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   Cancer is indeed a growing concern worldwide for human health and existence, with its prevalence and 

impact on individuals and society increasing. The main objective of this article is to control and optimize drug 

dosage in order to prevent the uncontrollable growth of cancer cells and also restore the patient's immune 

cells to normal levels at the end of the training process, in such a way that the disease can be controlled in the 

early days of treatment. Reinforcement learning methods are widely applied in many domains nowadays and 

have attracted researchers' interest in conducting studies in this field. Therefore, in this article, specifically 

we also use the Q-learning method, one of the most famous model-free reinforcement learning methods, as 

well as the four-state nonlinear dynamic model called depillis, to simulate and design the proposed controller. 

The proposed controller's performance was evaluated in the presence of noise in three stages (training, 

simulation, and both stages simultaneously) as well as in the presence of uncertainty in one of the parameters 

of the depillis model. In a state of uncertainty, a combination therapy of chemotherapy and immunotherapy 

has been suggested as a treatment approach. Results indicate the significant impact of the proposed controller 

in determining the optimal drug dosage, improved accuracy, reduced side effects, and faster convergence 

compared to previous studies. 
 

 

 

 

 

 

I. INTRODUCTION 

Cancer is recognized as one of the biggest 

threats and growing concerns worldwide, with 

various types of it being characterized by a 

phenomenon called cellular state change with 

the loss of control over cell division and 

proliferation. However, cancer is an abnormal, 

irregular, uncontrolled, and deadly growth of 

cells in the body's tissues, leading to the 

formation of a mass called a tumor. The 

American Cancer Society (ACS) collects the 

latest information and reports each year on the 

incidence, mortality, and outcomes of cancer in 

collaboration with two centers called the 

Central Cancer Registry and the National 
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Center for Health Statistics [1]. According to 

the World Health Organization (WHO), the 

projected data from 2030 to 2040 is concerning. 

It suggests that around 11.2 to 13.4 million 

individuals may die from this illness by 2030, 

and by 2040, approximately 27.5 million people 

will be affected by it [2]. The treatment plan and 

amount of medication given depend on the 

tumor stage (the stage of the tumor refers to 

how advanced it is and whether it has spread to 

other parts of the body), patient's weight, 

immunity level (white blood cell count), any 

existing illnesses, organ function, drug 

interactions, and the patient's age [3]. Based on 

these factors, the healthcare provider will 

determine the most appropriate treatment plan, 

which may include surgery, radiation therapy, 

chemotherapy, targeted therapy, 

immunotherapy, or a combination of these 

approaches. The dosage and type of medication 

given will also depend on these factors. It is 

important for the healthcare team to assess 

these factors and create an individualized 

treatment plan for each patient to optimize their 

chances of successful treatment while 

considering their specific circumstances. Given 

the severity of cancer, any method that 

improves the effectiveness of treatment, 

leading to decreased harm to organs and lower 

rates of morbidity, is highly sought after. 

Implementing reinforcement learning 

techniques can help mitigate complications and 

address time constraints associated with 

administering chemotherapy in cancer 

treatment [4]. 

Chemotherapy is a crucial component of cancer 

treatment, but it is not without its challenges. In 

addition to targeting cancer cells, 

chemotherapy can also affect healthy cells, 

leading to various side effects such as fatigue, 

nausea, hair loss, and a weakened immune 

system. Furthermore, there may be limitations 

in terms of the duration and frequency of 

chemotherapy sessions, as well as the tolerance 

level of patients to the treatment. Despite these 

complexities and drawbacks, chemotherapy 

remains a valuable therapeutic tool in the fight 

against cancer, often used in conjunction with 

other treatments to achieve the best possible 

outcomes for patients [5]. Control theory, a 

branch of mathematics and engineering that 

deals with the behavior of dynamical systems, 

has recently been proposed as a potential tool to 

improve the efficacy of cancer chemotherapy 

[6]. 

In the modern world, mathematical models play 

a crucial role in understanding and optimizing 

cancer treatment strategies. These models help 

researchers and clinicians simulate the complex 

dynamics of tumor growth, drug interactions, 

and treatment response, allowing for 

personalized and precise approaches to therapy. 

By incorporating data-driven mathematical 

simulations, healthcare professionals can tailor 

cancer treatments to individual patients, predict 

outcomes, optimize drug dosages, and explore 

novel therapeutic interventions. Overall, 

mathematical modeling has revolutionized the 

field of cancer treatment by providing valuable 

insights and guiding decision-making processes 

to improve patient outcomes and quality of care 

[7,8]. A cancer dynamics model needs to take 

into consideration the growth of the tumor, the 

response of the immune system to the tumor 

growth, and the impact of chemotherapy on 

immune cells, normal cells, and tumor growth 

[3]. In summary, utilizing mathematical models 

to control and optimize chemotherapy drug 

dosage enables precision medicine, predicts 

drug response, optimizes treatment schedules, 

reduces trial and error, and enhances safety and 

efficacy in cancer therapy. 

Reinforcement learning has shown promise in 

the field of chemotherapy drug control and 

optimization. Chemotherapy treatment often 

involves dosing medications at specific 

intervals and monitoring the patient's response 

to determine the effectiveness of the treatment. 

