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This paper presents a new method for detecting the location of voltage flicker in 

active distribution networks. By measuring and sampling the voltage of the buses, 

the flicker detection index is extracted from the information on the amplitude and 

frequency of the voltages. The extraction of this index is based on the new frequency-

time transformation S (S-Transform) which is used to detect the presence of flicker. 

The obtained index has been used to train a neural network to detect the polluting 

location. The input of the neural network is the measured indicator of voltage flicker 

in the buses, and the output of the neural network is the state of all the buses in terms 

of flicker occurrence. The proposed method has been tested on a sample 14-bus 

network. EMTP/ATP software has been used to simulate flicker in the power 

network. The simulation results show that by choosing the appropriate location of 

the measurements in the network, with a small number of measurements, buses or 

areas where the polluting load is located can be intelligently identified. 
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1. Introduction 

The discussion of evaluating power quality and 

improving its related specifications is one of the topics 

that has been discussed in recent years due to the 

increasing growth of power electronic devices and 

non-linear loads in power networks. One of the most 

unwanted power quality phenomena in distribution 

networks is the "voltage flicker" phenomenon. 

According to the definition of the International 
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Electrotechnical Commission (IEC), voltage flicker 

refers to periodic or random voltage fluctuations with 

an amplitude of ±10% and a frequency between 0.5 

and 25 Hz [1]. In addition to the problems that this 

phenomenon creates for various equipment such as 

electronic controllers, protective devices, etc., with the 

effect it has on the light of the lamps, it causes their 

light to vibrate, which is easily felt and causes 

dissatisfaction of the customers. Using high-power 

fluctuating loads in the power grid, such as impulse 
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loads, can cause voltage fluctuations and flicker, 

which may damage electrical equipment. This type of 

power quality disturbance cannot be ignored and has 

attracted more and more attention [2-6]. Considering 

the competition in electricity markets, eliminating or 

reducing the effects of this phenomenon is very 

important. The first step in this field is to determine 

the location where the polluting load affects the 

network so that by identifying the source of flicker 

production and installing appropriate equipment or by 

upgrading the network, it is possible to eliminate or 

reduce these disturbances. Accurate detection of 

voltage fluctuations and flickering is the basis of 

assessing their risks and effectively dealing with them. 

Voltage flicker signal tracking and amplitude 

modulation wave detection are the main problems of 

voltage flicker signal detection. 

In recent years, some innovative research results on 

voltage flicker signal characteristics and flicker 

location detection have been published [7-19]. In [7], 

the demodulation characteristics of energy operators 

were studied, and a fast and accurate flicker location 

signal extraction method was developed based on the 

improved k-value energy operator. In [8] a hybrid 

approach was presented to evaluate voltage 

fluctuations using an algorithm based on 

synchronization transformation. First, the 

characteristics of the voltage fluctuations were shown 

through the exact extraction of the measured voltages 

by Hilbert transform, then the synchronization 

transforms and an unsupervised clustering method was 

applied to determine the number of frequency 

components and the corresponding frequencies. In [9], 

an improved Teager energy operator error correction 

factor was developed to reduce the errors of online 

extraction of voltage flicker location. In [11], a method 

to detect flicker parameters based on the Teager-

Kaiser energy operator and Blackman-Harris triple 

spectrum line interpolation was proposed. To detect 

time-varying signals, the time-frequency analysis 

method is suitable and approved, and the use of 

wavelet transform in this field has become a research 

topic [12-14]. Furthermore, the short-time Fourier 

transform is a classical time-frequency linear analysis 

method. Its result is directly related to the signal 

spectrum and has a good application in diagnosing 

power quality disturbances [15, 16]. In [17], a method 

was presented that by knowing the impedance of the 

short circuit and measuring the current, the feeder 

where the polluting load is located is detected.  

