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Abstract: Transition metal dichalcogenide (TMDC) materials are very important in 

electronic and optical integrated circuits and their growth is of great importance in this 

field. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide) 

thin films by chemical bath method (CBD). The CBD method of growth makes it 

possible to simply grow large area scale of the thin layers of this material in lower 

temperatures (near room temperature) and atmosphere pressure in comparison to costly 

complicated growth methods. The results show the effect of growth temperature and 

time on the quality of layers and XRD measurements were performed for analysis of 
crystalline structure of layers. The results show that for the bath temperature of 60oC 

and for 75 min growth time, better quality of layers can be obtained with low intensity. 

The low intensity of XRD peaks belongs to poor crystalline structure of layers. For 

higher bath temperatures, the films lose their uniformity. The results were confirmed by 

SEM images. 

 
Keywords: Transition Metal Dichacogenide, Growth, Chemical Bath Deposition, 

Molybdenum Disulfide. 

 

1. INTRODUCTION  

In recent years transition metal dichalcogenide (TMDC) materials have 

attracted much interest because of their characteristics and applications in 

electronic and optoelectronic devices [1-3]. Most of these advantages arises 

from their 2D lattice structure which makes it possible to be utilized in ultra-

integrated devices. The growing rate of studies over the application of these 

type of materials, predicts their potential applications especially in 

semiconductor devices. Among these materials, metal sulfides are known and 

extensively studied but very few metal sulfides such as WS2, MoS2, CoS, NiS, 

SnS and ZnS, have been employed to be fabricated [4-7]. Among the metal 
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sulfides, molybdenum disulfide (MoS2) has a layered structure like graphite 

with strong interlayer covalent bonds separated by weak van der Waals forces 

[6]. Recently different studies demonstrated applications of MoS2 as the active 

channel region of a transistor [8, 9].  

It was also shown that beside the exclusive electronic properties, MoS2 

exhibits good optical properties which makes it a candidate to be replaced in 

optical integrated circuits. 

Liu et al. studied refractive index and absorption properties of TMDCs in 

visible range and its potential applications in spintronics and optoelectronics 

[10]. Cudazzo et al. showed plasmonic properties of TMDC materials and 

studied the role of the layer anisotropy in the dispersion of the plasmons [11]. 

McMenamin et al. demonstrated photoemission from MoS2 layered structures 

[12].  

Different methods have been proposed for growth and fabrication of TMDC 

material layers [13, 14]. Commonly known method is chemical vapor 

deposition (CVD), but it requires a costly and high-temperature procedure [15, 

16]. Chemical bath deposition (CBD) is a simple, low-cost and low-temperature 

method which is used to growth of thin metal-oxide layers such as CuO, ZnO, 

CdS, etc [17, 18]. In this method the glass substrate is placed in a chemical 

solution which is prepared for desired material and under specific time and 

temperature the film is deposited on the substrate. In this paper we try to growth 

MoS2 layers by CBD. 

2. MATERIALS AND METHOD 

In order to fabricate large area MoS2 films, a glass substrate is considered and 

cleaned by acetone for 15 min then ethanol for 15 min. The substrate can be 

chosen from steel or ITO depending on the application of layer. The required 

materials for this experiment are as follows: 1) Ammonium Molibdat 
((NH4)6Mo7O24 ), 2) Sodium Sulfide (Na2S) and 3) Sulfuric Acid. Since the 

reaction is performed in aqueous bath, all of the materials should be in solution 

phase. To do so, deionized water is used to solve the Ammonium Molibdat and 
Sodium Sulfide powders and change them from solid phase into solution. Our 

calculations show that in preparing the solution of each above materials, 0.132 

mg of Ammonium Molibdat and 156 mg of Sodium Sulfide powders is needed 
to be added to 10 ml deionized water. After adding the powder to deionized 

water, we put them in a glass beaker and stir using magnet. The final required 

solution for growth of thin film can be obtained by combining the solutions with 

Sulfuric acid in a Pyrex glass beaker. After adding the Sulfuric acid the color of 
solution changes into brown. The progress of solution preparing is shown in 

Fig. 1. Formation of MoS2 layer by CBD is as follows. Firstly Sulfuric acid 

reacts with Ammonium Molibdat which leads to formation of (NH4)2MoO4 as: 
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          (1) 

On the other hand, Na2S is decomposed into H2S in the presence of water: 

                     (2) 
The resulted H2S reacts with (NH4)2MoO4 under acidic condition and MoS2 

with brown color is formed as: 

         (3) 
The prepared substrate which is a glass slide is vertically placed in the beaker 
which is located within the bath. The temperature of bath is adjusted and 

controlled by an electronic circuit. Since the formation of thin layers is 

dependent on the temperature of solution and the time at which the substrate is 
placed within it, we study the effect of these parameters on the growth and 

properties of deposited layers.  

