
233

Vol.18, Issue 1, Winter & Spring 2025, 233-243

 Research Article

LBO-HFA: A method of simulation to load balancing optimization using the

hybrid firefly algorithm

Sana Booshehrian 1, Ehsan Amiri 1,*, Javad Mohammadi Madavani 2

1. Department of Computer Engineering, Jahrom University, Jahrom, Iran

2. Department of Computer Engineering, Islamic Azad University, Larestan Branch, Larestan, Iran

 https://doi.org/10.71720/joie.2025.1126308

Abstract

The main goal of cloud computing is to achieve higher throughput on a large scale. Load balancing

is always a challenge and requires a distributive solution. The response time criterion and energy

consumption are evaluated by dynamically transferring the local workload from one machine to

another or a less commonly used machine. The main purpose of the load balancing algorithm is to

improve the response time by distributing the system's total load. Different algorithms are used in

load balancing that can have different parameters. The most important features used are desirability

and efficiency. In this report, we optimize the execution time in a set of tasks by examining the load

balance parameters and using the Firefly algorithm. The proposed algorithm includes the improved

firefly model, which is defined as two parts. The innovation of the present study includes improving

the performance of the firefly algorithm and reducing the number of searches in this method, and it

has been compared with other optimization algorithms from various aspects. The proposed algorithm

enhances the firefly model by improving its performance and reducing the number of searches, as

compared to other optimization algorithms. The research results show that the proposed method has

a better balance in response time and memory than the GA, NSGA-II, and PSO methods. They also

show that the load balance in processor efficiency has a growth of 6% compared to the GA, NSGA-

II, and PSO.

Received: 14 July 2024

Revised: 15 March 2025

Accepted: 28 April 2025

Keywords:

Cloud Computing;

Load Balancing;

Firefly Algorithm;

Optimization, Node

 Citation:

Booshehrian, S., Amiri, E., & Mohammadi Madavani, J. (2025). LBO-HFA: A method of simulation to load balancing

optimization using the hybrid firefly algorithm.

Journal of Optimization in Industrial Engineering, 18(1), 233-243.

https://doi.org/10.71720/JOIE.2025.1126308

*

Corresponding Author:

Ehsan Amiri

Department of Computer Engineering, Jahrom University, Jahrom, Iran

E-Mail: e.e.amiri@gmail.com

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC) license

(https://creativecommons.org/ licenses/by/4.0/).

https://doi.org/10.71720/joie.2025.1184399

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

234

1. Introduction

One of the most ironic points about IT is that while computers

are much more powerful, they seem slower, and computers

are not as fast as they used to be. The reason for this is clear;

every day, operating systems and software packages become

more sophisticated, their capabilities far exceed the average

needs, and more importantly, they require more resources

than the resources of a typical computer (Sheikh et al., 2021).

Therefore, the rate at which software slows down is greater

than when hardware becomes more powerful. Fortunately,

there is a solution to this problem. The combination of high-

speed Internet and on-demand companies that provide cloud

services has created a new world called cloud computing. The

basic premise of cloud computing is to have access to

services such as software on the Internet instead of on a

computer. Programs generally run in a web browser to run

the program from any computer with Internet access. A cloud

is an abstract image of large, massive networks of unknown

size, and we do not know how many processing resources are

available (Cardellini et al., 2017). When the demand for

computer resources increases, their proper distribution

becomes important. If one processing unit has many tasks and

the other unit is almost idle, resources are not used well. Also,

the time Completion of total tasks can be greatly increased.

In general, from a computational point of view, the process

of balanced load distribution on processing units is called

load balancing (Bhoyar et al., 2015).

Cloud computing is one of the latest developments in

information technology, and it is becoming pervasive over

time. The cloud computing platform is a fully automated

server platform that allows users to purchase

telecommunications, dynamic scalability, and system

management.

Cloud computing is a model that provides easy access

through the network at the user’s request to a set of

customizable and configurable computing resources such as

networks, servers, storage space, applications, and services,

that should be managed with minimal need for management.

Resources or direct involvement of the service provider

should be provided or released immediately. Cloud

computing has a three-tier architecture where in the

infrastructure layer, we face resource management. In the

substrate layer, the possibilities of developing applications on

cloud resources are provided. In the software layer,

application software is used for the end-user service. If we

want to improve the way we manage resources and schedule

things according to the issue, we must enter the infrastructure

layer. If we want to develop a particular issue in general, we

enter the platform layer, and if we want to focus on providing

the end service to the user, we must enter the software layer.