In [18, 19], a method was introduced that determines 

the direction of the source causing the flicker relative 

to the measurement point by measuring the voltage 

and current and calculating a parameter called flicker 

power. Despite the simplicity of this method, in large 

networks, determining the location of the polluting 

load requires multiple measurements, on the other 

hand, since the phenomenon of voltage flicker is 

usually a periodic phenomenon and not a permanent 

one, it will take a lot of time to find the location of 

flicker generation. 

In this paper, a method is presented, in which the 

voltage in a limited number of network buses is 

analyzed using a neural network, and the bus or the 

area where the polluting load is located is detected. 

The index that was used to train the neural network is 

the index obtained from the S transformation. This 

transformation is derived from the wavelet 

transformation, in which a coefficient is used to 

correct the phase, and by it, the amplitude and 

frequency spectra of the signal can be obtained. The S-

transform of a signal containing disturbance provides 

contours that are very similar to the disturbance 

waveform. In [20-23], this feature was used to identify 

and separate different power quality phenomena. In 

these references, various indices such as the standard 

deviation of frequency-time contours, amplitude 

factor, etc. have been used, but no suitable index has 

been presented for flicker evaluation. In this article, 

using a new index obtained from the "time-domain" 

contour, the location of the polluting load in the 

network is detected. The structure of the article is as 

follows: Section 2 introduces the S-Transform and its 

related equations. In Section 3, the model employed to 

simulate voltage flicker is presented, in the following, 

the introduced model will be examined utilizing S 

transformation and the used index will be explained. 

In Section 4, the neural network and how to train it is 

expressed. The simulation results of the mentioned 

method are presented in Section 5. Finally, 

conclusions are given in Section 6. 

2. The generalized wavelet transform: S-transform 

The Fourier transform of the signal h(t) is defined as 

follows: 
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(1) 
𝐻(𝑓) = ∫ ℎ(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡

+∞

−∞

 

If the signal h(t) is multiplied by the window function 

g(t), the resulting spectrum will be as follows: 

(2) 
𝐻(𝑓) = ∫ ℎ(𝑡)𝑔(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡

+∞

−∞

 

The continuous S-Transform is obtained by defining 

the special window function in the form of the 

following normalized Gaussian function: 

(3) 
𝑔(𝑡) =

1

𝜎√2𝜋
𝑒−(𝑡2/2𝜎2) 

Where the width of the window σ is proportional to the 

frequency response and is chosen as follows: 

(4) 
𝜎(𝑡) =

1

𝑎 + 𝑏|𝑓|
 

If in Equation (4), b=0, then H(f) represents the short-

time Fourier transform and if a=0, it represents the S-

Transform. The sample values for b are chosen 

between 0.333 and 5 to achieve different levels of 

frequency accuracy. For low frequencies, large values 

of b are chosen and small values of b are selected for 

high frequencies to obtain proper frequency accuracy. 

By substituting Equations (3) and (4) in Equation (2), 

the continuous S-Transform of the signal h(t) is 

obtained as follows: 

(5) 
𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡)𝑔(𝑡 − 𝜏, 𝑓)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡

+∞

−∞

 

As it is clear from Equation (5), the S transformation 

of a signal h(t) is a function with two parameters, 

frequency (f) and time shift (τ), and this Equation 

shows the time-frequency feature of the 

transformation. The S transformation of the signal h(t) 

is a complex matrix according to these two parameters, 

which can be shown as follows: 

(6) 𝑆(𝜏, 𝑓) = 𝐴(𝜏, 𝑓)𝑒𝑖𝜑(𝜏,𝑓) 

In this Equation, A(τ,f) is the amplitude of the S 

spectrum, and φ(τ,f) is its phase. The discrete S-

transform can be calculated in a similar way using the 

fast Fourier transform (FFT) and the convolution 

theorem. The discrete Fourier transform of the 

sampled signal h(KT) for K=0, 1, ..., N-1 is equal to: 

(7) 

𝐻 [
𝑛

𝑁𝑇
] =

1

𝑁
∑ ℎ(𝐾𝑇)𝑒−𝑖(

2𝑛𝜋𝑘
𝑁

)

