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Abstract  

The main goal of cloud computing is to achieve higher throughput on a large scale. Load balancing 

is always a challenge and requires a distributive solution. The response time criterion and energy 

consumption are evaluated by dynamically transferring the local workload from one machine to 

another or a less commonly used machine. The main purpose of the load balancing algorithm is to 

improve the response time by distributing the system's total load. Different algorithms are used in 

load balancing that can have different parameters. The most important features used are desirability 

and efficiency. In this report, we optimize the execution time in a set of tasks by examining the load 

balance parameters and using the Firefly algorithm. The proposed algorithm includes the improved 

firefly model, which is defined as two parts. The innovation of the present study includes improving 

the performance of the firefly algorithm and reducing the number of searches in this method, and it 

has been compared with other optimization algorithms from various aspects. The proposed algorithm 

enhances the firefly model by improving its performance and reducing the number of searches, as 

compared to other optimization algorithms. The research results show that the proposed method has 

a better balance in response time and memory than the GA, NSGA-II, and PSO methods. They also 

show that the load balance in processor efficiency has a growth of 6% compared to the GA, NSGA-

II, and PSO.  
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1. Introduction 

One of the most ironic points about IT is that while computers 

are much more powerful, they seem slower, and computers 

are not as fast as they used to be. The reason for this is clear; 

every day, operating systems and software packages become 

more sophisticated, their capabilities far exceed the average 

needs, and more importantly, they require more resources 

than the resources of a typical computer (Sheikh et al., 2021). 

Therefore, the rate at which software slows down is greater 

than when hardware becomes more powerful. Fortunately, 

there is a solution to this problem. The combination of high-

speed Internet and on-demand companies that provide cloud 

services has created a new world called cloud computing. The 

basic premise of cloud computing is to have access to 

services such as software on the Internet instead of on a 

computer. Programs generally run in a web browser to run 

the program from any computer with Internet access. A cloud 

is an abstract image of large, massive networks of unknown 

size, and we do not know how many processing resources are 

available (Cardellini et al., 2017). When the demand for 

computer resources increases, their proper distribution 

becomes important. If one processing unit has many tasks and 

the other unit is almost idle, resources are not used well. Also, 

the time Completion of total tasks can be greatly increased. 

In general, from a computational point of view, the process 

of balanced load distribution on processing units is called 

load balancing (Bhoyar et al., 2015).  

Cloud computing is one of the latest developments in 

information technology, and it is becoming pervasive over 

time. The cloud computing platform is a fully automated 

server platform that allows users to purchase 

telecommunications, dynamic scalability, and system 

management.  

Cloud computing is a model that provides easy access 

through the network at the user’s request to a set of 

customizable and configurable computing resources such as 

networks, servers, storage space, applications, and services, 

that should be managed with minimal need for management. 

Resources or direct involvement of the service provider 

should be provided or released immediately. Cloud 

computing has a three-tier architecture where in the 

infrastructure layer, we face resource management. In the 

substrate layer, the possibilities of developing applications on 

cloud resources are provided. In the software layer, 

application software is used for the end-user service. If we 

want to improve the way we manage resources and schedule 

things according to the issue, we must enter the infrastructure 

layer. If we want to develop a particular issue in general, we 

enter the platform layer, and if we want to focus on providing 

the end service to the user, we must enter the software layer.  

The main goal of Cloud computing is to improve distributed 

resources, combine them to achieve higher throughput, and 

solve large-scale computational problems (Mahendiran et al., 

2012). Load balance and reliability are currently a challenge 

in cloud computing systems. A distributed solution is always 

needed, as it is not always possible or cost-effective to 

maintain one or more idle and inactive servers just to meet 

certain requirements. Clearly, due to these systems’ scale and 

complexity, the centralized assignment of tasks to specific 

servers is impossible. To create proper resource management 

and provide services, we need the load balancer offered to the 

service provider. 