The main goal of Cloud computing is to improve distributed

resources, combine them to achieve higher throughput, and

solve large-scale computational problems (Mahendiran et al.,

2012). Load balance and reliability are currently a challenge

in cloud computing systems. A distributed solution is always

needed, as it is not always possible or cost-effective to

maintain one or more idle and inactive servers just to meet

certain requirements. Clearly, due to these systems’ scale and

complexity, the centralized assignment of tasks to specific

servers is impossible. To create proper resource management

and provide services, we need the load balancer offered to the

service provider.

Load balance is a general term used to distribute larger

processing loads to smaller processing nodes to improve

overall system performance. In a distributed environment,

load balancing is a load distribution process between

different distributed systems used to improve resource

utilization and response time. The idea of a load balancing

algorithm should prevent overload and low load on any

particular node. In the case of a cloud computing

environment, choosing the appropriate algorithm is not easy

because it also includes additional barriers such as security,

reliability, throughput, and so on. Therefore, the main

purpose of the load balancing algorithm in the cloud

computing environment is to improve the response time by

distributing the system's total load. The algorithm must

ensure that no particular algorithm overloads (khaledian et

al., 2021). In this case, we used many algorithms to do this

research. One of the collective node intelligence algorithms

is an algorithm called the firefly algorithm that optimizes the

problem.

Section 2 describes the Related Work. In Section 3, the

proposed method is presented, and in Section 4, the results

and experiments are reviewed. Finally, in Section 5, a general

conclusion of the article is given.

2. Related Work

Bhoyar et al. (2015), proposed an algorithm for work

scheduling and dynamic configuration of node loads within

the grid system in 2015. Within a distributed computing

system, processing requests are received randomly from

users. A good way to program these requests is to assign them

to existing processors. Therefore, all requests may be

answered promptly. In Mahendiran et al. (2012), a clustering

algorithm that provides a concept of clustering in cloud

computing is described. There are many load balancing

algorithms in cloud computing (khaledian et al., 2021), and

each algorithm has its own advantages and disadvantages.

Moreover, depending on the need, one of the algorithms is

used. The efficiency of the algorithm can be increased by

creating a clustering (Rajeshkannan et al., 2016) of nodes.

Each cluster can be considered as a group. The process of

creating clusters revolves around the concept of sorting

nodes. In this process, the node first selects a neighboring

node, a different node, and a sorter. The sorting node

establishes a connection with another node of the starting

node type, and finally, the sorting node is detached. This

process is repeated, and the system efficiency increases due

to the high availability of resources. This increase in

throughput is due to the efficient use of resources.

An algorithm considers the software dependence on a non-

circular directional graph (DG) to set up virtual machines for

tasks. The algorithm decides whether the same virtual

machine is intended for more than one task. If the execution

time is too high at the level of a task, the focus is on reducing

it. Reducing runtime can be done by defining more than one

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

235

virtual machine for tasks that request the same type of virtual

machine, which may increase the cost. On the other hand, if

the cost goes up, it reduces it by scheduling more than one

task on the same virtual machine, which increases the total

execution time. In Dam et al. (2014) an ant-based algorithm

is introduced also in Lal et al. (2018) discusses one of the

major challenges of cloud computing: load balancing. This

means that the workload is distributed dynamically and

evenly across multiple nodes.

A good load balancer in cloud computing must adapt its

strategy to the changing environment. Avoiding server

overhead and balancing the appropriate load between servers

can maintain service quality and reduce task completion time.

In Raghava et al. (2014), the purpose of this article is to

present a new method of load distribution in the cloud

computing environment using the bee algorithm. This study

aims to properly distribute the load based on minimizing the

time of completing tasks on virtual machines. This research

is modeled based on 30 and 40 tasks on 5 and 6 virtual

machines, and the simulation results are compared with the

bee algorithm and the particle swarm optimization algorithm

(Kazemi et al., 2024). The results show that the bee algorithm

performs better than the particle swarm optimization

algorithm and balances the load with the completion time of

tasks 146 and 123 in the 30-task mode and 197 and 190 in the

40-task mode on 5 and 6, respectively.