 

 
 

 
 

 
Fig.1. Progress of final solution production. Brown color of solution confirms presence 

of MoS2. 
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Fig. 2 shows different samples which are deposited in different temperatures 

and times. According to the figure, at T=30oC a very thin layer is formed which 
becomes thicker with increase in temperature. At T=60oC some areas are 

formed with considerable thickness. However as the temperature reaches to 

T=90oC, the layers are accumulated and the surface gets bulky structure. So it 
can be said that for increased temperatures the layer loses its uniformity and 

structure shape. So we continue the studies for T=30 and 60oC.  

More study is performed by XRD analysis of layers grown at different 

temperatures and in 60min. Growth time of 60min is chosen because according 
to the fig. 2 a proper surface morphology is achieved for this time. For T=30oC 

no considerable peak is observed in XRD pattern. This is in agreement with 

what is seen from the very low thickness of layers grown at T=30oC. So another 
analysis is performed for a sample grown at T=60oC and the results are 

illustrated in Fig. 3(b). According to the pattern, two distinct peaks are evident 

in 12.49 and 50.45. The detailed specification of peaks are listed in Table 1. In  

 
 

Fig. 2. Photograph of deposited layers at different growth time and temperatures. 
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comparison to the previously reported data, the peak of 50.45 is related to the 
(600) direction [19]. It is seen that increasing the temperature leads to 

observation of a standard peak in the XRD spectra. In order to investigate the 

effect of growth time, another sample is deposited at T=60oC and t=75min and 
the pattern is shown in Fig. 3(c). For this sample 4 peaks are observed at 12.60, 

27.49, 31.07, and 50.42 with details listed in Table 1. Compared to the standard 

peaks reported for MoS2, the peaks 31.07 and 50.42 are related to (100) and 
(600), respectively [19, 20]. So it can be concluded that increasing the growth 

time improves the quality and crystalline properties of layers. 

 
 

 
Fig. 3. XRD pattern for 3 samples grown in different conditions, (a) t=60 min, T=30oC, 

(b) t=60 min, T=60oC, (c) t=75 min, T=60oC. 
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Table.1. 
Detailed specification of observed peaks for samples grown at different time and 

temperatures. 

 
 

In order to study the morphology of deposited layers, scanning electron 
microscopy (SEM) images are prepared for samples and they are shown in Fig. 

4. Fig.4(a) shows the layer formed in 30oC and 75 min. According to the figure 

some flower-like areas are formed as islands and no reasonable layer structure is 

formed. This is in agreement with predictions of Fig. 2 and XRD results. 
However by increasing the temperature a nearly uniform film is deposited as 

shown in Fig.4(b) in which the growth temperature and time are 60oC and 45 

min, respectively. The figure reveals tendency of sub-micron particle to form a 
uniform layer in this condition and the film quality is improved when the 

growth time is increased to 75 min as shown in Fig.4(c). By more increase in 

growth temperature from 60oC to 90oC, the formation of microdomes occurs 
and this can be resulted from more accumulation of particles to individual 

islands. By comparing the SEM images at different temperatures, it can be 

deduced that in lower temperatures some slower-shape islands is formed and by 

increasing temperature they cover all the surface and a nearly uniform layer is 
deposited. For higher growth temperatures the layer accumulated to islands 

again and it loses uniformity. However the more growth time results in the more 

uniform layer. 
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Fig.4. SEM images of samples grown at different conditions; (a) T= 30oC, t=75min, (b) 

T= 60oC, t=45min, (c) T= 60oC, t=75min, (d) T= 90oC, t=60min. 

3. CONCLUSIONS 

Growth of transition metal dichalcogenide material, MoS2 was proposed based 

on chemical bath deposition method. Different growth conditions were studied 
and the effect of temperature and time were investigated simultaneously. Three 

different growth temperatures and deposition times were considered and the 

samples were grown. The results showed that by increasing the temperature 

more uniform layers are formed but for higher temperatures around T=90oC the 
structure loses its uniformity and changes into randomly distributed 

microdomes. We also found that higher growth times leads to more uniform 

layers. XRD analysis of some samples were performed and  It was shown that 
for higher temperatures and growth times, some crystalline peaks were 

observed. The low intensity of XRD peaks shows the poor crystalline structure. 

The layers were also studied by SEM images and it was found that at low 
growth temperatures no layer is formed but for higher temperatures and higher 

growth time formation of a uniform layer is evident. By more increasing the 

temperature the film lose their uniformity. 
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