Load balance is a general term used to distribute larger 

processing loads to smaller processing nodes to improve 

overall system performance. In a distributed environment, 

load balancing is a load distribution process between 

different distributed systems used to improve resource 

utilization and response time. The idea of a load balancing 

algorithm should prevent overload and low load on any 

particular node. In the case of a cloud computing 

environment, choosing the appropriate algorithm is not easy 

because it also includes additional barriers such as security, 

reliability, throughput, and so on. Therefore, the main 

purpose of the load balancing algorithm in the cloud 

computing environment is to improve the response time by 

distributing the system's total load. The algorithm must 

ensure that no particular algorithm overloads (khaledian et 

al., 2021). In this case, we used many algorithms to do this 

research. One of the collective node intelligence algorithms 

is an algorithm called the firefly algorithm that optimizes the 

problem. 

Section 2 describes the Related Work. In Section 3, the 

proposed method is presented, and in Section 4, the results 

and experiments are reviewed. Finally, in Section 5, a general 

conclusion of the article is given. 

2. Related Work 

Bhoyar et al. (2015), proposed an algorithm for work 

scheduling and dynamic configuration of node loads within 

the grid system in 2015. Within a distributed computing 

system, processing requests are received randomly from 

users. A good way to program these requests is to assign them 

to existing processors. Therefore, all requests may be 

answered promptly. In Mahendiran et al. (2012), a clustering 

algorithm that provides a concept of clustering in cloud 

computing is described. There are many load balancing 

algorithms in cloud computing (khaledian et al., 2021), and 

each algorithm has its own advantages and disadvantages. 

Moreover, depending on the need, one of the algorithms is 

used. The efficiency of the algorithm can be increased by 

creating a clustering (Rajeshkannan et al., 2016) of nodes. 

Each cluster can be considered as a group. The process of 

creating clusters revolves around the concept of sorting 

nodes. In this process, the node first selects a neighboring 

node, a different node, and a sorter. The sorting node 

establishes a connection with another node of the starting 

node type, and finally, the sorting node is detached. This 

process is repeated, and the system efficiency increases due 

to the high availability of resources. This increase in 

throughput is due to the efficient use of resources. 

An algorithm considers the software dependence on a non-

circular directional graph (DG) to set up virtual machines for 

tasks. The algorithm decides whether the same virtual 

machine is intended for more than one task. If the execution 

time is too high at the level of a task, the focus is on reducing 

it. Reducing runtime can be done by defining more than one 
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virtual machine for tasks that request the same type of virtual 

machine, which may increase the cost. On the other hand, if 

the cost goes up, it reduces it by scheduling more than one 

task on the same virtual machine, which increases the total 

execution time. In Dam et al. (2014) an ant-based algorithm 

is introduced also in Lal et al. (2018) discusses one of the 

major challenges of cloud computing: load balancing. This 

means that the workload is distributed dynamically and 

evenly across multiple nodes. 

A good load balancer in cloud computing must adapt its 

strategy to the changing environment. Avoiding server 

overhead and balancing the appropriate load between servers 

can maintain service quality and reduce task completion time. 

In Raghava et al. (2014), the purpose of this article is to 

present a new method of load distribution in the cloud 

computing environment using the bee algorithm. This study 

aims to properly distribute the load based on minimizing the 

time of completing tasks on virtual machines. This research 

is modeled based on 30 and 40 tasks on 5 and 6 virtual 

machines, and the simulation results are compared with the 

bee algorithm and the particle swarm optimization algorithm 

(Kazemi et al., 2024). The results show that the bee algorithm 

performs better than the particle swarm optimization 

algorithm and balances the load with the completion time of 

tasks 146 and 123 in the 30-task mode and 197 and 190 in the 

40-task mode on 5 and 6, respectively.  

In Li et al. (2018), the Florence method is proposed which 

uses the glowing insect algorithm. This method consists of 

three steps: to create the initial population, calculate the 

timing index, and select the node with the least load. The 

initial population is considered cloud nodes, and at this stage, 

the nodes with the lowest load are selected. A list of initial 

scheduling is then created where the element at the top of the 

request queue is assigned to the top of the node list. Three 

types of node processing time characteristics, CPU rate, and 

memory rate are considered equivalent to the sum of nodes 

in the scheduling queue. Therefore, the node with the least 

attractive is selected as a basis for comparison with other 

nodes. By calculating the Cartesian distance of the other 

nodes from the node-axis, their attractiveness is calculated. 

