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1.  INTRODUCTION 

The lightning strike is a natural phenomenon that has long been the source of many human and financial injuries. 

This phenomenon is the main reason to cause line tripping and service interruption, the many numbers of accidents in 

the power system are caused by lightning which has brought a great loss to the national economy [1]. Lightning is an 

enormous flash resultant from the increase of millions of volts between clouds or between a cloud and the earth [2]. 

To prevent the destructive effects of lightning, a suitable earth system was proposed [3]. The earth system is to 

provide the electric earth with low-resister that can protect the equipment against electric shock. The effect of grounding 

resistance connected to surge arresters [4] was presented and the result shows that the grounding resistance of Surge 

Arresters can be increased to some extent without decreasing the lightning protection level [5]. Today, the surge arrestor 

is often used to protect the equipment of the power system against transient overvoltages.  

Lightning rod arrester [6] is used to keep the tower and present another tradition for lightning current. This arrester 

has reduced the potential of tower overhead and the performance of a 500 kV lighting rod arrester is tested, and employed 

in transmission arrangement. When it is linked to the tower, the top possible of the tower can be limited.  Understanding 

the nature of overvoltages and mobile waves makes it possible for manufacturers to design the appropriate level of 

insulation to protect the power systems [7]. The back flashover, direct lightning hit to a phase conductor, and lightning-

induced voltage are the category of lightning overvoltages.  A statistical technique was used to investigating the energy 

absorption of each surge arrester to take into account the lightning parameter randomness [8]. A probabilistic evaluation 

of the energy absorption capability of transmission line surge arresters (SAs), based on the Monte-Carlo method was 

presented. 

We propose investigating the factors affecting the voltage and energy absorbed by the arrester when the lightning 
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strikes the system power and the design of an artificial neural network [9] to estimate the energy of the arrester. So that 

the error neural network [10] can be neglected and it is possible to use this neural network to estimate the power of the 

arrester in the power system.  

The energy source estimation using the neural network [11] has not been done before. With this method, the accuracy 

level. To study the characteristics of power line arrays in high voltage substations and power lines, the EMTP Works 

software [12] is a very useful tool for simulating the power system. So, using EMTP Works software, we first identified 

the effective factors on the amount of voltage and energy depleted on the arrester when the lightning strikes into the 

power system. Then, after identifying the factors affecting the voltage and energy of the arrester, with the help of the 

MATLAB software, we designed an artificial neural network [13]. The neural network can be neglected and it is possible 

to estimate the power of the arrester in the power system. The arrester must have sufficient absorption capacity to 

withstand the thermal shock caused by the shock absorber discharge. A choice of energy capacity for a surge arrester 

depends on many factors, including practical experience, statistics on network connections, storm statistics with 

lightning strikes and information about the line drainage class. Choosing the right amount for the energy of an arrester 

is very difficult, which is possible using the neural network [14] in this paper. This network has an amount of non-

critical error to predict the energy of the archer so this network Nervous system as a power surge arrester in the power 

system. 

 

2.  MATERIALS AND METHODS 

The ZnO arresters [15] have important dynamic and frequency characteristics for lightning waves and other waves 

with a rapid wavefront. In the simulation, the arrester is simulated with a nonlinear resistance. The lightning waves have 

a fast front slope therefore; the dynamic effects are provided for the ZnO arresters. Fig. 1 shows the proposed model for 

The ZnO arrester. For waves with a slow front, the RL filter shows the small impedance. The value of the impedance of 

the RL filter is very important in waves with high-speed wavefront [16]. The practical arrester data be given by: 

 

𝐿0 = 0.33𝜇𝐻 𝐿1 = 32𝜇𝐻 𝐶 = 0.031𝑛𝐻 

𝑅0 = 170𝛺 𝑅0 = 105𝛺  

 

 

 
  

Fig. 1. Frequency model of ZnO arrester. 