In Li et al. (2018), the Florence method is proposed which

uses the glowing insect algorithm. This method consists of

three steps: to create the initial population, calculate the

timing index, and select the node with the least load. The

initial population is considered cloud nodes, and at this stage,

the nodes with the lowest load are selected. A list of initial

scheduling is then created where the element at the top of the

request queue is assigned to the top of the node list. Three

types of node processing time characteristics, CPU rate, and

memory rate are considered equivalent to the sum of nodes

in the scheduling queue. Therefore, the node with the least

attractive is selected as a basis for comparison with other

nodes. By calculating the Cartesian distance of the other

nodes from the node-axis, their attractiveness is calculated.

The nodes are then arranged relative to the axis element. The

highest queue in the scheduling list is considered the most

explicit scheduling queue (Lotfi et al., 2024). This method is

improved by the bee algorithm and is used for load balancing.

In this method, bee feeding behavior balances the load

between virtual machines, which transfers tasks to low-load

nodes low-load nodes. In this method, tasks are selected

based on priority for migration. Low-priority tasks are

candidates for immigration. In this method, each virtual

machine's load and the data center's load are calculated. The

processing capacity of each virtual machine is measured

according to its processing power and bandwidth. Then, by

calculating the time required to process the tasks, the standard

deviation factor is used with each virtual machine to balance

the load. The simulations performed by the authors of this

article, show an improvement in the overall execution time

and number of tasks.

The method introduced in Maruthanayagam et al. (2014) is a

PSO-based method (Khazaei et al., 2021) that considers both

types of processing and data-driven tasks. This method also

considers bandwidth to reduce data traffic and thus reduce the

amount of transmission time. In Keshk et al. (2014), it does

not consider idle physical machines as hosts in GA but rather

reduces energy consumption. This method includes an

optimization (Amiri et al., 2021) model that transfers

additional tasks to new homogeneous virtual machines to

reduce execution and transfer time. The simulation

performed in the paper shows the reduction in the time

required for the load balancing process. In Shokry et al.

(2022) and Kaur et al. (2017) use the ant colony algorithm for

load balancing. Other method is called BLBACO (Dos

Santos et al., 2015), which uses the LBACO features to

estimate each virtual machine's load and processing power.

In the proposed method, the concept of two types of ant

movement is used: forward movement and backward

movement. Moving forward as a virtual machine search has

an overload starting from the virtual machine. Moving

backward is also the reverse of that movement. When the

search is complete, some of the tasks are assigned from the

overloaded virtual machine to the overloaded virtual

machine. The ant colony algorithm (Lal et al., 2018) and

cuckoo algorithm (Navimipour and Milani, 2016) are used

for load balancing. These algorithms consist of three factors:

load factor, channel factor, and task migration factor. The

load and channel factors are static, and the task migration

factor is ant type which is considered a moving factor. The

load factor is used as a controller to calculate the load after

assigning a new task. The channel agent is used for selection,

transfer, and positioning policies. The channel agent activates

the task migration agent. These mobile agents go to other data

centers and communicate with their load agent to obtain the

virtual machines' status and then send them to the channel

agent. This algorithm compares each virtual machine's

condition with its threshold value.

The proposed method for load balancing called Fuzzy (Xu

and Sun, 2016) uses the factor. The agent completes each

cycle in two steps. The first step starts moving from the first

server and gathers information from all the servers to make

the right decision to balance the load (Battula and Vuddanti,

2021). In the second step, the balance balances the servers

based on the average cloud load. If the server is overloaded,

it sends the tasks to the low-load server, which can be used

convolutional neural network (Kazemi et al., 2021). The

simulations performed by the authors of the article show a

reduction in algorithm execution time, waiting time, and

improved throughput (Kanbar and Faraj, 2022). In Negi et al.

(2021), the proposed method consists of two parts. The first

part is an IWRR scheduler algorithm, which schedules tasks

according to the length of tasks and each virtual machine’s

current load. Load balancing uses another algorithm called

IWRR Balancer (Gerez et al., 2019), which removes tasks

from the virtual machine that has the most time required to

perform the tasks if a task is completed. The virtual machine

is idle and also if the number of current tasks is more than

one, it sends them to an idle virtual machine. The simulations

performed by the authors show an improvement in the

execution time and a reduction in the number of task

migrations.