This process can be complex and time-

consuming, requiring constant adjustments to 

ensure the patient is receiving the right dosage 

and that side effects are managed effectively. 

Reinforcement learning algorithms can be used 

to optimize chemotherapy drug control by 

learning from past treatment outcomes and 

adjusting dosages in real time based on patient 

response. These algorithms can also take into 
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account individual patient characteristics, such 

as age, weight, and genetic factors, to tailor 

treatment plans to each patient's unique needs. 

By using reinforcement learning in 

chemotherapy drug control, healthcare 

providers can potentially improve treatment 

outcomes, reduce side effects, and optimize 

drug dosages more efficiently. This can result 

in better patient outcomes, reduced healthcare 

costs, and a more personalized approach to 

cancer treatment. The study shows promising 

results in optimizing drug dosing for cancer 

chemotherapy treatment using RL, which could 

potentially improve patient outcomes and 

reduce side effects. 

Modeling and controlling the growth of cancer 

cells as well as determining the optimal drug 

dosage in cancer patients are challenging and 

complex subjects in the field of cancer. 

In [3, 9, 10, 11, 12] and [13] predominantly 

reinforcement learning methods have been used 

for cancer control and treatment. Specifically, 

in [3] Padmanabhan and her colleagues have 

suggested a closed-loop controller based on 

reinforcement learning in their work. They 

utilize Q-learning with a four-state 

mathematical model for cancer chemotherapy, 

which includes immune cells, normal cells, 

tumor cells, and drug concentration. The 

simulation of three disease ranges shows that 

the injected drug dose effectively eliminates the 

tumor. One notable advantage of their method 

is that it does not require a system model to 

create a controller. In another study by 

Padmanaban and colleagues [13], mentioned in 

Chapter 9 of the book "Control Applications for 

Biomedical Engineering Systems" [14], 

researchers have focused on investigating 

reinforcement learning-based control of drug 

dosing with applications in anesthesia and 

cancer treatment. The main goal is to determine 

and control the intravenous dosage of the 

anesthetic drug using a reinforcement learning 

algorithm called Q-learning. The drug used in 

this study is propofol for patients in the ICU, 

which is regulated by the Q-learning algorithm. 

The study demonstrated the efficacy of the Q-

learning algorithm in regulating the dosage of 

propofol for patients undergoing treatment. The 

authors demonstrate the effectiveness of the 

proposed approach through simulations and 

experiments, showing promising results in 

terms of improved treatment outcomes and 

reduced drug toxicity. In [9], researchers have 

proposed an optimal switching control strategy 

for drug therapy process in cancer 

chemotherapy. The proposed control algorithm 

dynamically adjusts the dosage and type of 

drugs administered based on real-time patient 

response data, tumor progression, and toxicity 

levels. The objective of the switching control is 

to maximize the therapeutic benefits by 

targeting the tumor cells while minimizing the 

detrimental effects on healthy tissues. A 

mathematical model of the tumor growth 

dynamics and drug pharmacokinetics is 

developed to simulate the patient's response to 

the treatment. The control algorithm 

incorporates a multi-objective optimization 

framework to simultaneously consider the 

trade-offs between tumor regression, toxicity 

reduction, and drug resistance. Simulation 

results demonstrate that the optimal switching 

control strategy outperforms traditional fixed-

dose protocols in terms of tumor suppression 

and patient survival rates. 

In [10], researchers have proposed a novel 

approach to optimizing dose-finding strategies 

using integral reinforcement learning. The aim 

is to develop a control algorithm that can 

adaptively adjust drug dosages based on patient 

responses to maximize efficacy while 

minimizing side effects. In particular, the use of 

integral reinforcement learning allows the 

algorithm to incorporate past experiences and 

account for the long-term effects of drug dosing 

decisions. This helps in fine-tuning the dosing 

strategy over time to achieve the best possible 

outcomes for patients. In [11], a novel approach 

for controlling tumor growth under anti-

angiogenic therapy using reinforcement 

learning algorithms (RL) has been proposed. 

Anti-angiogenic therapy is a promising strategy 

for cancer treatment that aims to inhibit the 

growth of blood vessels that supply nutrients to 

tumors. However, this therapy is often plagued 

by the development of resistance and rebound 
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effects, leading to tumor regrowth. Overall, this 

study highlights the potential of using 

reinforcement learning techniques to optimize 

cancer treatment strategies and improve 

outcomes for patients undergoing anti-

angiogenic therapy. In [12] authors have 

presented a supervised offline reinforcement 

learning approach for personalizing 

chemotherapy regimens for cancer patients. 

Offline reinforcement learning is a machine 

learning technique that allows for the 

optimization of treatment strategies based on 

historical data without the need for real-time 

feedback. First, a Markov Decision Process 

(MDP) framework is constructed for modeling 

the chemotherapy treatment process. The state 

space of the MDP includes patient and tumor 

characteristics, while the action space 

represents the chemotherapy drugs and doses 

that can be administered. The reward function 

captures the efficacy and toxicity of the 

treatment, with the goal of maximizing the 

former while minimizing the latter. Next, a 

deep Q-network (DQN) was trained using a 

dataset of historical patient records and 

treatment outcomes. The DQN learns to predict 

the optimal chemotherapy regimen for a given 

patient based on their individual characteristics 

and tumor type. By leveraging the rich 

information contained in the dataset, the model 

is able to generalize well to new patients and 

make personalized treatment 

recommendations. Overall, this study 

showcases the promise of supervised offline 

reinforcement learning for personalizing 

chemotherapy treatment decisions. 

