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Today, sheet metals are extensively utilized in various industries as one
of the most crucial components. The presence of a crack in a structural
element reduces local stiffness and consequently weakens the
structure's resistance. Any change in local stiffness affects modal
factors including mode shapes, natural frequencies, and structural
damping. A major challenge in structural health monitoring is
identifying the severity and location of potential cracks. Continuous
evaluation is essential to ensure the proper functioning of many

structures. This study presents an engineering perspective on the
influence of cracks on vibration frequencies considering crack
dimensions and locations. Finite element simulations, a widely
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accepted computational tool, were employed for this investigation.
After verifying the convergence of the solution method, the simulation

results were compared with those found in other sources, showing
good agreement. Finally, the impact of crack orientation and position
on the natural frequencies of the system was analyzed.

1. Introduction
The occurrence of sudden failures due to crack
growth in structures has always been a
challenging and investigated topic. When a part of
a structure is damaged by a crack, the stiffness in
that area decreases, consequently increasing the
natural period of the structure and reducing its
natural vibration frequency. These damages can
also lead to changes in mass distribution and
structural damping characteristics. Such defects
predominantly affect regions near cracks under
severe stress concentration factors, diminishing
gradually as they move away from the crack.
Many researchers have proposed methods for
determining the location and characteristics of
cracks, as well as understanding how these
damages propagate.

The dynamic behavior of cracked structures
has been extensively studied using various
mathematical, numerical, and experimental
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methods. Much of this research has focused on
modeling cracks in plates under different
boundary conditions. Some notable studies
investigating the properties and effects of cracks
on the mechanical characteristics of plates
include:

Xiong et al. [1] analyzed the path of actual
crack propagation and changes in resonance
frequencies under intensified conditions for a
plate. They initially proposed a simulation
analysis method for crack propagation and
validated their proposed method through crack
propagation experiments. Finally, they studied the
relationship between crack propagation length and
resonance frequencies.

Wang et al. [2] developed a nonlinear
dynamic model for thin cylindrical shells prone to
crack under long-term loading and external
impact, using partial Fourier transformation and
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residual theorem to examine nonlinear forced
vibrations in a cracked cylindrical shell.

Wu et al. [3] proposed a new model for a
breathing crack with axial bending (ABCBCM)
for rotating blades. They derived the governing
equations based on Timoshenko beam theory and
Castigliano's principle, solved them using the
proposed model, and then validated the results
with FEM and experimental tests. The findings
indicated that the axial vibration reaction of the
blade is more sensitive to the nonlinearity caused
by the breathing crack compared to the bending
response.

Tho et al. [4] applied the third-order shear
deformation theory to simulate the free vibration
behavior and static bending of multilayer
composite plates containing fractures in the core
layer. They showed that with changes in crack
dimension, the natural frequency and the highest
displacement of the plate do not change
significantly.

Hu et al. [5] investigated and provided new
analytical solutions for the vibration behavior of
robust rectangular plates in free conditions with
edge cracks. Finally, they presented the natural
frequency results for different vibration modes of
thick plates with edge cracks and examined the
high accuracy and fast convergence of the
solutions.

Khoram-Nejad et al. [6] investigated and
analyzed the free vibration of a cracked FGM
plate under uniaxial compressive load. They
obtained the nonlinear differential equations of
motion using the Mindlin plate theory for an
imperfect primary plate and solved them using the
differential quadrature method. The results were
in strong agreement with those obtained from the
FEM analysis.

Taima et al. [7] examined the lateral vibration
of cracked thick isotropic beams using
Timoshenko beam theory and the third-order
shear deformation theory. The results indicate that
the discrepancy between the analytical and
experimental findings is minimal, which confirms
the validity of the solution.

Wu et al. [8] evaluated the simulation of crack
growth in curved steel tensile specimens using
cohesive zone modeling.

Citarella and Giannella [9] examined
advanced numerical approaches for crack growth
simulation. Additionally, Alshoaibi [10] analyzed
fatigue crack spread under uniform amplitude
loading by the FEM.

Singh et al. [11] investigated the simulation of
crack growth in an FGM plate by extended FEM.
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In this article, the effect of crack position and
size on the natural frequency of a simply
supported plate is analyzed through simulation. In
this simulation, a single element is used to
investigate the stress and its concentration at the
crack tip. Then, the convergence and
independence of the solution from the mesh are
examined, and then validate the results with other
references. Finally, the results of the simulation
are presented.

2. Geometry, Boundary Conditions, and
Mechanical Properties

Figure 1 shows the geometry of the cracked plate
under consideration. As shown in this figure, the
crack is at the edge of the plate, and its position is
specified by three parameters: a, ¢, and 6.
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Figure 1. Geometry of the cracked plate.

In this study, the plate boundary conditions are
assumed to be simply supported, as shown in
Figure 2. It is also assumed that the plate is square
with a side length of 0.1 meters and a thickness of
1 millimeter.
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Figure 2. Boundary conditions of the plate.