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

236

A krill herd algorithm (Hasan et al., 2017) and the firefly

algorithm (Shadloo et al., 2017) are used for equitable load

distribution. The simplicity of the genetic algorithm (Chung

et al., 2004) has led to its use in many optimization problems,

but it is an algorithm that searches the problem space

globally. It is combined with the gravitational attraction

algorithm (Gabhane et al., 2023), which inherently searches

the problem space locally to improve load balance and

increase the algorithms' efficiency. This study aims to

improve a load balancing algorithm based on a genetic

algorithm (Gabhane et al., 2023; Kalra et al., 2015). External

interactions between tasks are considered and tried to reduce

makespan by localizing external connections as much as

possible. This method changes the intersection and jumps

percentages when the convergence rate slows down to the

appropriate solution. The results of experiments clearly show

a significant increase in convergence rate to the desired

response. In (Miao et al., 2014), a solution based on the firefly

algorithm is provided to solve scheduling-dependent tasks. A

height-based approach with a random method has been used

to create initial solutions in this method. To maintain the

interdependence between tasks, transition, and mutation

functions are defined. Data transfer between dependent tasks

is also considered.

3. Introduced Method

In this research, an algorithm for managing resources and

allocating them to requests is presented. In other words, an

algorithm for allocating virtual machines for existing tasks

that are an optimal model of the firefly algorithm (Miao et al.,

2014) is proposed. The ultimate goal of this proposed

solution is to obtain a suitable pattern for mapping work to a

virtual machine that can minimize response time and

completion time without increasing power consumption.

Scheduling and resource management in distributed

environments, such as cloud computing servers, depends on

many parameters. There are different, dynamic, and

sometimes interdependent resources and requests in these

systems and the system's workload compared to other

environments. Given that the most important parameters in

cloud computing servers are the parameters based on the time

of completion of requests and the appropriate distribution of

load, we work on a method that can meet the parameters of

response time and completion time of the last task. It

represents the proportional distribution of load compared to

the previously presented algorithms. To do this, we use a

firefly algorithm. This method's proposed approach for

creating a load-balanced strategy in the cloud network for

programming on nodes is programming by the firefly

algorithm (Kashikolaei et al., 2020; Tapale et al., 2020).

The scheduling process is preferred a set of nodes with the

least amount of loading. In other words, nodes with a

minimum load are preferred to absorb the cloud network's

extra process. We consider a virtual machine with three

servers in the proposed approach, each server having three

nodes. Each node has the characteristics defined by the

planning process.

The proposed approach and its general steps can be

introduced with the help of a flowchart. According to the

proposed model, first, the firefly algorithm's structure will be

arranged based on the problem assumptions, and then an

initial population will be generated. The best firefly that can

select the appropriate load in the network will be considered

the optimal answer.

 In general, the proposed approach includes three main steps

for generating planning on the proposed virtual machine by

synchronizing their nodes. The different steps can be as

follows:

• Production of the initial population

• Calculation of scheduling index

• Optimal node selection

3.1. Production of the initial population:

The term population refers to a group of cloud service nodes

that are requested by users from the server. As it turns out,

the server takes a node that is free and separate from the user.

Figure 2 shows the cloud system request and response

process to generate the initial scheduling list. The server

searches for nodes to find free nodes. When the node is

obtained, it puts it in the program list, and when the element

at the top of the queue is processed, the free node is allocated

in response.

The list of basic applications made by a virtual machine with

full-cycle processing depends on each node's processing time

and the availability of that node. The list of nodes or

programs can be displayed in the form of a table, each row

containing nodes and columns containing the servers' names.

Fig. 1. A basic image of the virtual machine used by

 the proposed method.

Table 1 contains a list of nodes that are considered as an

initial population for the firefly algorithm. Firefly algorithms

are applied to a specific population to create an effectively

planned strategy in a cloud system by prioritizing load and

load balancing.

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

237

Fig. 2. The cloud system request and response process

Table 1

Preliminary list of the initial population of fireflies

Time

(ms)

Server 1 Server 2 Server 3

1 N1 N2 N3 𝑁4 𝑁5 𝑁6 𝑁7 𝑁8 𝑁9

2 N1 N3 N2 𝑁9 𝑁6 𝑁7 𝑁5 𝑁4 𝑁8

3

… 𝑁3 𝑁9 𝑁1 𝑁4 𝑁7 𝑁6 𝑁5 𝑁8 𝑁2

N

3.2. Calculation of scheduling index

The scheduling index is one of the main factors influencing

the planning process. Therefore, before going into the timing

index calculation, we will discuss the initial population's

decision parameters. According to the definition of the firefly

algorithm, we must have gravity between nodes.