Melanoma is a type of skin cancer that can be 

challenging to treat due to its aggressive nature 

and tendency to spread rapidly. Traditional 

cancer therapies often have toxic side effects 

that can be detrimental to patient health. In [15], 

Noori et al introduced the use of an eligibility 

traces algorithm to determine the optimal dose 

for controlling the population of cancer cells in 

melanoma patients. The eligibility traces 

algorithm is a reinforcement learning technique 

that allows for efficient learning from past 

experiences by assigning credit to actions that 

lead to positive outcomes. By applying this 

algorithm to the problem of determining the 

optimal dosage for cancer treatment, aim to 

identify a treatment regimen that maximizes 

anti-cancer effects while minimizing the 

occurrence of side effects. 

In [16], the authors also presented a novel 

approach to controlling cancer cells in a 

nonlinear model of melanoma by incorporating 

the uncertainty factor using the Q-learning 

algorithm under the Case-Based Reasoning 

(CBR) policy. The use of CBR policy allows us 

to make decisions based on past experiences 

and cases, enabling us to leverage the 

knowledge gained from previous treatments 

and outcomes to improve our current control 

strategies. By combining the Q-learning 

algorithm with the CBR policy, we can develop 

a robust and adaptive approach to controlling 

cancer cells in a nonlinear model of melanoma. 

Fuzzy logic is used to model the uncertainty and 

imprecision in the feedback signals from the 

tumor growth dynamics. The fuzzy logic 

controller provides a flexible and adaptive 

strategy for adjusting the chemotherapy drug 

dose based on the tumor's current state. Based 

on this, authors in [17] have proposed a new 

feedback control strategy for regulating tumor 

growth by limiting the maximum dose of 

chemotherapy using fuzzy logic. The proposed 

control system uses reinforcement learning to 

learn the optimal dose of chemotherapy drug to 

administer at each time step based on feedback 

from the tumor growth dynamics. The system is 

designed to minimize tumor growth while also 

limiting the maximum dose of chemotherapy 

drugs to prevent harmful side effects on the 

patient. 

There are many reasons to use reinforcement 

learning methods, some of which include: 

1. Flexibility: Reinforcement learning methods 

can be applied to a wide variety of tasks and 

environments, making them flexible and 

adaptable for different scenarios. 

2. Ability to learn from interactions: 

Reinforcement learning algorithms learn from 

trial and error by interacting with an 
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environment, enabling them to improve 

performance over time through experience. 

3. Autonomous  decision-making:  

Reinforcement learning methods enable 

machines to make autonomous decisions 

without the need for explicit programming, 

allowing them to adapt to changing conditions 

and learn from their mistakes. 

4. Handling complex, dynamic environments: 

Reinforcement learning methods are well-

suited for addressing problems in complex, 

dynamic environments where traditional 

algorithms may struggle, such as in robotics, 

autonomous driving, and game playing. 

5. Scalability: Reinforcement learning 

algorithms can be scaled up to handle large 

amounts of data and complex tasks, making 

them suitable for real-world applications in 

fields like healthcare, finance, and 

transportation. 

6. Continuous learning: Reinforcement learning 

algorithms can continuously learn and adapt to 

new information and changing conditions, 

allowing them to improve performance over 

time. 

7. Model-free learning: Reinforcement learning 

methods do not require explicit models of the 

environment, making them suitable for 

situations where the underlying dynamics are 

unknown or difficult to model accurately. 

Reinforcement learning can be used in the 

application of cancer chemotherapy drug 

dosage to optimize treatment outcomes and 

minimize side effects for patients. In this 

scenario, the chemotherapy dosage would be 

considered as the action taken by the system, 

and the outcome of the treatment, such as tumor 

size reduction and patient's quality of life, 

would be the reward signal. The reinforcement 

learning algorithm would learn from the 

feedback of previous treatments to adjust the 

dosage levels in subsequent rounds, aiming to 

find the optimal dosage that maximizes the 

treatment benefits while minimizing the 

negative side effects. By utilizing 

reinforcement learning in cancer chemotherapy 

drug dosage, oncologists can personalize 

treatment strategies for individual patients 

based on their response to the treatment, 

ultimately leading to better outcomes and 

improved patient care. 

This article is a review on the application of 

using Q-learning method, one of the 

reinforcement learning methods, in determining 

and controlling the dosage of chemotherapeutic 

drugs. In the following sections of this article, 

we will delve into a comprehensive 

examination of reinforcement learning 

concepts, particularly focusing on the Q-

learning method. 

This article is structured in 3 sections: materials 

and methods, Results and discussion and 

conclusions. 

II. MATERIALS AND METHODS 

This section outlines the mathematical model of 

depillis pharmacology, which is used to analyze 

the effectiveness of chemotherapy in treating 

cancer. It introduces the concept of 

reinforcement learning and describes how a 

controller is created using Q-learning to 

calculate and regulate the best dosage of 

medication for chemotherapy. 

