost (€) 846.7 1290.0 1358.4 1831.0 

Total travel time (second)  6954.1 7230.8 5317.5 5508.8 

Opened cross-docks  F5, F6, F9 F1, F2, F5, F6, F1, F4, F5, F1, F2, F4, F5, 

  F7 F6, F9 F6, F7, F9 

 
Table 6 

Distribution plans under homogeneous and heterogeneous vehicles 

aThe optimal solution’s computation time is approximately 17 minutes. 
bThe feasible solution that is obtained with a 2.81% optimality gap after 12 hours of computation time. 
cThe feasible solution that is obtained with a 3.2% optimality gap after 12 hours of computation time. 
dThe optimal solution’s computation time is approximately 2 minutes. 
eThe feasible solution that is obtained with a 15.29% optimality gap after 12 hours of computation time. 

aThe optimal solution’s computation time is approximately 20 minutes. 
bThe optimal solution’s computation time is approximately 2 minutes. 



 

4.6. Decomposing location and routing decisions 

 

The proposed model allows to make interdependent location and routing decisions 

simultaneously. In order to reveal the benefits of such simultaneous decision making, this section 

provides a comparison to a sequential decision-making approach, where location decisions are 

given first, then these decisions are fixed and routing decisions are given accordingly. In order to 

decide on the cross-dock locations, a direct distribution is assumed between cross-docks and 

demand points (i.e., departs from the cross-dock point, visits one customer, and returns back to 

the cross-dock point)  

 
Table 7 

The summary results for the simultaneous and sequential approaches under the cost minimization 

KPIs Simultaneous approacha Sequential approachb 

Total fixed opening cost (€) 588.1 788.4 

Total vehicle cost (€) 189.9 229.2 

Total fuel cost (€) 68.6 68.7 

Total cost (€) 846.7 1086.4 

Total travel time (seconds) 6954.1 7747.9 

Opened cross-docks F5, F6, F9 F4, F6, F7, F9 

 

in order to eliminate routing decisions. For this purpose, eight vehicles are assumed to exist at 

each cross-dock point, and constraints (20) and (21) were added to the model. 

 
𝑋𝑖𝑗𝑛𝑚 = 𝑋𝑖𝑗𝑛𝑚∀𝑖 ∈ 𝑉𝐹 , 𝑗 ∈ 𝑉𝐶 , 𝑛 = 𝑖, 𝑚 ∈ 𝐾𝑛 , (𝑖, 𝑗) ∈ 𝐴, (𝑗, 𝑖) ∈ 𝐴     (20) 

 

∑ ∑ 𝑋𝑖𝑗𝑖1  ∗  𝑏𝑛1

𝑗∈𝑉𝐶:(𝑖,𝑗)∈𝐴𝑖∈𝑉𝐹

≥ ∑ 𝑑 𝑖𝑠∀𝑠 ∈  𝑆.

𝑖∈𝑉𝐶

                (21) 

 

Total cost Heterogeneous Route 1 F5 DP11 DP3 DP12 DP7 F5     

minimization  Route 2 F6 DP10 DP15  DP8 DP2 DP19 DP16  DP18 DP20 F6 

  Route 3 F9 DP17 DP5  DP9 DP4 DP14 DP6 DP13 DP1 F9 

 Homogeneous Route 1 F1 DP19 F1        

  Route 2 F2 DP17 DP5  DP9 DP4 DP13 DP1 F2   

  Route 3 F5 DP11 DP10  DP15 DP7 F5     

  Route 4 F6 DP8 DP2  DP16 DP18 DP20 F6    

  Route 5 F7 DP6 DP14  DP3 DP12 F7     

Total travel Heterogeneous Route 1 F1 DP19 F1        

time  Route 2 F4 DP13 F4        

minimization  Route 3 F5 DP10 DP12  DP3 DP11 F5     

  Route 5 F6 DP20 DP18  DP16 DP2 DP8 DP7 DP15 F6  

  Route 6 F9 DP1 DP6  DP14 DP4 DP9 DP5 DP17 F9  

 Homogeneous Route 1 F1 DP19 DP2  DP16 F1      

  Route 2 F2 DP9 DP5  DP4 DP1 F2     

  Route 3 F4 DP13 F4        

  Route 5 F5 DP11 DP10  F5       

  Route 6 F6 DP20 DP18  DP8 DP7 DP15 F6    

  Route 7 F7 DP12 DP3  DP14 DP6 F7     

  Route 8 F9 DP17 F9        

aThe optimal solution’s computation time is approximately 17 minutes. 
bThe optimal solution computation time is approximately 10 minutes. 