The nodes are then arranged relative to the axis element. The 

highest queue in the scheduling list is considered the most 

explicit scheduling queue (Lotfi et al., 2024). This method is 

improved by the bee algorithm and is used for load balancing. 

In this method, bee feeding behavior balances the load 

between virtual machines, which transfers tasks to low-load 

nodes low-load nodes. In this method, tasks are selected 

based on priority for migration. Low-priority tasks are 

candidates for immigration. In this method, each virtual 

machine's load and the data center's load are calculated. The 

processing capacity of each virtual machine is measured 

according to its processing power and bandwidth. Then, by 

calculating the time required to process the tasks, the standard 

deviation factor is used with each virtual machine to balance 

the load. The simulations performed by the authors of this 

article, show an improvement in the overall execution time 

and number of tasks.  

The method introduced in Maruthanayagam et al. (2014) is a 

PSO-based method (Khazaei et al., 2021) that considers both 

types of processing and data-driven tasks. This method also 

considers bandwidth to reduce data traffic and thus reduce the 

amount of transmission time. In Keshk et al. (2014), it does 

not consider idle physical machines as hosts in GA but rather 

reduces energy consumption. This method includes an 

optimization (Amiri et al., 2021) model that transfers 

additional tasks to new homogeneous virtual machines to 

reduce execution and transfer time. The simulation 

performed in the paper shows the reduction in the time 

required for the load balancing process. In Shokry et al. 

(2022) and Kaur et al. (2017) use the ant colony algorithm for 

load balancing. Other method is called BLBACO (Dos 

Santos et al., 2015), which uses the LBACO features to 

estimate each virtual machine's load and processing power. 

In the proposed method, the concept of two types of ant 

movement is used: forward movement and backward 

movement. Moving forward as a virtual machine search has 

an overload starting from the virtual machine. Moving 

backward is also the reverse of that movement. When the 

search is complete, some of the tasks are assigned from the 

overloaded virtual machine to the overloaded virtual 

machine. The ant colony algorithm (Lal et al., 2018) and 

cuckoo algorithm (Navimipour and Milani, 2016) are used 

for load balancing. These algorithms consist of three factors: 

load factor, channel factor, and task migration factor. The 

load and channel factors are static, and the task migration 

factor is ant type which is considered a moving factor. The 

load factor is used as a controller to calculate the load after 

assigning a new task. The channel agent is used for selection, 

transfer, and positioning policies. The channel agent activates 

the task migration agent. These mobile agents go to other data 

centers and communicate with their load agent to obtain the 

virtual machines' status and then send them to the channel 

agent. This algorithm compares each virtual machine's 

condition with its threshold value. 

The proposed method for load balancing called Fuzzy (Xu 

and Sun, 2016) uses the factor. The agent completes each 

cycle in two steps. The first step starts moving from the first 

server and gathers information from all the servers to make 

the right decision to balance the load (Battula and Vuddanti, 

2021). In the second step, the balance balances the servers 

based on the average cloud load. If the server is overloaded, 

it sends the tasks to the low-load server, which can be used 

convolutional neural network (Kazemi et al., 2021). The 

simulations performed by the authors of the article show a 

reduction in algorithm execution time, waiting time, and 

improved throughput (Kanbar and Faraj, 2022). In Negi et al. 

(2021), the proposed method consists of two parts. The first 

part is an IWRR scheduler algorithm, which schedules tasks 

according to the length of tasks and each virtual machine’s 

current load.  Load balancing uses another algorithm called 

IWRR Balancer (Gerez et al., 2019), which removes tasks 

from the virtual machine that has the most time required to 

perform the tasks if a task is completed. The virtual machine 

is idle and also if the number of current tasks is more than 

one, it sends them to an idle virtual machine. The simulations 

performed by the authors show an improvement in the 

execution time and a reduction in the number of task 

migrations. 
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A krill herd algorithm (Hasan et al., 2017) and the firefly 