A. Mathematical Model 

So far, a large number of mathematical models 

have been proposed for the growth of cancer 

cells, each of which has its advantages and 

disadvantages, and in fact, there is no correct 

answer as to which model is more realistic [7, 

8]. Mathematical models serve as valuable 

instruments in grasping the underlying 

mechanics of dynamic processes within cancer 

and are essential for investigating a wide range 

of scientific inquiries. The human body can be 

represented by a mathematical model, which 

can efficiently simulate complex systems at low 

costs. These models are useful for predicting 

the growth and spread of cancer cells, 

understanding the immune system's response, 

evaluating the impact of different cancer 

treatments, and assessing drug toxicity on 

healthy tissues. They can also help in studying 
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the interactions between various factors that 

contribute to tumor formation and predicting 

tumor size. By developing control models 

based on these mathematical models, we can 

improve drug prescription for cancer patients. 

A well-fitted mathematical model of cancer cell 

growth can provide valuable insights for 

analyzing the system accurately. 

Mathematical modeling can be applied to 

different aspects of cancer research, including 

tumor growth, mutations, metastasis, treatment 

methods like chemotherapy and 

immunotherapy, and the diversity of tumors. 

This is typically done through the use of 

differential equations for analytical simulation 

and modeling purposes [18,19]. 

The depillis model is a mathematical model 

used in epidemiology to simulate the spread of 

infectious diseases within a population. This 

model is one of the most comprehensive models 

proposed in the field of chemotherapy; because 

the reason and importance of using this model 

is the addition and impact of the drug on the 

expression of immune cells. In depillis 

mathematical model, the dynamics of normal 

cells, tumor cells, immune cells and drug 

concentration can be represented by a system of 

differential equations [3]. 

Let 𝑁(𝑡) be the population of normal cells at 

time 𝑡, 𝑇(𝑡) be the population of tumor cells at 

time 𝑡, 𝐼(𝑡) be the population of immune cells 

at time 𝑡, and 𝐷(𝑡) be the concentration of drug 

at time 𝑡. The model can be described by the 

following equations: 

 
𝑑𝐼

𝑑𝑡
(𝑡) = 𝑠 +

𝜌𝐼(𝑡)𝑇(𝑡)

𝛼 + 𝑇(𝑡)
− 𝑑1𝐼(𝑡)

− 𝑐1𝐼(𝑡)𝑇(𝑡) − 𝑎1(1

− 𝑒−𝐷(𝑡))𝐼(𝑡) 

 

𝑑𝑇

𝑑𝑡
(𝑡) = 𝑟1𝑇(𝑡)(1 − 𝑏1𝑇(𝑡))

− 𝑐2𝐼(𝑡)𝑇(𝑡)
− 𝑐3𝑁(𝑡)𝑇(𝑡) − 𝑎2(1

− 𝑒−𝐷(𝑡))𝑇(𝑡) 

 

(1) 

𝑑𝑁

𝑑𝑡
(𝑡) = 𝑟2𝑁(𝑡)(1 − 𝑏2𝑁(𝑡))

− 𝑐4𝑁(𝑡)𝑇(𝑡) − 𝑎3(1

− 𝑒−𝐷(𝑡))𝑁(𝑡) 

 

𝑑𝐷

𝑑𝑡
(𝑡) = −𝑑𝑈𝐷(𝑡) + 𝑢(𝑡) 

 

This model takes into account various factors 

such as the growth rate of the cancer cells, the 

effectiveness of the chemotherapy drugs, and 

the impact on the immune system. By varying 

the parameters in the model, researchers can 

predict how different treatment strategies will 

affect tumor growth and the overall outcome for 

the patient. The values of the parameters of this 

model are also shown in table 1. 

Depillis' model has been used to study optimal 

drug dosing regimens, the development of drug 

resistance, and the potential for combination 

therapies to improve treatment outcomes. By 

incorporating mathematical modeling into 

cancer research, scientists can better understand 

the complex interactions between cancer cells, 

chemotherapy drugs, and the immune system, 

ultimately leading to more effective treatment 

options for patients. 

B. Reinforcement learning 

Reinforcement learning, an exciting concept in 

machine learning, is rapidly progressing and is 

set to be a major advancement in artificial 

intelligence in the coming years. 

Reinforcement learning involves a machine 

learning method where an agent learns to make 

decisions through receiving feedback from its 

actions within an environment. The schematic 

of reinforcement learning operation is shown in 

Fig. 1. 

 

Fig.  1 Schematic of reinforcement learning 

operation. 
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The agent performs actions within the 

environment, receives either rewards or 

penalties as feedback, and adapts its behavior to 

maximize its rewards gradually. This process is 

rooted in the concept of trial-and-error learning, 

as the agent gains knowledge through practice 

and by engaging with its surroundings. This 

approach has shown promising results in 

various domains, such as game-playing, 

robotics, and autonomous driving [20,21]. By 

allowing agents to learn directly from 

interacting with their environment, 

reinforcement learning has the potential to 

create more autonomous and intelligent 

systems that can adapt to new situations and 

learn complex tasks without explicit 

programming. 

Types of reinforcement learning methods 

include Value-based methods, Policy-based 

methods, Model-based methods, Model-free 

methods, Actor-critic methods, multi-agent 

reinforcement learning methods and 

Hierarchical reinforcement learning methods. 