𝑁−1

𝐾=0

 

The S transformation of the signal h(KT) is defined as 

follows, considering f≈n/NT and τ≈jT: 

(8) 𝑆 (𝑗𝑇,
𝑛

𝑁𝑇
)

=
1

𝑁
∑ 𝐻 [

𝑚 + 𝑛

𝑁𝑇
] 𝐺(𝑚, 𝑛)𝑒𝑖(

2𝑛𝜋𝑗
𝑁

)

𝑁−1

𝑚=0

 

Where G(m,n) is equal to: 

(9) 
𝐺(𝑚, 𝑛) = 𝑒

−(
2𝜋2𝑚2𝛼2

𝑛2 )
 

and for α we have: 

(10) 𝛼 = 1/𝑏 

In Equation (8), N is equal to the total number of 

samples and j, m, n=0, 1, ..., N-1. The output of S 

transformation is a complex matrix whose rows are 

frequency values and its columns represent the time 

values of the signal, so each column represents the 

local spectrum of the corresponding time. 

 

3. Voltage Flicker 

The presence of high-power fluctuating loads such as 

impulse loads can cause voltage fluctuations and 

flicker, which may damage electrical equipment. This 

type of power quality disturbance cannot be ignored 

and has attracted a lot of attention, which has been 

modeled in the following.   

 

3.1. Thermodynamic analysis 

Accurate modeling of flicker to test the proposed 

algorithms is a complicated process. In a simplified 

form, flicker can be modeled as a signal with a 

modulated amplitude along with a series of harmonic 

components. The modulated signal is equivalent to the 

sum of the sinusoidal components with random 

amplitude and frequency. First, for the simplicity of 

the proposed method, signal harmonics are omitted, 

and then in the next steps, their effect on the mentioned 

method is investigated. Mathematically, if the 

harmonics are ignored, the flicker signal can be 

modeled as follows:  
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(11) 
ℎ(𝑡) = (𝐴0 + ∑(𝐴𝑖(𝑡) cos(𝜔𝑖𝑡

𝑀

𝑖=1

+ ∅𝑖))) cos(𝜔0𝑡 + ∅0) 

Where A0, ω0, and ∅0 are the amplitude, frequency, and 

phase angle of the fundamental signal, respectively, 

and Ai is the amplitude of the voltage flicker with 

frequency ωi and phase ∅i. Equation (11) in the 

discrete state can be expressed in the following form: 

(12) 
ℎ(𝑛) = (𝐴0 + ∑(𝐴𝑖(𝑛) 𝑐𝑜𝑠(𝜔𝑖𝑛

𝑀

𝑖=1

+ ∅𝑖))) 𝑐𝑜𝑠(𝜔0𝑛 + ∅0) 

This equation will be used to simulate the load that 

creates a flicker in the power network. 

3.2 Investigation of voltage flicker in S-

transformation 

According to the proposed model for flicker in Section 

3.1, the waveform of a signal infected with flicker with 

a fluctuation amplitude of 10% and a frequency of 5 

Hz changes was shown in Fig. 1. The three-

dimensional representation of matrix S along with the 

"time-amplitude" contour is given in Figs. 2 and 3. It 

should be noted that other contours, including "time-

frequency" and "amplitude-frequency" contours, can 

be obtained from the matrix S, which is presented in 

[20-22]. 

 
Fig. 1:  Flicker-infected sinusoidal waveform with 5 Hz 

frequency changes and 10% amplitude fluctuations 

 

 
Fig. 2: The "time-amplitude " contour of the matrix S 

 

 
Fig. 3: 3D representation of matrix S 

 

 

Since the flicker phenomenon contains low 

frequencies, for a better analysis of the signal in the 

frequency domain, the α used in this article is chosen 

as 0.27. As can be seen, there is a close relationship 

between the "time-amplitude" contour and the 

fluctuations caused by voltage flicker. In the flicker 

phenomenon, the frequency of fluctuations is variable 

and random depending on the working point of the 

load, and on the other hand, the "time-amplitude" 

contour according to Equation (5) is both dependent 

on the frequency and dependent on the amplitude, so 

to eliminate the effect of changes a new index is used 

in the output of the S transformation, which is defined 

as follows:  