 

 



Majlesi Journal of Telecommunication Devices                      Vol. 13, No. 4, December 2024 
 

 

231 

 

(1) 
Ω

n

100d
R0  , , μH

n

0.2d
L0  , Ω

n

65d
R1   

μH
n

15d
L1  , PF

d

100n
C  [20] 

Where d is the length of the arrester in meters, n is the number of parallel columns consisting of disks ZnO, L0 is 

magnetic inductance due to adjacent fields of arrester or ring inductance including transformer and arrester, R0 is to 

stabilize integral calculations and c is a capacitor of the arrester. To calculate the energy of the archer, the power of the 

arrester is calculated then, the energy of the archer can be achieved following equation: 
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Where 𝐸(𝑡) is the energy and 𝑃(𝜏) is the power. The archer's energy mainly depends on three factors, the current 

intensity of the lightning wave, the sequence duration time of the lightning wave behind, and the resistance of the tower 

foot. The current intensity of the lightning wave and the sequence duration time of the lightning wave behind have a 

random nature and the resistance of the tower foot has a selective nature. Therefore, by changing the resistance of the 

tower foot, the stress of the energy entered by the arrester can be changed. 

 

3.  RESULTS   

 When lightning happens, it may collision to phase conductor or wire guard. The simulation operation was performed 

for the lightning collision to once to the wire guard and once to the phase conductor.  

To investigate and compare the affecting factors on the voltage and energy of the arrester, before the simulation, a 

base state was required. The base state should not be too small or too large. If these parameters are small, the factors 

affecting the voltage and the energy of the arrester are not possible. If the parameters of the base state are large, we will 

give the incorrect and unrealistic values of the voltage and energy values of the arrester.  These parameters can be 

achieved with a test and error model. We consider the base state as Table 1. 

 

Table 1. The base state parameters for investigating the voltage and energy of the arrester. 

 
     Rfoot (base)(Ω) 

 

Span Length(base)(m) th (base) (µs) 

 

tf (base) (µs) 

 

Isurg (base) )KA) 

 
 

 200 450 200 8 
100  

     
  

The simulation results were obtained for measuring the voltage and energy when a lightning strike hit the wire guard 

and phase conductor. It is estimated that by gathering this information, the amount of network load can be measured to 

appropriately design and utilize arresters. All energy values in the tables are expressed in joules, and all voltage values 

are presented in kilovolts. 

 

Table 2. Energy stress of the arrester with change in the intensity of the lightning current. 

 140 120 100 80 50 35 20 10 I(KA) 

 5401 36845 22253 10915 642 8 3 2 
E (Guard 

wire) 

 20610291 16811545 13196658 9792491 5079131 2991618 1279274 314819 
E (Phase 

inductor) 

 

As can be seen from the table above, if the other parameters remain constant, E (Guard wire) initially increases and 

then decreases. The sharpness of E (Phase inductor) increases. 
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Table 3. Voltage stress of the arrester with change of the intensity in the lightning current. 

 140 120 100 80 50 35 20 10 I(KA) 

 582 490 386 281 118 33 11 3 V (Guard wire) 

 1273 1231 1182 1126 1015 962 907 834 V(Phase inductor) 

 

Table 3 shows that if the lightning current is variable, the sharpness of E (Guard wire) and E (Phase inductor) increases. 

 

Table 4. Energy stress of the arrester is presented with changes in the duration time of the lightning wave.  

 250 200 150 100 50 20 th(𝜇𝑠) 

 23763 22253 18723 11390 1999 3 E (Guard wire) 

 15593095 13196658 10521206 7505276 3615554 928714 E (Phase inductor) 

 

In this table, with increasing time behind sequence duration time of the lightning wave, (Phase inductor) increases. 

 

Table 5. Voltage stress of the arrester with change behind sequence duration time of the lightning wave.  

 250 200 150 100 50 20 th(𝜇𝑠) 

 387 386 384 379 362 315 V (Guard wire) 

 1226 1219 1205 1193 1181 1173 V(Phase inductor) 

 

Table 5 demonstrates that as the duration time of the lightning wave increases, both V (Guard wire) and V (Phase 

inductor) increase. 