The method proposed in this article is among 

value-based methods. These methods involve 

estimating the value of state-action pairs to 

make decisions on which actions to take. The 

value of an action is typically defined as the 

expected cumulative reward that an agent can 

achieve by taking that action and following a 

certain policy thereafter. Overall, value-based 

methods in reinforcement learning are powerful 

techniques for learning optimal policies in 

environments with discrete or continuous 

action spaces. They provide a fundamental 

framework for understanding the trade-offs 

between different actions and guiding the agent 

towards achieving its goals. An example of 

value-based methods used is Q-learning. 

TABLE 1 PARAMETER VALUES OF THE DEPILLIS CHEMOTHERAPEUTIC 

MODEL [22]. 

Parameter 

 
Value Description 

𝑎1  0.2 
Fractional immune 
cell kill rate 

𝑎2  0.3 
Fractional tumor 

cell kill rate 

𝑎3  0.1 
Fractional normal 
cell kill rate 

𝑏1  
1 

Reciprocal 

carrying capacity 

of tumor cells 

𝑏2 
1 

Reciprocal 
carrying capacity 

of normal cells 

𝑐1  

1 

Immune cell 
competition term 

(competition 

between tumor 
cells and immune 

cells) 

𝑐2  

0.5 

Tumor cell 
competition term 

(competition 

between tumor 
cells and immune 

cells) 

𝑐3  

1 

Tumor cell 

competition term 

(competition 

between normal 

cells and tumor 
cells) 

𝑐4 

1 

Normal cell 

competition term 
(competition 

between normal 

cells and tumor 
cells) 

𝑟1 1.5 
Per unit growth 

rate of tumor cells 

𝑟2 1 
Per unit growth 
rate of normal cells 

𝑑1 0.2 
Immune cell death 

rate 

𝑑𝑈 1 
Decay rate of 
injected drug 

𝑠 0.33 
Immune cell influx 

rate 

𝜌 0.01 
Immune response 
rate 

𝛼 0.3 
Immune threshold 

rate 

 

C. Q-learning 

In Q-learning, an agent learns the value of each 

action in each state by updating a Q-table with 

learned rewards from interactions with the 

environment. The agent then selects actions 

based on the values in the Q-table [23]. Some 

of the key features of the Q-learning method 

include: 

1. Model-free: Q-learning is a model-free 

reinforcement learning algorithm, meaning that 

it does not require knowledge of the underlying 

dynamics of the environment. Instead, the agent 

learns through trial and error by interacting with 

the environment and updating its Q-values 

based on the rewards it receives. 

2. Q-values: In Q-learning, the agent maintains 

a Q-table that stores the expected rewards for 

each action in each state. The Q-value for a 



  

   H. Sadrian, et al. Simulation-based Optimization of Chemotherapeutic Drug …

 

38 

particular state-action pair represents the 

expected cumulative reward that the agent will 

receive if it takes that action in that state and 

follows the optimal policy thereafter. 

3. Exploration vs exploitation: To balance 

exploration (trying new actions to discover the 

optimal policy) and exploitation (taking the 

best-known action to maximize rewards), Q-

learning uses an epsilon-greedy strategy. This 

means that the agent will choose a random 

action with probability epsilon and the best-

known action with probability 1-epsilon. 

4. Bellman equation: Q-learning updates its Q-

values using the Bellman equation, which states 

that the expected cumulative reward for a state-

action pair should be equal to the immediate 

reward obtained by taking that action plus the 

expected cumulative reward of the next state-

action pair. 

5. Convergence: Q Learning is guaranteed to 

converge to the optimal policy under certain 

conditions, such as having a finite state and 

action space, and that the agent visits all state-

action pairs infinitely often. 

6. Off-policy: Q-learning is an off-policy 

algorithm, meaning that it can learn from any 

policy, not just the one it follows. This property 

allows the agent to learn from past experience 

and improve its policy over time. 

7. Suitable for discrete actions: Q-learning is 

best suited for environments with a discrete 

action space, as it requires calculating Q-values 

for each possible action in each state. For 

continuous action spaces, techniques such as 

Deep Q-learning are typically used. 

Overall, Q-learning is a versatile and effective 

reinforcement learning algorithm that has been 

successfully applied to a wide range of 

problems, including game playing, robotics, 

and autonomous driving [23]. 

In the Q-learning algorithm process, it learns 

the Q-value function 𝑄(𝑠, 𝑎); meaning how to 

take action "𝑎" in a specific state "𝑠". The goal 

of the agent in Q-learning is to maximize the Q-

value, ultimately leading to the most optimal 

decision-making process. The value of Q-

learning is obtained using the Bellman 

equation. The Bellman equation is expressed as 

follows: 

 

𝑉(𝑠) = max[𝑅(𝑠, 𝑎)

+ 𝛾∑𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)

𝑠′

] 

(2) 

 

In Fig. 2, we have shown the steps of executing 

the Q-learning algorithm in the form of a 

flowchart: 

 

 
Fig.  2 Flowchart of the steps of implementing the Q-

Learning algorithm. 