algorithm (Shadloo et al., 2017) are used for equitable load 

distribution. The simplicity of the genetic algorithm (Chung 

et al., 2004) has led to its use in many optimization problems, 

but it is an algorithm that searches the problem space 

globally. It is combined with the gravitational attraction 

algorithm (Gabhane et al., 2023), which inherently searches 

the problem space locally to improve load balance and 

increase the algorithms' efficiency. This study aims to 

improve a load balancing algorithm based on a genetic 

algorithm (Gabhane et al., 2023; Kalra et al., 2015). External 

interactions between tasks are considered and tried to reduce 

makespan by localizing external connections as much as 

possible. This method changes the intersection and jumps 

percentages when the convergence rate slows down to the 

appropriate solution. The results of experiments clearly show 

a significant increase in convergence rate to the desired 

response. In (Miao et al., 2014), a solution based on the firefly 

algorithm is provided to solve scheduling-dependent tasks. A 

height-based approach with a random method has been used 

to create initial solutions in this method. To maintain the 

interdependence between tasks, transition, and mutation 

functions are defined. Data transfer between dependent tasks 

is also considered. 

3. Introduced Method 

In this research, an algorithm for managing resources and 

allocating them to requests is presented. In other words, an 

algorithm for allocating virtual machines for existing tasks 

that are an optimal model of the firefly algorithm (Miao et al., 

2014) is proposed. The ultimate goal of this proposed 

solution is to obtain a suitable pattern for mapping work to a 

virtual machine that can minimize response time and 

completion time without increasing power consumption. 

Scheduling and resource management in distributed 

environments, such as cloud computing servers, depends on 

many parameters. There are different, dynamic, and 

sometimes interdependent resources and requests in these 

systems and the system's workload compared to other 

environments. Given that the most important parameters in 

cloud computing servers are the parameters based on the time 

of completion of requests and the appropriate distribution of 

load, we work on a method that can meet the parameters of 

response time and completion time of the last task. It 

represents the proportional distribution of load compared to 

the previously presented algorithms. To do this, we use a 

firefly algorithm. This method's proposed approach for 

creating a load-balanced strategy in the cloud network for 

programming on nodes is programming by the firefly 

algorithm (Kashikolaei et al., 2020; Tapale et al., 2020). 

The scheduling process is preferred a set of nodes with the 

least amount of loading. In other words, nodes with a 

minimum load are preferred to absorb the cloud network's 

extra process. We consider a virtual machine with three 

servers in the proposed approach, each server having three 

nodes. Each node has the characteristics defined by the 

planning process. 

The proposed approach and its general steps can be 

introduced with the help of a flowchart. According to the 

proposed model, first, the firefly algorithm's structure will be 

arranged based on the problem assumptions, and then an 

initial population will be generated. The best firefly that can 

select the appropriate load in the network will be considered 

the optimal answer. 

 In general, the proposed approach includes three main steps 

for generating planning on the proposed virtual machine by 

synchronizing their nodes. The different steps can be as 

follows: 

 

 

• Production of the initial population 

• Calculation of scheduling index 

• Optimal node selection 

3.1. Production of the initial population: 

The term population refers to a group of cloud service nodes 

that are requested by users from the server. As it turns out, 

the server takes a node that is free and separate from the user. 

Figure 2 shows the cloud system request and response 

process to generate the initial scheduling list. The server 

searches for nodes to find free nodes. When the node is 

obtained, it puts it in the program list, and when the element 

at the top of the queue is processed, the free node is allocated 

in response. 

The list of basic applications made by a virtual machine with 

full-cycle processing depends on each node's processing time 

and the availability of that node. The list of nodes or 

programs can be displayed in the form of a table, each row 

containing nodes and columns containing the servers' names. 
 

 

 
Fig.  1. A basic image of the virtual machine used by 

 the proposed method. 

 
Table 1 contains a list of nodes that are considered as an 

initial population for the firefly algorithm. Firefly algorithms 

are applied to a specific population to create an effectively 

planned strategy in a cloud system by prioritizing load and 

load balancing. 
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Fig.  2. The cloud system request and response process 

 

 

Table 1  

Preliminary list of the initial population of fireflies 

Time 

(ms)  

Server 1 Server 2 Server 3 

1 N1 N2 N3 𝑁4 𝑁5 𝑁6 𝑁7 𝑁8 𝑁9 

2 N1 N3 N2 𝑁9 𝑁6 𝑁7 𝑁5 𝑁4 𝑁8 

3          

… 𝑁3 𝑁9 𝑁1 𝑁4 𝑁7 𝑁6 𝑁5 𝑁8 𝑁2 

N ... ... ... ... ... ... ... ... ... 

