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Abstract In this paper, by using a quantum hydrodynamic plasma model which incorporates the 
important quantum statistical pressure and electron diffraction force, we present the corrected 
plasmon dispersion relation for graphene which includes a k  quantum term arising from the 

vector). The longitudinal plasmons are the electrostatic collective excitations of the solid electron 

gas. We have tried to use the quantum hydrodynamic model for studying of propagation of the 
electrostatic surface wave in single layer graphene, in the presence of an external and uniform 
magnetic field. The direction of magnetic field was selected in plane of graphene sheet. It shows 
the importance of quantum term from the collective electron density wave interference effects. By 
plotting the dispersion relation derived, it has been found that dispersion relation of surface modes 
depends significantly on these quantum effects (Bohm’s potential and statistical terms) and it 
should be taken into account in the case of magnetized or unmagnetized plasma; we have noticed 
successful description of the quantum hydrodynamic model. The quantum corrected hydrodynamic 

model can effectively describe the Plasmon dispersion spectrum in degenerate plasmas, since it 
takes into account the full picture of collective electron-wave interference via the quantum Bohm’s 
potential. By plotting the normalized dispersion relation, the behavior of two different wave types 
(lower- and higher- branches) was predicted. It was found that the lower-branch should not be 
propagated to the specific wave number (cut-off frequency). By drawing of the contour curve of 
the lower- and higher-branches modes, the areas that modes can be propagated were obtained. So, 
Quantum hydrodynamic model is an effective way to study the waves in various media.  
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1. INTRODUCTION 

Graphene is an allotropes of carbon that are structurally as a single layer of carbon atoms 

connected in a honeycomb lattice in the form of a two-dimensional crystal material. 

Graphene, despite the emergence in recent few years, has become one of the most 

amazing and technologically appealing fields of scientific research which has captured 

enormous amount of attention among researchers of diverse fields [1]. 
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The electrodynamics properties of graphene are shown in detail, the structure of energy 

bands in graphene net changes in the spectrum of Plasmon polariton and Plasmon- than 

conventional two-dimensional systems with electron dispersion is parabolic. 

Furthermore, the dynamic frequency dependent conductivity of graphene with strong 

nonlinear characteristics predicts its very promising applications in developments of 
future advanced terahertz source and detector technologies (terahertz gap technology) [2]. 

It has been found that graphene, usually considered as a gapless semiconductor, shows a 

profoundly different behavior from semiconductors, regarding the Plasmon excitation 

resonances [3]. The quantum hydrodynamics (QHD) model, since the first developments 

several decades ago, has become one of the most convenient and useful methods in 

description of collective modes in quantum plasmas. Recent development of effective 

hydrodynamic models incorporating the electron recoil, spin magnetization, and 

relativistic effects has turned the hydrodynamics approach into a direct method of 

evaluation of the collective modes in wide variety of plasmas [4, 5]. 

The most important component of a QHD, which causes different dispersion effects in 

quantum plasma compared to that of a classical counterpart, is the degeneracy pressure. 

However, the second order effects, such as the quantum electron diffraction and spin 
magnetization effects, has been shown to lead to observable effects on ion acoustic and 

magneto-sonic wave propagations and instabilities in quantum plasmas. if the background 

ions form a monolayer planar honeycomb lattice, the degenerate electrons fill the conical 

band dispersion container, the so-called Dirac cones .Such Dirac cones are described by 

a linear energy dispersion relation as  F FE k v  (with the characteristic Fermi energy 

of F F FE k v ), quite similar to that of the massless photon gas, except that the 

valence free electrons in graphene possess subluminal particle velocities [6]. 