 

Table 6. Energy stress of the arrester with a change of resistance of the tower foot. 

 500 400 300 200 100 50 Rfoot(Ω) 

 186089 159079 122333 74878 22253 1403 E (Guard wire) 

 13183057 13185333 13188450 13192783 13196658 13206049 E (Phase inductor) 

 
Table 7.  Voltage energy stress of the arrester with change of resistance of the tower foot. 

 500 400  300 200 100 50 Rfoot(Ω) 

 762 742  712 662 386 172 V (Guard wire) 

 1114 1128  1139 1150 1174 1183 V(Phase inductor) 

 

The effect of tower footing resistance on the voltage and energy of the lightning arrester is illustrated in Tables 6 

and 7. It is summarized that when a lightning strike hits a phase inductor, the arrester's energy and voltage decrease as 

the tower footing resistance increases. An inverse relationship exists between tower footing resistance and the voltage 

and energy of the lightning arrester. Conversely, when a lightning strike impacts the guard wire, an increase in tower 

footing resistance leads to a rise in both the energy stress and voltage of the arrester. In this scenario, a direct relationship 

is observed. 

According to the results, the main factors controlling energy absorption have been identified. Currently, neural 

networks are employed for various pattern-recognition tasks, including line recognition, speech recognition, and image 

processing. They are also utilized for classification issues such as text or image categorization. An artificial neural 

network has been designed to estimate the energy absorbed by the arrester, focusing on minimizing the error of this 

neural network. It is noteworthy that the neural network can effectively estimate the energy of the arrester within power 

systems. 

Although deep learning is a newer approach today, the use of simple neural networks for estimating the energy of 

surge arresters offers significant advantages. One of these advantages is high prediction accuracy. Neural networks are 

capable of learning complex patterns and relationships within data, leading to more precise predictions of energy 
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absorption during lightning strikes. Additionally, these networks can be trained on historical data, allowing them to 

adapt to various environmental conditions and changes in lightning characteristics. 

Moreover, efficiency in data processing is another benefit of using neural networks. These networks can process 

large volumes of data quickly and effectively, enabling real-time analysis and decision-making. Furthermore, by 

automating the estimation process, the likelihood of human error in calculations and assessments related to surge 

arresters is reduced. Ultimately, the accuracy in estimating the energy absorbed by surge arresters contributes to 

enhancing the reliability and stability of electrical systems. 

The use of simple neural networks has significant advantages over deep learning methods. One of these advantages 

is the simplicity and speed of training. Simple neural networks typically have fewer structures and therefore require less 

computational resources. This results in reduced training time and a faster model development process, especially in 

projects that require quick implementation [17]. 

Additionally, the reduced risk of overfitting is another benefit of using simple neural networks. With fewer 

parameters in these types of networks, the likelihood that the model becomes overly dependent on the training data and 

fails to generalize well to new data is lower. This characteristic is particularly important in applications where training 

data is limited or insufficient [18]. Although deep learning and artificial intelligence are suitable methods, they can be 

utilized in future research. 

The number of neurons in the hidden layer was determined using the test and error method. After testing, 10 neurons 

were selected as the optimal number that produced the best convergence between the generated results and the training 

data. The neural network consists of three layers: an input layer containing 3 neurons, a hidden layer containing 10 

neurons, and an output layer containing 1 neuron (Fig. 2). 

 

 

 
Fig. 2. MLP neural network designed. 

 

Selecting input-output data is very important for network education. This information should include various 

conditions and conditions that may occur in the actual system so that the neural network [19] experiences different 

conditions and is resistant to various inputs. The current intensity of the lightning wave, the sequence duration time of 

the lightning wave behind, and the resistance of the tower foot are inputs and the energy of the arrester is the output 

factor of the neural network [20] model. (Fig. 3) 

 
Fig. 3. The general scheme of the MLP neural network. 
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The amount of the lightning current between 4-140KA, the sequence duration time of the lightning wave behind 

between 20-250μs, and the R foot value increased by 9 steps and at each step of 50 ohms, ranging from 100 ohms to 

500 ohms. 