 

3.2. Calculation of scheduling index 

The scheduling index is one of the main factors influencing 

the planning process. Therefore, before going into the timing 

index calculation, we will discuss the initial population's 

decision parameters. According to the definition of the firefly 

algorithm, we must have gravity between nodes. 

Gravity is based on the dependence of the node on the 

requests. Decision parameters and the proposed method 

control gravity. The proposed approaches determine each 

node's decision parameters, and the parameters are 

considered as attributes for the nodes. Table 2 shows the 

nodes and attributes defined by the proposed approach to 

continue the planning process. 

 
Table 2  
Nodes and attributes defined 

Attribute 

Node CPU rate Memory rate Processing rate 

𝑵𝟏 𝐶1 𝑀1 𝑃1 

𝑵𝟐 𝐶2 𝑀2 𝑃2 

… … … … 

𝑵𝒏 𝐶𝑛 𝑀𝑛 𝑃𝑛 

CPU rate (C), amount of memory (M), and processing time 

(P) are considered. The scheduling parameter should be 

designed to be selected with a minimum load or weight. 

According to the definitions of the firefly algorithm, the 

gravity equation is defined as Eq. 1. 

𝑎𝑡𝑡𝑟(𝑛𝑖) =
𝑃𝑖

𝐶𝑃𝑈𝑖 +  
𝑖

𝑚𝑒𝑚𝑖

 (1) 

Here, attr(ni) represents the attraction between the node and 

the request. Pi indicates the processing time of a particular 

node, CPUi indicates the node's processor speed, and memi 

indicates the amount of memory of the nodes. The scheduling 

index of the above formula is calculated as Eq. 2. 

𝑆𝐼 = ∑
𝑃𝑖

𝐶𝑃𝑈𝑖 +  
𝑖

𝑚𝑒𝑚𝑖

𝑛

𝑖=1
 (2) 

SI is a scheduling index, and the total number of nodes is 

in a specific timeline. According to the equation, all 

scheduling queues in the scheduling list are calculated, and a 

scheduling list is formed. 

C) Selecting the most optimal node 

The lowest load node selection processes are inspired by 

the firefly algorithm and in such a way that at least a separate 

firefly will have similar characteristics. This goal is inspired 

by the theory of calculating the distance between nodes in 

scheduling queues. Before performing the calculations, the 

node with the minimum values of attr(ni) is found. A node 

with a minimum attr(ni) is considered an axial point in the 

queue to calculate distinct nodes. The following Figure 3 

shows this method in general. 

The flowchart of the proposed method shows which sections 

have been modified. According to the flowchart, the 

proposed algorithm consists of the following steps: 

     Step 1: Get the input information. 

At this stage, the information and data on which the problem 

is applied are prepared and given to the system. This 

information includes bandwidth, queue length, number of 

virtual machines, and more. The input data is a number given 

to the system as an Excel file, and where configuration is 

required, the required configuration and architecture are 

provided. 

     Step 2: Determine the structure of the firefly. 

The initial structure of the firefly with one manipulation will 

strongly affect the execution of its algorithm. The selection 

of the required parameters for execution was made with 

multiple repetitions and trial and error. 

      Step 3: Determine the fitness function. 

In this step, a function should be considered to check the 

correctness of performance and compare between modes. 

Finally, optimize the function. This function shows the cost 

of running the firefly algorithm per round. In each round, the 

parameters obtained from the firefly are given to this 

function, and the best possible answers are obtained. 

Moreover, finally, the parameters obtained in the next rounds 

are used. 

      Stage 4: Produce the initial population 

This step is random so that the initial population and how 

they are placed in the problem space are random. 

      Step 5: Choose a better firefly. 

At this stage, six better (Eq. 3) fireflies are selected to 

perform the operations based on their value function. In 

Takeuchi et al. (2015), the movements of male and female 

fireflies are modeled by physical differences. Male fireflies 

are attracted to all fireflies, while female fireflies are attracted 

to only male fireflies. Male fireflies move the same as 

fireflies of the OFA, and female fireflies move by new 
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position update method with adaptive control parameters 

(Cheng et al., 2023). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = minimize(𝐵𝑊𝑖 + 𝐶𝑃𝑈𝑖 +
1

1 + 𝑞𝑖

) (3) 

Where q is the firefly queue length, BW is the bandwidth, and 

CPU is the processor power. 