2. DISPERSION RELATIONS 

Assume a collisionless completely degenerate zero-temperature electron fluid with fixed 

homogenous background ions and an ambient magnetic field of zB ˆ
0B


 in the x-

direction in the graphene plane. By calculating the dispersion relation electrostatic waves 

to study the waves at the metal thin layer (graphene) paid [7]. Our closed hydrodynamic 

set of equations consists of the continuity, momentum and Poisson’s equations, written 

as 
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Where n  , DP2  and E are the number of electron density, electrostatic potential induced 

and pressure fluid quantum and the total electric field. In order to calculate the electron 

fluid pressure fermion quantum degenerate, for example, it is assumed that the plasma is 
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in a state of complete degenerate. In two-dimensional, Dirac pressure for the quantum 

fluid plasma is defined 
2/3

2 3/2 nvP FD   which )()( rner   is the 

surface charge density. Selecting changes of perturbed parameters like 

)](exp[)( txkiz x   , we can express the set of equations mentioned below 

,regarding the linear perturbation. By substituting relationships in equation (1) and with 

regard to linear disturbances can obtain the following equations. 
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Also the inducted electrostatic potential is defined as )2/( 0 xind kne   and 

02 nkF  are used [8]. The Eq. (4) and the z-component of the curl of the Eq. (4), 

one can derive a relation between v


 and n  
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By substituting 5 on 6 and 
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 . We calculate the following equation.
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To obtain equation (7), very slow nonlocal variations are neglected i.e. 
222442 /)/( xx kzzk 

. The following solution is proposed for the Eq. (7) 
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where  
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(12) 

 

 

By definition of 
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  and using some algebraic mathematical, one 

would easy the set mentioned equations. 

xzx EbJaJa 11112111  ,                                                               (13) 

zzx EbJaJa 12122121 
  
                                                               (14) 

Where the definition of coefficients are like the following 
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Using the relation between E


 and J


 conductivity tensor as   can be written as 

follows. 
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Using the Ampère's law can be written the dielectric tensor as follows. 
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 ,                                                                            (16) 

By calculating the determination of Eq. (18), one can drive the dispersion relation for 

propagation of electrostatic surface waves on the single-layer graphene. 
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where 

  2222224

cxxzc AkAkAkI  
 

 

3. DISCUSSION 

In this section, the numerical and analytical discussion is presented about the relationship 

dispersion i.e. Eq. (17). For two-dimensional single-layer graphene the numerical density 
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of electrons can be between 
212

0 10  cmn  and 
214

0 10  cmn [9]. We have used 

for our calculation of the amount
213

0 10  cmn . First, consider the case where there 

is no external field (i. e. 0c ). Therefore, the equation (17) to be reduced the as 

following 
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By drawing the dispersion relation, one would find that there are two branches (lower and 

higher). Although both of them are starting from zero, by increasing the wave number 

they have different behavior. By increased gradually of the wave number Fx kk / , lower-

branch reaches a certain amount (cutoff frequency), in spite of the fact that the higher-

branch increases. 

 

 

Figure 1: Schematic of a normalized dispersion relation F /  in terms of Fx kk /  in the case 

of no magnetic field. 
 

Figure 2 clearly shows that the unstable area is very large. To stimulate and propagate 

lower-branch, one would choose the exact wave number and magnetic fields of the blue 

waves. 
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Figure 2: schematic of stable and unstable areas for different values of the magnetic field and the 

wave number for the lower branch 
 

According to Figure 3, the stable area for propagation of quantum electrostatic higher-

branch is wider than the lower branches. 

 

 
Figure 3: schematic of stable and unstable areas for different values of the magnetic field and the 

wave number for the lower branch 
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4. CONCLUSION 

To sum up, Quantum hydrodynamic model is an effective way to study the waves in 

various media. In this paper, it has tried to use the quantum hydrodynamic model for 

studying of propagation of the electrostatic surface wave in single layer graphene, in the 

presence of an external and uniform magnetic field. The direction of magnetic field was 

selected in plane of graphene sheet. Considering the set of the quantum hydrodynamic 

equations, for fluid Dirac, the dispersion relation was obtained. Numerical values were 

used to analyze the dispersion relation. By plotting the normalized dispersion relation, the 

behavior of two different wave types (lower- and higher- branches) was predicted. 

It was found that the lower-branch should not be propagated to the specific wave number 

(cut-off frequency). By drawing of the contour curve of the lower- and higher-branches 

modes, the areas that modes can be  
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