     Constraints (20) ensure that direct distribution occurs between cross-docks and demand points. 

Constraint (21) allows to have sufficient amount of vehicle capacity to satisfy demand at each 

scenario under direct distribution. 

     The sequential approach suggests to open F4, F6, F7, and F9. Then, these cross-dock points 

are fixed and the model is re-run by removing the constraints (20) and (21) for taking the routing 

decisions. As a result, a different delivery plan for the vehicles is obtained, compared to that of 

the base case. Table 7 presents the summary results for the comparison. 

     The results show that the use of the sequential approach results in a total cost increase of 28%, 

which reveals the benefit of optimizing location and routing decisions simultaneously. The 

comparison is further extended with a larger-sized instance. The new instance comprises 15 cross-

docks and 36 demand points. The distance data are obtained from the Pollution-Routing Problem 

Instance Library (Pollution-Routing Problem, 2022) using UK50_01 instance. Similar to the base 

case, the speed parameter is uniformly random between 50 and 90 km/h, and travel time is 

calculated using the distance and speed parameters. The road closure probability for each arc is 

uniformly random between 0.04 and 0.06. The rest of the parameters are the same as the base 

case. Table 8 presents the summary results for the comparison. 

 

The analysis on the larger-sized instance shows that similar outcomes were achieved, compared to 

the base case. The analysis also reveals the benefit of using the BOMILP model, the cost 

minimization objective. 
 

Table 8         
The summary results for the simultaneous and sequential approaches for the larger sized instance   
        

   Total cost minimization Total travel time minimization 
KPIs 

        

 Simultaneous Sequential  Simultaneous Sequential     

   approach
a approach

b  approach
c approach

e 
        

Total fixed opening cost (€) 961.2 1174.4  1562.3 2192.0 
Total vehicle cost (€) 324.7 364.1  482.1 549.5 
Total fuel cost (€) 49.9 48.2  51.8 49.7  
Total cost (€) 1336.0 1586.7  2096.2 2791.2 
Total travel time (seconds) 5405.9 5367.2  3803.9 3805.8 
Opened cross-docks  F3, F9, F11, F3, F4, F9,  F6, F7, F8, F1, F3, F4, F6, 
   F12, F15 F10,  F9, F11,     F7, F8, F9, 
    F12, F15  F12, F14,     F11, F12, F14, 
       F15     F15 
    

a
 The feasible solution that is obtained with a 0.87% optimality gap after 12 hours of computation time.   

b
 The feasible solution that is obtained with a 0.78% optimality gap after 12 hours of computation time.   

c
 The feasible solution that is obtained with a 8.27% optimality gap after 12 hours of computation time.   

d
 The feasible solution that is obtained with a 7.39% optimality gap after 12 hours of computation time.   

 
      
Table 9 

The summary results for the clusteringbased solution approach 

Total cost minimizationa   

Larger 

problems 

 

The BOMILP model 

 

The clustering solution approach (€) 

UK100−01 No solution found 2666.2 

UK100−02 No solution found 2722.3 

UK100−03 No solution found 2970.0 

UK100−04 No solution found 2811.0 

UK100−05 No solution found 3533.0 



 

4.7. Performance of the clustering-based solution approach 

 

This section examines the effectiveness of the approach, with a specific focus on evaluating costs 

in larger instances. The expanded instances consist of 20 cross-docks and 80 demand points, 

utilizing distance data sourced from the Pollution-Routing Problem Instance Library through the 

UK100_01-UK100_05 instance. The rest of the used parameters are the same as the base case. 

      In the clustering process, the 100 points are divided into three distinct clusters based on their 

mutual distances. Subsequently, the problem is addressed and solved independently for each 

cluster, resulting in specific outcomes. Table 9 provides a comprehensive summary of the results 

obtained through the clustering-based solution approach. 

      The results obtained underscore the effectiveness of the solution approach applied to the 

larger instances. Noteworthy is the better performance demonstrated by the solution approach, 

even in cases where the model fails to produce feasible solutions. This indicates that as the 

problem size increases, the solution approach proves to be more efficient and reliable, 

highlighting its effectiveness in addressing larger-sized problems. 