 

 

(13) 

 

 

 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑓𝑙𝑖𝑐𝑘𝑒𝑟 𝑖𝑛𝑑𝑒𝑥

= max
𝑖

(max
𝑗

|𝑆𝑖,𝑗|)

− min
𝑖

(max
𝑗

|𝑆𝑖,𝑗|) 
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Where S(i,j) is the element of the i-th row and j-th 

column of the complex transformation matrix. This 

index is calculated for the voltage samples in the time 

interval of flicker occurrence and then the index vector 

is normalized to its maximum and the obtained index 

is used as an input for neural network training. 

 

3.3 Choosing the number and location of measuring 

devices in voltage flicker detection 

To determine the optimal number and location of 

measurements in the network, voltage measurements 

are performed as follows: during the simulation, they 

are performed on all buses of the network. To identify 

the most sensitive network buses in terms of voltage 

flicker detection, the introduced index is calculated for 

all measurements. After that, the standard deviation of 

the obtained indices is calculated for each 

measurement in different simulation modes, and the 

sensitive buses are arranged in descending order of 

standard deviation. Based on this, at each step, the 

input is added to the neural network, and flicker 

detection is checked for the polluting bus using the 

neural network. Adding measurements as input to the 

neural network continues until the polluting bus is 

correctly detected. In this way, the number and 

optimal location of measurements are determined. 

4. Neural network 

 To intelligently identify the location of the polluting 

source according to the index obtained in Section 3.3, 

a multilayer perceptron (MLP) neural network is used 

as shown in Fig. 4. The number of neural network 

inputs is equal to the number of measurements in the 

network, and the number of outputs is equal to the 

number of network buses. The Marquardt-Levenberg 

error back-propagation algorithm was employed to 

train the neural network, and gradient descent with 

momentum weights and biases was used to update the 

weights. The transfer function of neural network nodes 

was selected as the logarithmic sigmoid function in the 

first step and the hyperbolic tangent sigmoid function 

in the next steps. The outputs of the network are 

considered zero and one in the training phase, and the 

bus where the source of the flicker is located is 

indicated by one. To detect the polluting bus, the 

output of the neural network is examined. If there is 

only one maximum greater than 0.5 among the 

outputs, that bus is selected as a polluting one, but if 

the output of more than one bus is greater than 0.5, 

then those buses are also selected as suspicious ones. 

Therefore, in a large network, the investigation to find 

the polluting bus is limited to two or three buses, and 

in this situation, the main location of flicker 

occurrence can be easily identified by the methods 

presented in [17, 18]. 

 
Fig. 4: Selected neural network 

 

5. Simulation results 

To show the effectiveness of the proposed method in 

this article, a sample 14-bus network was selected 

according to Fig. 5 and simulated in EMTP/ATP 

software, the required information of the network 

parameters is given in [25]. To model the flicker in the 

network, a resistance bank whose resistance changes 

according to Equation (12) has been used. The selected 

model is based on the model that is considered for 

electric arc furnaces, which are the main cause of 

flicker in power grids [23, 24]. According to the 

method presented in Section 3.3, buses 1, 3, and 4 were 

selected for measuring and sampling the voltage. 