Updating the Q-table is done by equation 3: 

 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎)
+ 𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′)] 

(3) 

 

In the above equation, α is the learning rate, γ is 

the discount factor, and 𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) 
represents the maximum Q value of the next 

state. Following the flowchart of the Q-learning 

algorithm in Fig. 3, in the second step, the agent 

must choose an action according to a policy that 

balances exploitation (using previously known 

information to maximize reward) and 

exploration (finding more information about the 

environment). This policy selection is done 

through two common methods: empirical search 

and random policy. Typically, the idea and 

method used in this algorithm are based on 

empirical search and the epsilon-greedy 

strategy; this is because the agent increases its 

confidence in finding the optimal solution by 

exploring the environment more. This method 
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usually selects the action that is estimated to 

have the highest reward in most cases. In the 

next section, we investigate the design of a Q-

learning-based controller for determining the 

optimum drug dosage in cancer and then present 

the relevant results. 

D. Depilis model review and controller 

design 

Understanding the dynamics of the model in 

order to determine the equilibrium points of the 

system and their stability is necessary; 

therefore, equilibrium points without tumor that 

are stable in the limited treatment time are 

defined as follows [17]: 

(
1

𝑏2
, 0,

𝑠

𝑑1
) 

(4) 

As it is evident, at this point, there are zero 

tumor cells and immune and normal cells 

present. The point achieved will be under our 

ultimate goal at the end of chemotherapy [17]: 

 

 

(𝑁, 𝑇, 𝐼) → (1,0,1.65) (5) 

 

Using the dynamic model of depillis and with 

the help of the Q-learning algorithm, we design 

a controller to minimize or eliminate tumor 

cells (reduce tumor volume or eradicate it) and 

also maintain immune cells at a certain level. 

Our environment is an optimal drug dosing 

control system in cancer patients, where tumor 

cells and immune cells are considered as system 

states, and the amount of prescribed drug dose 

is considered as the system action. The drug 

dose amount in the current research is specified 

in the range [0,1]. Therefore, our state space in 

this research is a two-dimensional state space. 

In the training stage for determining states, we 

define a range where this range is defined as 

0+0.3×rand() for tumor cells and 0.15+(2-

0.15)×rand() for immune cells; meaning that for 

tumor cells, a random number between 0 to 0.3 

and for immune cells, a random number 

between 0.15 to 2 is chosen. Then, based on the 

division of state space for these two variables 

and the formation of a Q-table in each 

generation of current state values, one of the 

states in the table is selected. In order to 

evaluate the reward, the following method was 

used: 

{
𝑖𝑓𝑡𝑢𝑚𝑜𝑟𝑐𝑒𝑙𝑙 = 0, 𝑟 = 10,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑟 = 1.
 

(6) 

In this way, in each iteration, the values of Q-

table are completed and updated, and 

eventually, the complete table is obtained. After 

completing the table and also determining the 

specific initial states for normal, tumor, and 

immune cells, the training process continues 

until the end of the training, where the number 

of cancer cells reaches a minimum or zero and 

the immune and normal cells also reach a 

specified desired level. 

Initial conditions are also defined for three 

normal, tumor, and immune cells as 1, 0.25, and 

0.15, respectively. The values of Q-learning 

parameters are defined according to the table 

below: 

Table 2  Reinforcement learning parameters. 

Parameter Value Description 

𝛾 0.8 Discount factor 

ƞ 0.2 Learning rate 

𝜀 0.05 
Greedy learning 
parameter 

 

III. SIMULATION 

For simulation purposes, we first examine the 

model without the impact of the drug; for this 

purpose, using the mathematical equations of 

the depillis model and also the parameters in 

Table 1, we observe the changes obtained in the 

absence of drug effect, and then by entering the 

drug, we focus on controlling and determining 

the optimal drug dose in the chemotherapy 

process for cancer patients using the Q-learning 

method. Therefore, in order to display the chart 

of the change, we first convert the depillis 

model equations according to the relationships 
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(1) to (4), which are continuous, to discrete. 

With high precision in discretization, the output 

results of the graph should be similar to the 

original model results [3]. The chart of changes 

in the discretized model in the absence of drug 

influence is shown in Fig. 3. 

 

Fig. 3 Discretization model in the absence of drug 

effect. 

As seen in Fig. 3, in the early stages of cancer 

cell growth in the patient's body, immune cells 

try to fight against cancer cells, but over time, 

due to the weakening of the immune cells, 

cancer cells grow and multiply more and more 

until they cover the entire surface of the curve 

and system; furthermore, immune and normal 

cells quickly reach their lowest vital limit and, 

in this situation, the patient will lose their life 

[22]. 

Now we need to simulate the model in the 

presence of drug input using the q-learning 

method. As mentioned earlier, we use the 

epsilon-greedy method to determine the 

optimal drug dose, in this method, due to the 

use of the rand() function, we will observe 

different results in the output. In this method, 

usually the experiment is conducted for 10 

different scenarios and then the average of these 

10 scenarios is calculated. However, the 

important point is that taking 10 runs and 

averaging the results is only valid under the 

assumption that we can fully complete table Q; 

whereas in implementation, with a higher 

number of training iterations (assuming a total 

of 10,000 episodes), there will be no need for 

multiple runs. When we want to use the learned 

Q-table for simulation, there is no longer a 

random state; this is because the Q-table has 

been ideally or close to ideally trained during 

the training phase. Therefore, the small 

difference observed in each execution of the 

program is the result of using the same ε-greedy 

method in the training phase. The following 

figures display various types of simulated 

charts using the Q-learning method: 
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Fig. 4 (a,b,c,d) Optimal control of model with Q-

learning algorithm in the presence of drug influence. 

