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 Today, sheet metals are extensively utilized in various industries as one 

of the most crucial components. The presence of a crack in a structural 

element reduces local stiffness and consequently weakens the 

structure's resistance. Any change in local stiffness affects modal 

factors including mode shapes, natural frequencies, and structural 

damping. A major challenge in structural health monitoring is 

identifying the severity and location of potential cracks. Continuous 

evaluation is essential to ensure the proper functioning of many 

structures. This study presents an engineering perspective on the 

influence of cracks on vibration frequencies considering crack 

dimensions and locations. Finite element simulations, a widely 

accepted computational tool, were employed for this investigation. 

After verifying the convergence of the solution method, the simulation 

results were compared with those found in other sources, showing 

good agreement. Finally, the impact of crack orientation and position 

on the natural frequencies of the system was analyzed. 
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1. Introduction 

The occurrence of sudden failures due to crack 

growth in structures has always been a 

challenging and investigated topic. When a part of 

a structure is damaged by a crack, the stiffness in 

that area decreases, consequently increasing the 

natural period of the structure and reducing its 

natural vibration frequency. These damages can 

also lead to changes in mass distribution and 

structural damping characteristics. Such defects 

predominantly affect regions near cracks under 

severe stress concentration factors, diminishing 

gradually as they move away from the crack. 

Many researchers have proposed methods for 

determining the location and characteristics of 

cracks, as well as understanding how these 

damages propagate. 

The dynamic behavior of cracked structures 

has been extensively studied using various 

mathematical, numerical, and experimental 

methods. Much of this research has focused on 

modeling cracks in plates under different 

boundary conditions. Some notable studies 

investigating the properties and effects of cracks 

on the mechanical characteristics of plates 

include: 

Xiong et al. [1] analyzed the path of actual 

crack propagation and changes in resonance 

frequencies under intensified conditions for a 

plate. They initially proposed a simulation 

analysis method for crack propagation and 

validated their proposed method through crack 

propagation experiments. Finally, they studied the 

relationship between crack propagation length and 

resonance frequencies. 

Wang et al. [2] developed a nonlinear 

dynamic model for thin cylindrical shells prone to 

crack under long-term loading and external 

impact, using partial Fourier transformation and 

residual theorem to examine nonlinear forced 

vibrations in a cracked cylindrical shell. 
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Wu et al. [3] proposed a new model for a 

breathing crack with axial bending (ABCBCM) 

for rotating blades. They derived the governing 

equations based on Timoshenko beam theory and 

Castigliano's principle, solved them using the 

proposed model, and then validated the results 

with FEM and experimental tests. The findings 

indicated that the axial vibration reaction of the 

blade is more sensitive to the nonlinearity caused 

by the breathing crack compared to the bending 

response. 

Tho et al. [4] applied the third-order shear 

deformation theory to simulate the free vibration 

behavior and static bending of multilayer 

composite plates containing fractures in the core 

layer. They showed that with changes in crack 

dimension, the natural frequency and the highest 

displacement of the plate do not change 

significantly. 

Hu et al. [5] investigated and provided new 

analytical solutions for the vibration behavior of 

robust rectangular plates in free conditions with 

edge cracks. Finally, they presented the natural 

frequency results for different vibration modes of 

thick plates with edge cracks and examined the 

high accuracy and fast convergence of the 

solutions. 

Khoram-Nejad et al. [6] investigated and 

analyzed the free vibration of a cracked FGM 

plate under uniaxial compressive load. They 

obtained the nonlinear differential equations of 

motion using the Mindlin plate theory for an 

imperfect primary plate and solved them using the 

differential quadrature method. The results were 

in strong agreement with those obtained from the 

FEM analysis. 

Taima et al. [7] examined the lateral vibration 

of cracked thick isotropic beams using 

Timoshenko beam theory and the third-order 

shear deformation theory. The results indicate that 

the discrepancy between the analytical and 

experimental findings is minimal, which confirms 

the validity of the solution. 

Wu et al. [8] evaluated the simulation of crack 

growth in curved steel tensile specimens using 

cohesive zone modeling. 

Citarella and Giannella [9] examined 

advanced numerical approaches for crack growth 

simulation. Additionally, Alshoaibi [10] analyzed 

fatigue crack spread under uniform amplitude 

loading by the FEM. 

Singh et al. [11] investigated the simulation of 

crack growth in an FGM plate by extended FEM. 

In this article, the effect of crack position and 

size on the natural frequency of a simply 

supported plate is analyzed through simulation. In 

this simulation, a single element is used to 

investigate the stress and its concentration at the 

crack tip. Then, the convergence and 

independence of the solution from the mesh are 

examined, and then validate the results with other 

references. Finally, the results of the simulation 

are presented. 

 

2. Geometry, Boundary Conditions, and 

Mechanical Properties 

Figure 1 shows the geometry of the cracked plate 

under consideration. As shown in this figure, the 

crack is at the edge of the plate, and its position is 

specified by three parameters: a, c, and . 

 
Figure 1. Geometry of the cracked plate. 

 

In this study, the plate boundary conditions are 

assumed to be simply supported, as shown in 

Figure 2. It is also assumed that the plate is square 

with a side length of 0.1 meters and a thickness of 

1 millimeter. 

 
Figure 2. Boundary conditions of the plate. 