The elastic properties of the steel utilized in the
present work are shown in Table 1.

Table 1. Steel Elastic Properties
Elastic Properties value

E (GPa) 204
v 0.3
p (kg/m®) 7860
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3. Stress Intensity Factor (SIF)
A significant crucial factor that should typically
be considered in crack analysis is the SIF. In fact,

the SIF represents the crack propagation
resistance of the material. Fracture has three
modes: opening, sliding, and tearing. For

example, the SIF in the opening mode is
calculated using the following equation [12].

K; = ovma 1)
In this equation, K; is the SIF in the first mode of
fracture, o is the stress, and a is the length of
crack.

4. Convergence and Validation of the Solution
To ensure that the problem is not sensitive to the
number of elements, the SIF in the first mode is
calculated for different numbers of elements. To
non-dimensionalize the SIF in the first mode, it is
sufficient to divide this factor, calculated by the
finite element software, based on the right-side
expression in Eqg. (1). Table 2 shows the changes
of the non-dimensional SIF in the first mode with
respect to the number of elements. As indicated in
the table, the dimensionless SIF in the first mode
experiences negligible change with increasing the
number of elements to 1.6 million elements, and
therefore, the problem is not dependent on the
number of elements and is convergent.

Table 2. Sensitivity of the Problem to the Number of
Elements

Number of Elements (Millions

non-dimensional SIF of Elements)

0.094 0.8
0.185 1
0.186 13
0.188 1.6
0.188 2

To validate the solution, the results obtained
from the simulation for the elastic properties
stated in Table 1 and the geometry shown in The
results in Figure 3 are contrasted with those from
Ref. [13]. The findings of this comparison are
presented in Table 3. The natural frequency is
non-dimensionalized by dividing the frequency of
the cracked plate by that of the uncracked plate.
As shown in the table, the findings are in close
agreement with those of Ref. [13].

>

Figure 3. Plate with Simply Supported Boundary
Condition and Vertical Central Crack.

Table 3. Validation of solution

Nondimensionalized First 2a/H
Mode Natural Frequency
0.1 0.2
Ref. [13] 0.9942 0.9806
Present work 0.9982 0.995
% Difference 0.4 1.45
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5. Results and Discussion

The natural frequencies results obtained from the
FEM for the first five vibration modes, for
different d/a ratios at crack angles of 0, 15, and 30
degrees, are presented. These results were
calculated for c¢/a=0.5, and Fig. 4 shows a graph
of these results. As indicated by the figure, in the
first, second, and third modes, the frequency
reduction is more pronounced at a 30-degree
angle as the crack length increases. In contrast, in
the fourth and fifth modes, the frequency
reduction is more noticeable at a 0-degree angle
with increasing crack length.
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Figure 4. Effect of Changing the d/a Ratio on Natural
Frequency: a) First, b) Second, c) Third, d) Fourth, and e)
Fifth Modes at Angles of 0, 15, and 30 Degrees for an
Edge Crack with Angle é.

Figure 5 shows the impact of a central crack on
the first five vibration frequencies of the plate.
These results are calculated for a ¢c/a=0.5 ratio and
different crack lengths at angles of 0, 15, and 30
degrees. As observed in the figure, for the first
through fourth modes, the frequency reduction is
more pronounced at a 30-degree angle as the
length of the crack grows, whereas in the fifth
mode, the frequency reduction is more noticeable
at a 0-degree angle with increasing crack length.
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Figure 4. Effect of Changing the d/a Ratio on Natural
Frequency: a) First, b) Second, ¢) Third, d) Fourth, and e)
Fifth Modes at Angles of 0, 15, and 30 Degrees for an
Edge Crack with Angle 6.

From observing Figures (4) and (5), the data suggest
that increasing crack length leads to a reduction in
natural frequency. This happens due to the presence of
a crack reduces the stiffness of the plate, leading to a
decrease in the natural frequency.

6. Conclusion

In this study, the free vibrations of a square plate
with edge and central cracks were investigated. The
simulation was performed using the Abaqus FEM
software, and after examining mesh independence, the
solution was validated, showing strong agreement with
the findings from other references. The findings from
this study are as follows:

e Based on the results, among the crack
parameters, the crack dimension has the most
important impact on frequency reduction.
Additionally, the crack length has the most
substantial impact on the first and fifth
frequencies.

e As the crack angle decreases, the frequency
also decreases. The reduction in frequency is
more noticeable in the first mode compared to
other frequencies.

e The closer the crack is to the center of the
plate, the lower the natural frequency.
Therefore, when the crack is at the center and
in the longitudinal direction of the plate, the
natural frequency is more significantly
reduced.

e The natural frequency changes depending
on the crack location in specific modes.
These modes can be considered as
patterns that are continuously monitored
to detect cracks in the plate.
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