Figure 4 diagrams all represent optimal control 

of cancer drug dosage using the q-learning 

method; however, as it is evident, a slight 

difference in each execution can be seen in the 

diagrams, which is the effect of using the ε-

greedy method in the training phase. 

Furthermore, changing the input range of tumor 

and immune cells at the beginning of forming 

the q-table also results in noticeable changes. It 

should also be noted that different values for the 

gamma variable do not lead to significant 

changes. 

As you can see in Fig. 4(d), the tumor cells 

reach zero at a longer period, which is the 19th 

day. The reason for the change in the behavior 

of the graph, in this case, is that only data with 

very low tumor amounts have been given to the 

model, so the model does not see any data with 

higher tumor amounts to make decisions about 

cases with more tumors. For more details on the 

implementation of the Q-learning algorithm, 

refer to [3,24]. In the next section, we will 

examine the results of implementing this 

method to control the dosage of 

chemotherapeutic drugs and delve into the 

discussion. 

IV. RESULT AND DISCUSSION 

In this part, we provide examples with numbers 

to show how effective the suggested RL method 

is for controlling cancer chemotherapy drug 

doses in a closed-loop system. Researchers 

conducted three experiments on three groups of 

young patients, elderly patients, and pregnant 

women to investigate the proposed controller, 

here only two of them have been studied [3,17]. 

A. Young patient 

When treating a young patient with cancer, an 

oncologist prioritizes reducing the number of 

cancer cells quickly to prevent metastasis, even 

though this may result in damage to normal 

cells and immune cells. The body's ability to 

regenerate normal cells, which may be 

decreased as a side effect of chemotherapy, is 

more robust in young patients [3]. The body of 

a young patient can eliminate tumor cells due to 

the strength of the immune system. Therefore, 

if we consider the parameter s to be 0.33 in the 

depillis model, the output graph would appear 

as shown in Fig. 4(a). 

B. Elderly patient 

If we consider an elderly patient with weak 

immune cells, meaning we assume the value of 

s to be 0.2, in this condition the output graph 

will be transformed into Fig. 5. 



  

   H. Sadrian, et al. Simulation-based Optimization of Chemotherapeutic Drug …

 

42 

 
Fig. 5 Optimal control model for untreated elderly 

patient. 

As can be seen, tumor cells have reached zero 

at the end of treatment, while the rate of 

immune cells has decreased to 1. In such 

conditions, to treat, immunotherapy should be 

used in addition to chemotherapy to improve 

these lost immune cells. The immunotherapy 

used is modeled by the equation below [17]: 

𝑑𝑠

𝑑𝑡
(𝑡) = 𝜇𝑠𝑣𝑣(𝑡)(1 −

𝑠

𝑘𝑠
) 

(7) 

The therapeutic effect of immunotherapy with 

𝑣𝑣 (𝑡) ≥ 0 has been shown. The values of 𝜇𝑠 
depend on the dynamics of the parameter 𝑠 . 

This coefficient saturates to the final limit 𝑘𝑠, 
which is related to the biological constraints of 

body organs and the accumulation of external 

effects [17,25]. 

The output chart after chemotherapy treatment 

along with immunotherapy is shown using 

relationship 9 in Fig. 6. 

 
Fig. 6 Optimal control model for treated elderly 

patient. 

Chemotherapy involves using drugs to kill 

cancer cells, while immunotherapy works by 

boosting the body's natural defenses to help the 

immune system recognize and attack cancer 

cells. When these two treatments are combined, 

they can have a synergistic effect and offer a 

more effective way to treat cancer. By 

combining chemotherapy with immunotherapy, 

doctors can potentially lower the dosage of 

chemotherapy drugs needed to achieve the 

desired effect, reducing the likelihood of side 

effects and toxicity. One way that doctors can 

control the optimal drug dosage when using a 

combination of chemotherapy and 

immunotherapy is through careful monitoring 

and adjustment of treatment plans. 

The use of both chemotherapy and 

immunotherapy allows for a more personalized 

treatment plan for the elderly patient. 

Combining chemotherapy with immunotherapy 

can enhance the overall effectiveness of the 

treatment by targeting cancer cells through 

different mechanisms. This can potentially lead 

to better outcomes for the elderly patient. By 

carefully monitoring and controlling the dosage 

of each drug, doctors can potentially reduce the 

risk of side effects associated with 

chemotherapy and immunotherapy. This is 

especially important for elderly patients, who 

may be more susceptible to adverse reactions. 

Studies have shown that combining 

chemotherapy with immunotherapy can lead to 

improved survival rates for cancer patients, 

including elderly individuals. By controlling 
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the optimal drug dosage, doctors can potentially 

increase the chances of successful treatment 

outcomes for elderly patients. 

In this article, three scenarios were considered 

in order to investigate the effect of noise on the 

controller: the first scenario is adding noise 

only during the training phase, the second 

scenario is adding noise only during the 

simulation phase, and the third scenario is 

adding noise in both phases. Three values (0.25, 

0.5, 1) were chosen for the percentage of noise. 