Step 6: Modify the structure of the firefly. 

At this stage, by changing Luciferin, spatial changes are 

obtained in proportion to other fireflies. This step gives the 

firefly algorithm the power to reach the optimal answer better 

and faster in different periods. A change in Luciferin changes 

the rate of firefly absorption. In the proposed model, the male 

firefly tends to other fireflies and the female firefly tends to 

the nearest male firefly. Eqs. 4 and 5 show the process of 

luciferin degradation in two types of fireflies. 

𝛽(𝑟)𝑚𝑎𝑙𝑒 = β0𝑒−𝛾𝑚 , 𝑚 ≥ 0 (4) 

𝛽(𝑟)𝑓𝑒𝑚𝑎𝑙𝑒 = β0𝑒−𝛾𝑚 + 0.1

∗ 𝛽(𝑟)𝑚𝑎𝑙𝑒.𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑚 ≥ 0 
(5) 

Here, r is the distance between two fireflies, β0 is the 

attraction at r=0 and γ is a constant light absorption 

coefficient. The distance between the female firefly and the 

nearest male firefly (d) is obtained by Eq. 6. 

𝑑 = min (∑ √(𝑥2 − 𝑥1) ∗ (𝑦2 − 𝑦1)) (6) 

Where x and y are the corresponding points of female firefly 

and male firefly. 

Step 7: Select based on the load balance problem 

At this stage, fireflies are selected that have been able to make 

better parameter changes in the way they move and place due 

to the load balance. Whenever a firefly changes its location-

Fig.  3. Proposed research model. 
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like parameters, it must use those parameters to calculate the 

load balance. The worm changes are given to the load balance 

calculation formula, and the calculation is done. The better 

the balance, the higher the percentage of firefly selection. 

How to select them is also in the form of a tournament so that 

all the parameters are applied to the load balancing formula, 

and then the answers that are better in the tournament will be 

selected. 

Step 8: Check the end condition 

The end conditions of the algorithm are twofold. The first is 

the number of repetitions set to 100 by default, and other 

cases have been considered. The second condition is to 

investigate whether fireflies have solved the load balancing 

problem on selected virtual machines. Changes may occur in 

each round, but the number of repetitions will not stop until 

the optimal load balance is achieved. 

Step 9: Firefly changes 

If the end conditions are not met, the firefighting location 

changes must be reapplied until selections are made. In each 

round, fireflies move to the optimal answer by changing their 

position. 

4. Discussion and Experimentation 

In this section, the proposed load-balancing algorithm is 

based on the firefly algorithm and its application in 

optimizing the processing of requests to the cloud network. 

The proposed approach is also about load balancing in the 

cloud system. The proposed approach is described in the 

various sections of Chapter Three. This section plans the 

experimental analysis of the proposed method by considering 

a cloud network through the MATLAB tool. Cloud 

simulation uses MATLAB programming like a program 

based on the core-i3 operating system, 8GB RAM, and 256 

SSD. 

In the simulation environment, a data center is defined. In this 

data center, it is possible to define any number of processes 

and virtual machines according to the user's preference. The 

data center can be defined as homogeneous or heterogeneous, 

and different processes can be defined, simulated, and 

executed on it. The proposed algorithm are studied in terms 

of parallelism parameters, scheduling of maximum process 

completion time, CPU efficiency, reducing the throughput of 

processors, and average time of processors in line of 

processors in different scenarios and it is compared with the 

results of these scenarios.  

The evaluation is based on two general sections: "change 

in the initial parameters of the proposed algorithm" and 

"comparison of the proposed method with other algorithms." 

In the first part, the changes caused by each change are 

observed and recorded by applying changes to the firefly 

algorithm and virtual machines' initial parameters. In the 

second part the best results of these changes are compared 

with other methods that have worked on this issue. 

4.1. Changes in the basic parameters of the proposed 

algorithm 

This section evaluates the proposed method with other 

algorithms in task scheduling in cloud computing. 