 

The elastic properties of the steel utilized in the 

present work are shown in Table 1. 

 
Table 1. Steel Elastic Properties 

value Elastic Properties 

204 E (GPa) 

0.3  

7860  (kg/m3) 
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3. Stress Intensity Factor (SIF) 

A significant crucial factor that should typically 

be considered in crack analysis is the SIF. In fact, 

the SIF represents the crack propagation 

resistance of the material. Fracture has three 

modes: opening, sliding, and tearing. For 

example, the SIF in the opening mode is 

calculated using the following equation [12]. 

𝐾𝐼 = 𝜎√𝜋𝑎 (1) 

In this equation, KI is the SIF in the first mode of 

fracture, σ is the stress, and a is the length of 

crack. 

 
4. Convergence and Validation of the Solution 

To ensure that the problem is not sensitive to the 

number of elements, the SIF in the first mode is 

calculated for different numbers of elements. To 

non-dimensionalize the SIF in the first mode, it is 

sufficient to divide this factor, calculated by the 

finite element software, based on the right-side 

expression in Eq. (1). Table 2 shows the changes 

of the non-dimensional SIF in the first mode with 

respect to the number of elements. As indicated in 

the table, the dimensionless SIF in the first mode 

experiences negligible change with increasing the 

number of elements to 1.6 million elements, and 

therefore, the problem is not dependent on the 

number of elements and is convergent. 
 

Table 2. Sensitivity of the Problem to the Number of 

Elements 

Number of Elements (Millions 

of Elements) non-dimensional SIF 

0.8 0.094 
1 0.185 

1.3 0.186 
1.6 0.188 
2 0.188 

 

To validate the solution, the results obtained 

from the simulation for the elastic properties 

stated in Table 1 and the geometry shown in The 

results in Figure 3 are contrasted with those from 

Ref. [13]. The findings of this comparison are 

presented in Table 3. The natural frequency is 

non-dimensionalized by dividing the frequency of 

the cracked plate by that of the uncracked plate. 

As shown in the table, the findings are in close 

agreement with those of Ref. [13]. 

 
Figure 3. Plate with Simply Supported Boundary 

Condition and Vertical Central Crack. 
 

Table 3. Validation of solution 

2a/H Nondimensionalized First 

Mode Natural Frequency 

0.2 0.1 

0.9806 0.9942 Ref. [13] 

0.995 0.9982 Present work 

1.45 0.4 % Difference 

 

5. Results and Discussion  

The natural frequencies results obtained from the 

FEM for the first five vibration modes, for 

different d/a ratios at crack angles of 0, 15, and 30 

degrees, are presented. These results were 

calculated for c/a=0.5, and Fig. 4 shows a graph 

of these results. As indicated by the figure, in the 

first, second, and third modes, the frequency 

reduction is more pronounced at a 30-degree 

angle as the crack length increases. In contrast, in 

the fourth and fifth modes, the frequency 

reduction is more noticeable at a 0-degree angle 

with increasing crack length. 

 
(a) 
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(c) 

 
(d) 

 
(e) 

Figure 4. Effect of Changing the d/a Ratio on Natural 

Frequency: a) First, b) Second, c) Third, d) Fourth, and e) 

Fifth Modes at Angles of 0, 15, and 30 Degrees for an 

Edge Crack with Angle θ. 
 

Figure 5 shows the impact of a central crack on 

the first five vibration frequencies of the plate. 

These results are calculated for a c/a=0.5 ratio and 

different crack lengths at angles of 0, 15, and 30 

degrees. As observed in the figure, for the first 

through fourth modes, the frequency reduction is 

more pronounced at a 30-degree angle as the 

length of the crack grows, whereas in the fifth 

mode, the frequency reduction is more noticeable 

at a 0-degree angle with increasing crack length. 
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(e) 

Figure 4. Effect of Changing the d/a Ratio on Natural 

Frequency: a) First, b) Second, c) Third, d) Fourth, and e) 

Fifth Modes at Angles of 0, 15, and 30 Degrees for an 

Edge Crack with Angle θ. 
From observing Figures (4) and (5), the data suggest 

that increasing crack length leads to a reduction in 

natural frequency. This happens due to the presence of 

a crack reduces the stiffness of the plate, leading to a 

decrease in the natural frequency. 

 

6. Conclusion 
In this study, the free vibrations of a square plate 

with edge and central cracks were investigated. The 

simulation was performed using the Abaqus FEM 

software, and after examining mesh independence, the 

solution was validated, showing strong agreement with 

the findings from other references. The findings from 

this study are as follows: 

• Based on the results, among the crack 

parameters, the crack dimension has the most 

important impact on frequency reduction. 

Additionally, the crack length has the most 

substantial impact on the first and fifth 

frequencies. 

• As the crack angle decreases, the frequency 

also decreases. The reduction in frequency is 

more noticeable in the first mode compared to 

other frequencies. 

• The closer the crack is to the center of the 

plate, the lower the natural frequency. 

Therefore, when the crack is at the center and 

in the longitudinal direction of the plate, the 

natural frequency is more significantly 

reduced. 

• The natural frequency changes depending 

on the crack location in specific modes. 

These modes can be considered as 

patterns that are continuously monitored 

to detect cracks in the plate. 
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