Gravity is based on the dependence of the node on the

requests. Decision parameters and the proposed method

control gravity. The proposed approaches determine each

node's decision parameters, and the parameters are

considered as attributes for the nodes. Table 2 shows the

nodes and attributes defined by the proposed approach to

continue the planning process.

Table 2
Nodes and attributes defined

Attribute

Node CPU rate Memory rate Processing rate

𝑵𝟏 𝐶1 𝑀1 𝑃1

𝑵𝟐 𝐶2 𝑀2 𝑃2

… … … …

𝑵𝒏 𝐶𝑛 𝑀𝑛 𝑃𝑛

CPU rate (C), amount of memory (M), and processing time

(P) are considered. The scheduling parameter should be

designed to be selected with a minimum load or weight.

According to the definitions of the firefly algorithm, the

gravity equation is defined as Eq. 1.

𝑎𝑡𝑡𝑟(𝑛𝑖) =
𝑃𝑖

𝐶𝑃𝑈𝑖 +
𝑖

𝑚𝑒𝑚𝑖

 (1)

Here, attr(ni) represents the attraction between the node and

the request. Pi indicates the processing time of a particular

node, CPUi indicates the node's processor speed, and memi

indicates the amount of memory of the nodes. The scheduling

index of the above formula is calculated as Eq. 2.

𝑆𝐼 = ∑
𝑃𝑖

𝐶𝑃𝑈𝑖 +
𝑖

𝑚𝑒𝑚𝑖

𝑛

𝑖=1
 (2)

SI is a scheduling index, and the total number of nodes is

in a specific timeline. According to the equation, all

scheduling queues in the scheduling list are calculated, and a

scheduling list is formed.

C) Selecting the most optimal node

The lowest load node selection processes are inspired by

the firefly algorithm and in such a way that at least a separate

firefly will have similar characteristics. This goal is inspired

by the theory of calculating the distance between nodes in

scheduling queues. Before performing the calculations, the

node with the minimum values of attr(ni) is found. A node

with a minimum attr(ni) is considered an axial point in the

queue to calculate distinct nodes. The following Figure 3

shows this method in general.

The flowchart of the proposed method shows which sections

have been modified. According to the flowchart, the

proposed algorithm consists of the following steps:

 Step 1: Get the input information.

At this stage, the information and data on which the problem

is applied are prepared and given to the system. This

information includes bandwidth, queue length, number of

virtual machines, and more. The input data is a number given

to the system as an Excel file, and where configuration is

required, the required configuration and architecture are

provided.

 Step 2: Determine the structure of the firefly.

The initial structure of the firefly with one manipulation will

strongly affect the execution of its algorithm. The selection

of the required parameters for execution was made with

multiple repetitions and trial and error.

 Step 3: Determine the fitness function.

In this step, a function should be considered to check the

correctness of performance and compare between modes.

Finally, optimize the function. This function shows the cost

of running the firefly algorithm per round. In each round, the

parameters obtained from the firefly are given to this

function, and the best possible answers are obtained.

Moreover, finally, the parameters obtained in the next rounds

are used.

 Stage 4: Produce the initial population

This step is random so that the initial population and how

they are placed in the problem space are random.

 Step 5: Choose a better firefly.

At this stage, six better (Eq. 3) fireflies are selected to

perform the operations based on their value function. In

Takeuchi et al. (2015), the movements of male and female

fireflies are modeled by physical differences. Male fireflies

are attracted to all fireflies, while female fireflies are attracted

to only male fireflies. Male fireflies move the same as

fireflies of the OFA, and female fireflies move by new

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

238

position update method with adaptive control parameters

(Cheng et al., 2023).

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = minimize(𝐵𝑊𝑖 + 𝐶𝑃𝑈𝑖 +
1

1 + 𝑞𝑖

) (3)

Where q is the firefly queue length, BW is the bandwidth, and

CPU is the processor power.

Step 6: Modify the structure of the firefly.

At this stage, by changing Luciferin, spatial changes are

obtained in proportion to other fireflies. This step gives the

firefly algorithm the power to reach the optimal answer better

and faster in different periods. A change in Luciferin changes

the rate of firefly absorption. In the proposed model, the male

firefly tends to other fireflies and the female firefly tends to

the nearest male firefly. Eqs. 4 and 5 show the process of

luciferin degradation in two types of fireflies.