 

A) Change in the number of iterations of the program 

In this section, the number of program iterations will change, 

but the other program parameters will be kept constant. The 

values of these parameters are given in Table 3. Fixed 

parameters are γ=1, β=2, and population size=100. 

Table 3  
Proposed algorithm parameters 

Early population Variable 

γ 1, 1.5, 2 

β 1, 1.5, 2 

Max Iterations 100, 200, 500, 1000 

Population Size 30, 50, 75, 100 

Number of tasks 200, 400, 600, 800 

According to the parameters, the program results for the 

number of iterations of 100, 200, 500, and 1000 are as 

follows. 

As shown in the Figure 4, by changing the iteration of the 

program, the algorithm provides better answers. Figure 4 

shows a comparison between different iterations. The 

constant trend of 1000 indicates the improvement of the 

situation in this number of iterations. Although iteration 1000 

takes more time to balance in the case of 200 tasks, its steady 

trend for more tasks indicates that it is better. 

B)  Change in the initial population 

In this section, the initial population will change, but the other 

program parameters are kept constant. The values of these 

parameters are shown in Table 3. Fixed parameters are γ=1, 

β=2, and iterations =1000. 

As shown in the Figure 5, the algorithm provides better 

answers by changing the initial population. However, these 

answers produce far worse results than changing the number 

of repetitions of the program. 

C) Change in γ and β values 

In this section, the values of γ and β will change, but the other 

parameters of the program will be kept constant, given in 

Table 3 of these parameters' values. Fixed parameters are 

population size=100 and iterations =1000. According to the 

parameters, the program results for different values of γ and 

β are as follows. 

As can be seen in the table above, by changing the values of 

γ and β, the algorithm offers different answers, which for the 

values of γ = 5.1 and β = 5.1, the proposed algorithm brings 

better answers to the output, in Figure 6, a comparison 

between different values of γ. Moreover, β is given. 

Fig.  4. Program results for different by of iterations. 
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Fig.  5. Graph changes based on initial population size. 

 
Fig.  6. Program results for different values of γ and β. 

 
Fig.  7. Operating system software. 

 

4.2. Comparison of proposed methods with other algorithms 

In this section, the completion time of the last work of the 

proposed algorithm is compared with the standard genetic 

algorithm for different iterations. 

 

A)  Evaluation criteria 

The main evaluation criteria used in the proposed cloud 

network scheduling method are effective for a schedule 

table's execution time. The main decision parameters to be 

considered include CPU usage and memory usage. The 

simulated datasets are compared based on different 

parameters to evaluate the performance of the proposed 

planning techniques. Time is also calculated based on the 

time required to produce an effective planning process. 

 

 

 

B) Performance measurement 

In performance evaluation, we consider the simulated cloud 

network as an evaluation system. The variable parameters in 

the proposed evaluation section are CPU interest rate and 

memory usage. Therefore, the mentioned decision 

parameters are considered as loads for the nodes. Therefore, 

the program production performance will be considered with 

the balance of given loads. In performance analysis, two 

types of analysis are presented. 

Three different settings C1; C2; C3 are shown in Table 7 to 

obtain the desired output, and the simulator is set. The actual 

parameter settings are presented in Tables 4, 5, and 6. 

Table 4  
Cloud space configuration 

Configuration Number of users Number of data centers 

𝑪𝟏 25 10 

𝑪𝟐 25 15 

𝑪𝟑 30 20 
 

Table 5  
Basic physical settings 

Memory Storage 

space 

The amount of 

memory 

available 

Number of 

processors 

Cpu 

speed 

204800 100000000 1000000 4 10000 

 
Table 6  
Data center settings 

Processor 

type 

Operating 

system type 

The cost of 

the virtual 

machine 

Storage 

rate 

Data 

center 

transfer 

rate 

X64 Win2000 0.05 0.1 0.1 

 

Table 7  
User settings 

Reply to user 

every hour 

 Data stored in

each request 

Starting rate 

by hour 

Rate rates 

by hour 

60 Win2000 0.05 0.1 

 

B. 1) CPU interest rate analysis 

In this analysis, the maximum amount of CPU usage in other 

credits is determined to evaluate the scheduling algorithm's 

performance. This analysis shows how the proposed 

approach performs well under different CPU load levels. 