  
Fig. 4. Regression status of learning, testing, verification, and data allowed data when hit lightning phase conductor. 

 

The energy values of the arrester were obtained in two scenarios: when lightning struck the phase conductor and 

when it impacted the wire guards. For each scenario (lightning strike on the phase conductor and wire guard), a total of 

29,187 input/output samples were considered for network training. To enhance training efficiency and accommodate 

the energy array sizes, all input-output data were normalized using the non-linear log2X function within the interval 

(2.24). 

After designing the network, simulated results were obtained through the inverse method of normalization. It was 

noted that normalizing the results caused them to differ from the original values. To retrieve the original results, a reverse 

normalization process was necessary. 

Once the neural estimator was developed and subjected to various inputs while determining appropriate network 

weights, it could be utilized to estimate the energy absorbed by the arrester in the power grid. In the designed neural 

network, which aims to predict the energy of the arrester during collisions, the regression status of training, testing, and 

verification data is illustrated for lightning strikes on the phase conductor in Fig. 4. This graph displays the output in 

relation to the target. The vertical axis represents the optimal measured value and the maximum coefficient (μ), which 

indicates the degree of difference that should be reflected in the diagram. The target variable corresponds to impacts 

with either a guard wire or phase conductor, varying from 0 to 25. 

Ideally, when the calculated outputs are almost in line with the target outputs, the graph is in a straight line with a 

gradient of 45 degrees and can be used to accurately the results. The mean square error (MSE) [21] in the training, test, 

and confirmation data was illustrated for each repetition in Fig. 4. The vertical axis gives the average output error of the 

applied 3 data. This figure is the best condition where the error rate is close to real. 
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Fig. 5. MSE status in educational, testing, and verification data for each repetition when attacking the lightning to 

the phase conductor. 

 

In Fig. 5, the average errors of confirmed data, test data, and historical data (real) are represented by the green, red, 

and blue colors, respectively. The error rate is calculated for each iteration, and the optimal mode, where the error rate 

closely aligns with reality, is indicated by a circle in the diagram. It is observed that after 1,476 iterations, no further 

changes occur, and the error stabilizes at that point. This indicates that the network's error is unlikely to decrease further 

after 1,476 iterations. Therefore, lightning strike data can be effectively integrated into the power network with a good 

fit. 

 
Fig. 6. Regression status of learning, testing, verification and data allowed data when hit lightning to the wire 

guard. 

 

Figures 6, and 7 show data regression and the mean squared error of output, respectively when the lightning strikes the 

guard wire.  
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Fig. 7. MSE status in educational, testing, and verification data for each repetition when attacking the lightning to 

the wire guard. 

 

      In this case, the network error after 1371 times, there is no longer the probability of it, and so it is possible to easily 

load the loaded lightning with a good ratio to the power grid.  

 

4.  CONCLUSIONS  

The results of this study highlight the critical role of surge arresters in limiting transient overvoltages in power 

systems. By utilizing EMTP Works software, the transient states within the network were accurately simulated, allowing 

for a detailed analysis of the voltages and energies absorbed by the arresters during lightning strikes. It was determined 

that the energy and voltage experienced by the arresters are influenced by three key factors: the intensity of the lightning 

wave, the duration of the lightning wave, and the resistance at the tower's base. 

Through this research, significant insights into the parameters affecting arrester performance were gained. The 

implementation of a powerful neural network provided a robust tool for estimating energy surges, yielding a low error 

rate in predictions. This advancement demonstrates that neural networks can effectively model complex behaviors in 

power systems, ultimately enhancing the reliability and protection offered by surge arresters against transient 

overvoltages. 
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