The used neural network is a two-layer perceptron 

network with 3 neurons in the input layer and 16 

neurons in the hidden layer. To train the neural 

network, flicker is simulated in three different 

amplitudes of 2%, 5%, and 10% in different buses of 

the system and for the oscillation frequency of 8 Hz 

and is trained by the obtained indices of the neural 

network. Since the effect of frequency in the change 

of "time-amplitude" contour has been eliminated 

according to the discussion in Section 3.2, there is no 

need to train the neural network for different 

frequencies, and the simulated results prove the truth 

of this.  
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Fig. 5: The 14-bus network under study 

 

In 14-bus network, the indices obtained for neural 

network training in three different voltage fluctuation 

modes are given in Table 1. The network test results 

for flicker modes with 2%, 6%, and 8% amplitude at 8 

Hz frequency are given in Table 2. As can be seen, 

when the polluting load is located in buses 1, 2, 3, 4, 

13, and 14, the proposed algorithm is fully capable of 

identifying the polluting bus. If the polluting load is 

located in other buses, then the algorithm shows some 

other buses as candidates for the polluting bus in 

addition to the actual polluting one. These cases occur 

when the buses of the network are located at a close 

distance from each other (such as buses 8 and 9) or in 

cases where there is symmetry in the network (such as 

buses 11 and 12 compared to bus 10). In these cases, 

according to the mentioned contents, some buses are 

identified as polluting ones.  

 

 

 

Table 1: Calculated indices for neural network training 
Num 

of 

pollu

ting 
bus 

Mea
sure 

Amplitude 
Num 

of 

pollu

ting 
bus 

Mea
sur 

Amplitude 

2% 5% 10% 2% 5% 10% 

1 

V1 0.893 0.893 0.900 

8 

V1 0.692 0.691 0.695 

V3 0.902 0.902 0.908 V3 0.772 0.771 0.773 

V4 1 1 1 V4 1 1 1 

2 

V1 1 1 1 

9 

V1 0.799 
0.799

7 
0.808 

V3 0.996 0.996 0.996 V3 0.937 0.937 0.938 

V4 0.985 0.985 0.986 V4 1 1 1 

3 

V1 0.688 0.687 0.695 

10 

V1 0.688 0.688 0.699 

V3 0.768 0.768 0.773 V3 0.768 0.768 0.776 

V4 1 1 1 V4 1 1 1 

4 

V1 0.815 0.816 0.826 

11 

V1 0.696 0.692 0.696 

V3 1 1 1 V3 0.771 0.772 0.774 

V4 0.857 0.858 0.866 V4 1 1 1 

5 

V1 0.693 0.692 
0.698

1 

12 

V1 0.694 0.692 0.694 

V3 0.772 0.771 0.775 V3 0.773 0.771 
0.772

3 

V4 1 1 1 V4 1 1 1 

6 

V1 0.602 0.603 0.617 

13 

V1 0.693 0.691 0.692 

V3 0.639 0.641 
0.653

7 
V3 0.772 0.771 0.771 

V4 1 1 1 V4 1 1 1 

7 

V1 0.694 0.692 0.694 

14 

V1 0.694 0.692 0.694 

V3 0.7723 0.772 0.772 V3 0.773 0.772 0.772 

V4 1 1 1 V4 1 1 1 

 

Tables 2: The output of the trained neural network for different 

flicker amplitudes at a frequency of 8 Hz 

Oscillat

ion 
frequen

cy 

Polluti
ng bus 

Amplitude of flicker 
oscillations Oscill

ation 
freque

ncy 

Poll

utin
g 

bus 

Amplitude of 
flicker oscillations 

2% 6% 8% 2% 6% 8% 

Selected bus in the 

ANN output 

Selected bus in the 

ANN output 

Flicker 

with 8 

Hz 

oscillati

ons 

1 1 1 1 

Flicker 

with 

8% 

oscillat

ions 

8 8 8, 9 8, 9 

2 2 2 2 9 8, 9 9 8, 9 

3 3 3 3 10 
10, 11, 

12 

10, 

11, 

12 

10, 

11, 

12 

4 4 4 4 11 
10, 11, 

12 

10, 

11, 

12 

10, 

11, 

12 

5 5 5, 6, 7 
5, 6, 

7 
12 

10, 11, 
12 

10, 
11, 
12 

10, 
11, 
12 

6 5, 6 6 5, 6 13 13 13 13 

7 7 6, 7 7 14 14 14 14 
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To show the effectiveness of the method in covering 

different flicker frequencies, the aforementioned 

network was also tested for flicker with different 

amplitudes and frequencies of 4 and 15 Hz, the results 

of which are given in Tables 3 and 4, respectively. 