Here we set the maximum CPU usage from 10 to 100. The 

results are shown in Figure 7. Timing and scheduling for 

different CPU rates are indicated by the timeline and memory 

used for synchronization. Memory usage is calculated in 100 

KB. The analysis shows that the scheduling time is uniform 

for different CPU rates, and the memory also increases as the 

CPU rate increases. 

B. 2) Analysis based on Memory Speed and CPU Rate 

Here, the maximum amount of memory in other credits is set 

to evaluate the scheduling algorithm's performance. This 

analysis shows how the proposed approach shows high 

performance under different loads. The selected memory is 

set from 60 to 100, and the results of the analysis are 
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reviewed. The timeline and CPU rate line provide time and 

CPU for programming on different amounts of memory. 

CPU consumption rate is calculated at 100% CPU usage. The 

analysis shows that the time required to perform different 

tasks on different memory rates is uniform and balanced for 

CPU rates. 

The defined cloud configuration setting provides different 

results than the initial state results, as shown in Figure 8. 

Sharing the load in the data center, provided in parallel, saves 

runtime for the request. Because the request is shared across 

different data centers, the number of requests per data center 

reduces processing time. 

Figure 9 show the response time based on 21 users according 

to the C3 configuration on GA, NSGA-II, PSO, and Fireflies. 

As can be seen from the two diagrams, fireflies' response time 

is much better than others. 

 

Figure 10 show the processing time for the 13 data centers on 

GA, NSGA-II, PSO, and Fireflies to the C3 configuration. 

Firefly processing time is much better than others. 
 

B. 3) Comparative analysis 

The above section analyzes the performance of the proposed 

approach. To understand the importance of the proposed 

approach, we must compare it with other methods. Here, to 

prove the importance of evaluating the proposed approach to 

load balancing, the method was compared with GA, NSGA-

II, and PSO. A comparative analysis of interest rates, CPU 

processing, and memory is presented. Figure 11-a show a 

comparative analysis of the proposed approach with the 

introduced approaches. The existing approach's values from 

the load-balanced scheduling methods obtained from the 

proposed method show that the proposed approach using a 

higher processing rate is more effective than the existing 

approach under load-balanced conditions. The analysis 

shows that the average amount of memory usage in the 

proposed approach is less. Therefore, considering the 

balanced load conditions and CPU interest rates, the 

proposed approach is more convenient than the existing 

approaches. 

Figure 11-b shows a comparative analysis of the proposed 

approach with the introduced approaches. The existing 

approach's values show that the proposed approach using a 

lower execution time rate is more effective than the existing 

approach under load-balanced conditions. The analysis 

shows that the proposed method has reduced the load 

balancing time compared to the GA, NSGA-II, and PSO 

methods. According to the introduced diagrams, the proposed 

method has a much better performance than the introduced 

method. 

  

(a) (b) 
Fig. 11. Processor and Memory rate comparison chart. 

Fig.  9. Response time based on 21 users. 

Fig.  8. Memory interest rate. 

Fig.  10. Processing time for the 13 data centers. 
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5. Conclusions 

The simulation results show that the proposed algorithm is 

highly dependent on the initial parameters. Among the initial 

parameters of the algorithm, the algorithm repetition rate 

yields much better results. The proposed method with 1000 

repetitions gives us the best answer, which is the minimum 

makespan. Reducing makespan is effective in keeping virtual 

machines idle and balancing workload more in cloud 

environments. The proposed algorithm was also compared 

with other algorithms in the field of task scheduling. The 

results showed that the proposed algorithm has a much better 

execution time, completion time, and convergence process 

than other algorithms. This means that the proposed method 

is more effective and more efficient than the other two 

methods. Also, due to the vastness and dynamism of cloud 

computing data centers and the fact that these centers face a 

very diverse and variable workload, methods should be used 

to deploy virtual machines that are scalable, dynamic, and 

fast to be able to cope with such workload. These methods 

should behave optimally, and their efficiency should not 

decrease with increasing volume and variety of requests.  

In future research, we plan to explore and assess different 

optimization algorithm models like Harris Hawks 

Optimization (HHO). Structural adjustments will be 

necessary in the firefly algorithm to accommodate the new 

algorithm.  
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