 

5. Managerial insights 

 

The analyses conducted using the proposed model for the LRP confronted in humanitarian 

logistics operations provide some valuable managerial insights to organizations operating in this 

critical field. The integration of location selection and routing decisions increases the complexity 

of the problem and the LRP is among the key decision problems that play a vital role in designing 

efficient humanitarian aid logistical activities. The proposed model for the addressed problem 

here takes the heterogeneous vehicle fleet, demand uncertainty, and road closures into account. 

The use of a comprehensive emission model proposed by Barth et al. (2005) allows us to estimate 

better fuel costs. 

In order to ensure the efficacy of the aid chain during disaster relief operations, cost reduction, 

one of the objectives of the model, is important, as resources are most likely to be limited and 

require careful control while planning operations. However, merely focusing on cost reduction is 

inadequate to fulfill the fundamental goal of humanitarian aid activities, which is to minimize 

losses and maximize assistance to affected communities. Therefore, the proposed model 

incorporates an additional important objective, which is the minimization of total travel time. 

Adopting the two objective functions, the model allows to facilitate an assessment of trade-offs 

between the prominent KPIs, cost (resource usage) and time, in humanitarian logistics. While 

constructing a pre-disaster plan, the knowledge of such trade-offs may help the decision-makers 

to understand the requirements and potential results of a disaster case and invest and prepare 

accordingly. More specifically, the model provides information on the potential service time 

required for aid distribution, the number of cross-dock points to reserve, fleet size and structure to 

invest in, and how much extra resources are needed to decrease the service time. 

     The suggested heuristic holds the potential to empower decision-makers to address larger 

problems encountered in practical scenarios. Numerical analysis shows that the model cannot 

provide feasible solutions within acceptable solution times. Employing the clustering solution 

Abbreviation: BOMILP, bi-objective mixed integer linear programming. 
aBoth the optimization model and the clustering solution approach were executed for a duration 

of 12 hours 



approach could offer a viable strategy for generating feasible delivery plans for the humanitarian 

logistics problem. 

 

6. Conclusion 

This study proposes a probabilistic BOMILP model for an LRP that can be confronted in 

predicate humanitarian logistics operations planning. The model respects total cost (i.e., the fixed 

opening cost of cross-docks, vehicle fixed cost, and fuel cost) and total travel time minimization 

objectives. The purpose of minimizing the travel time is crucial in ensuring that aid is sent to 

disaster victims as soon as possible to reduce the loss of life and provide for other urgent needs of 

the victims. The cost minimization objective is employed to ensure the economic sustainability of 

the resulting location and delivery plans. Efficient use of resources at the time of disaster is 

significant to meet the needs of a higher number of disaster victims and to sustain humanitarian 

operations for a longer time. The proposed model goes beyond cost reduction and considers 

critical factors such as demand uncertainty and road closures, aligning it more closely with real-

life disaster relief operations. According to the research, this proposed decision planning method 

is novel in terms of structures that are considered simultaneously. 

     Numerical analyses show the added value and applicability of the proposed model under 

several problem settings. An examplar Pareto analysis is also provided to demonstrate how to 

estimate the additional resources needed to reduce aid distribution durations. The analysis for 

different desired aggregate road non-closure probabilities shows that reducing risk results in an 

increase in total cost and travel time. The analyses also reveal the potential advantages of having a 

heterogeneous vehicle fleet over a homogeneous one. Furthermore, numerical analyses are 

conducted to assess the performance of the heuristic to demonstrate that the proposed algorithm 

can generate promising solutions for instances of reasonable size. 

 

      It has been proven that the proposed model has the potential to support managers in preparing 

for an incident. By incorporating multiple objective functions and presenting a case study, this 

study offers valuable insights and lays the groundwork for future research to leverage new 

technologies and enhance the resilience of humanitarian aid supply chains. In future studies, new 

technologies such as drone and robot deliveries that make it feasible to reach unattainable regions 

can be addressed in new decision models. Also, other parameters that may potentially be 

uncertain in similar cases such as speed or unit costs can be respected. Routing decisions in the 

first echelon of the supply chain (among depots and cross-docks) can be tackled as well. As a 

final suggestion, operationallevel LRPs may be confronted in the post-disaster response phase of 

disaster management while executing the tactical pre-disaster plans can be addressed. Such 

problems may involve dynamic decisions of reallocating vehicles between cross-dock points, 

reuse or redirecting vehicles, or demand changes. 
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