The noise is generated as a percentage of a 

randomly generated normal value that has been 

scaled to the desired variable value. The method 

of adding noise in the simulation stage was 

performed as follows: 

After determining the initial state to start the 

simulation, a certain percentage of noise is 

added based on the range of the variable of 

interest, and the index of the Q-table is selected 

based on the noisy variable for updating. 

However, in the stage of obtaining the next state 

variables of the problem (calling the depillis 

model function), noise-free data is used. In this 

way, the added noise can be considered a 

measurement error in the simulation stage. 

(This means we have an error in measurement 

but in reality, the levels of different cells in the 

patient will change regardless of our 

measurement, so the noise-free value is given to 

the model). 

Also, in the training phase, noise is added 

similar to the simulation phase, but with the 

difference that in the training phase, the current 

state is randomly selected in each iteration. The 

experiment conducted for different noise levels 

did not result in any significant difference in the 

performance of the model, and even when 

adding noise in both phases, a suitable and 

stable performance was observed. 

In Figs. 7-9, charts related to adding noise to the model 

are shown 

 

 
Fig. 7 Optimal control model in the presence of noise 

(only during the training phase). 
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(a) 

 
(b) 

 
(c) 

Fig. 8 Optimal control model in the presence of noise 

(only during the simulation phase). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Optimal control model in the presence of noise 

(In both stages of training and simulation). 

Overall, the effect of adding noise to the Q-

learning controller for determining cancer drug 

dosages will depend on the specific 

implementation and the balance struck between 

exploration and exploitation. Proper tuning and 

optimization of the noise parameters will be 

crucial in achieving the desired balance 

between exploration and exploitation while 

ensuring the safety and effectiveness of the 

treatment. 
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The benefit of the RL-based approach is its 

capability to develop a controller without the 

need for a system model. 

Traditional chemotherapy dosage 

determination often relies on a trial-and-error 

approach, leading to suboptimal treatment 

outcomes and increased risk of side effects. 

Reinforcement learning-based controllers can 

expedite the dosage optimization process by 

continuously learning from patient responses 

and making data-driven decisions, reducing the 

need for trial-and-error approaches. 

Reinforcement learning algorithms can 

continuously learn and adapt to new 

information and patient responses, leading to 

ongoing improvements in treatment outcomes 

over time. This continuous learning process can 

help in refining the dosage regimen to achieve 

better long-term outcomes for cancer patients. 

When comparing our simulation findings to 

those reported in [3], we observe that both 

approaches yield very similar outcomes. In both 

instances, the tumor is eliminated through the 

use of optimal chemotherapy dosages, and the 

controllers prove to be resilient to changes in 

parameters. Simulation and differential 

equations described have been implemented 

using MATLAB software. 

V. CONCLUSIONS AND FUTURE 

WORK 

In this paper, the application and efficiency of a 

reinforcement learning-based controller in 

determining the optimal dosage of 

chemotherapy drugs were investigated. One of 

the primary goals of determining the dosage of 

chemotherapeutic drugs using Q-learning is to 

maximize the efficacy of the treatment. Another 

important goal is to minimize the toxicity of the 

treatment. Chemotherapeutic drugs can have 

significant side effects, so it is important to find 

the right dosage that will effectively treat the 

cancer while minimizing harm to the patient's 

healthy tissues. Q-learning can help doctors 

find the optimal balance between efficacy and 

toxicity. In the context of chemotherapy dosage 

optimization, the environment could be the 

patient's body, where the agent (in this case, the 

Q-learning algorithm) needs to determine the 

optimal dosage of the chemotherapeutic drug to 

administer based on factors such as the type of 

cancer, the patient's age and overall health, and 

the drug's pharmacokinetics. The reward in this 

case could be a combination of factors, such as 

the reduction in tumor size, the patient's overall 

health, and the absence of severe side effects. 

The Q-learning algorithm would learn from 

experience by iteratively adjusting the dosage 

of the chemotherapeutic drug based on the 

feedback it receives from the environment. 

Over time, the algorithm would converge on an 

optimal dosage that maximizes the reward 

while minimizing the side effects. In order to 

evaluate the RL-based method, noise was 

applied to the controller. One of the main 

advantages of RL-based controllers is their 

ability to learn and adapt to new environments 

and tasks without the need for extensive hand-

coding or pre-programming. RL algorithms 

work by interacting with the environment and 

receiving feedback in the form of rewards, 

which allows them to learn optimal actions that 

maximize long-term rewards. This adaptability 

makes RL controllers well-suited for complex 

tasks or environments where traditional control 

methods may struggle to find a solution. 

Additionally, RL controllers can handle non-

linear, high-dimensional, and uncertain 

systems, making them a versatile and powerful 

tool in the field of control systems. 

RL-based controllers are trained on a specific 

dataset and may not generalize well to new or 

unseen data. This could lead to suboptimal dose 

determination in real-world scenarios. One of 

the future works could be to investigate the use 

of deep reinforcement learning algorithms for 

determining drug doses in clinical settings. This 

could involve developing more sophisticated 

Q-learning algorithms that can handle the 

complexities of individual patient responses 

and varying drug interactions. Examining the 

integration of reinforcement learning with other 

machine learning techniques, such as deep 

learning or natural language processing, to 

improve the accuracy and efficiency of drug 

dosage determination algorithms. 
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