Also, to check the robustness of the algorithm to the 

harmonics that exist in the network along with flicker, 

the flicker source was modeled in the network along 

with a harmonic current source that contains 3rd and 5th 

harmonics with amplitudes of 20% and 15% of the 

rated current of the flicker source.  

Table 3: The output of the trained neural network for different 

flicker amplitudes at a frequency of 4 Hz 

Oscill
ation 

freque

ncy 

Pollut

ing 
bus 

Amplitude of 

flicker 

oscillations Oscill
ation 

freque

ncy 

Pollu

ting 
bus 

Amplitude of 

flicker 

oscillations 

2% 6% 8% 2% 6% 8% 

Selected bus 
in the ANN 

output 

Selected bus in 

the ANN output 

Flicke

r with 

4 Hz 
oscilla

tions 

1 1 1 1 

Flicke

r with 

4% 
oscilla

tions 

8 8 8, 9 8, 9 

2 2 2 2 9 8, 9 9 8, 9 

3 3 3 3 10 
10, 

12 

10, 
11, 

12 

10, 
11, 

12 

4 4 4 4 11 
10, 

11 

10, 

11, 
12 

10, 

12 

5 5 5, 6 5, 6 12 
10, 

12 

10, 
11, 

12 

10, 
11, 

12 

6 5, 6 6 5, 6 13 13 13 13 

7 7 6, 7 7 14 14 14 14 

 
Table 4: The output of the trained neural network for different 

flicker amplitudes at a frequency of 15 Hz 

Osci

llatio
n 

freq

uenc
y 

Pollut

ing 

bus 

Amplitude of 

flicker 

oscillations 

Osci

llatio
n 

freq

uenc
y 

Poll

uting 

bus 

Amplitude of 
flicker oscillations 

2% 6% 8% 2% 6% 8% 

Selected bus in 

the ANN output 

Selected bus in the 

ANN output 

Flick
er 

with 

15 
Hz 

oscil

latio
ns 

1 1 1 1 

Flick

er 
with 

15% 

oscil
latio

ns 

8 8 8 8, 9 

2 2 2 2 9 8, 9 9 8, 9 

3 3 3 3 10 
10, 

12 

11, 

12 

10, 
11, 

12 

4 4 4 4 11 
10, 
11 

10, 

11, 

12 

10, 
12 

5 5 5, 6 
5, 

6, 7 
12 

10, 
11, 

12 

10, 
11, 

12 

10, 
11, 

12 

6 5, 6 6 5, 6 13 13 13 13 

7 7 6, 7 7 14 14 14 14 

The obtained indices were tested in the trained neural 

network and the results are shown in Table 5. It can be 

seen that the proposed method can detect the bus or 

area of flicker in different situations.  

Table 5: The output of the trained neural network for different 

flicker amplitudes at the frequency of 8 Hz along with harmonics 

Oscillation 

frequency 

Polluting 

bus 

Amplitude of flicker oscillations 

1% 2% 4% 6% 8% 10% 

Selected bus in the ANN output 

Flicker 
with 8 Hz 

oscillations 

along with 
harmonics 

1 1 1 1 1 1 1 

2 3 3 3 3 3 3 

5 5 5 5 

5, 

6, 

7 

5, 

6, 

7 

5 

7 7 7 7 6,7 7 7 

  

5. Conclusion  

The purpose of this article is to provide a method to 

identify the location of the load causing flicker in 

distribution networks. In this method, by sampling the 

network voltage in the appropriate buses and using the 

neural network, it is possible to determine the location 

of the flicker. When the buses are close to each other 

or there is symmetry in the network, the proposed 

method can limit the choice to a few buses in a wide 

network. Also, the simulation results show that the 

selected index has little sensitivity to the harmonics 

that generally exist along with flicker, and it can be 

applied in actual distribution networks that often have 

harmonics. 
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