𝛽(𝑟)𝑚𝑎𝑙𝑒 = β0𝑒−𝛾𝑚 , 𝑚 ≥ 0 (4)

𝛽(𝑟)𝑓𝑒𝑚𝑎𝑙𝑒 = β0𝑒−𝛾𝑚 + 0.1

∗ 𝛽(𝑟)𝑚𝑎𝑙𝑒.𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑚 ≥ 0
(5)

Here, r is the distance between two fireflies, β0 is the

attraction at r=0 and γ is a constant light absorption

coefficient. The distance between the female firefly and the

nearest male firefly (d) is obtained by Eq. 6.

𝑑 = min (∑ √(𝑥2 − 𝑥1) ∗ (𝑦2 − 𝑦1)) (6)

Where x and y are the corresponding points of female firefly

and male firefly.

Step 7: Select based on the load balance problem

At this stage, fireflies are selected that have been able to make

better parameter changes in the way they move and place due

to the load balance. Whenever a firefly changes its location-

Fig. 3. Proposed research model.

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

239

like parameters, it must use those parameters to calculate the

load balance. The worm changes are given to the load balance

calculation formula, and the calculation is done. The better

the balance, the higher the percentage of firefly selection.

How to select them is also in the form of a tournament so that

all the parameters are applied to the load balancing formula,

and then the answers that are better in the tournament will be

selected.

Step 8: Check the end condition

The end conditions of the algorithm are twofold. The first is

the number of repetitions set to 100 by default, and other

cases have been considered. The second condition is to

investigate whether fireflies have solved the load balancing

problem on selected virtual machines. Changes may occur in

each round, but the number of repetitions will not stop until

the optimal load balance is achieved.

Step 9: Firefly changes

If the end conditions are not met, the firefighting location

changes must be reapplied until selections are made. In each

round, fireflies move to the optimal answer by changing their

position.

4. Discussion and Experimentation

In this section, the proposed load-balancing algorithm is

based on the firefly algorithm and its application in

optimizing the processing of requests to the cloud network.

The proposed approach is also about load balancing in the

cloud system. The proposed approach is described in the

various sections of Chapter Three. This section plans the

experimental analysis of the proposed method by considering

a cloud network through the MATLAB tool. Cloud

simulation uses MATLAB programming like a program

based on the core-i3 operating system, 8GB RAM, and 256

SSD.

In the simulation environment, a data center is defined. In this

data center, it is possible to define any number of processes

and virtual machines according to the user's preference. The

data center can be defined as homogeneous or heterogeneous,

and different processes can be defined, simulated, and

executed on it. The proposed algorithm are studied in terms

of parallelism parameters, scheduling of maximum process

completion time, CPU efficiency, reducing the throughput of

processors, and average time of processors in line of

processors in different scenarios and it is compared with the

results of these scenarios.

The evaluation is based on two general sections: "change

in the initial parameters of the proposed algorithm" and

"comparison of the proposed method with other algorithms."

In the first part, the changes caused by each change are

observed and recorded by applying changes to the firefly

algorithm and virtual machines' initial parameters. In the

second part the best results of these changes are compared

with other methods that have worked on this issue.

4.1. Changes in the basic parameters of the proposed

algorithm

This section evaluates the proposed method with other

algorithms in task scheduling in cloud computing.

A) Change in the number of iterations of the program

In this section, the number of program iterations will change,

but the other program parameters will be kept constant. The

values of these parameters are given in Table 3. Fixed

parameters are γ=1, β=2, and population size=100.

Table 3
Proposed algorithm parameters

Early population Variable

γ 1, 1.5, 2

β 1, 1.5, 2

Max Iterations 100, 200, 500, 1000

Population Size 30, 50, 75, 100

Number of tasks 200, 400, 600, 800

According to the parameters, the program results for the

number of iterations of 100, 200, 500, and 1000 are as

follows.

As shown in the Figure 4, by changing the iteration of the

program, the algorithm provides better answers. Figure 4

shows a comparison between different iterations. The

constant trend of 1000 indicates the improvement of the

situation in this number of iterations. Although iteration 1000

takes more time to balance in the case of 200 tasks, its steady

trend for more tasks indicates that it is better.

B) Change in the initial population

In this section, the initial population will change, but the other

program parameters are kept constant. The values of these

parameters are shown in Table 3. Fixed parameters are γ=1,

β=2, and iterations =1000.

As shown in the Figure 5, the algorithm provides better

answers by changing the initial population. However, these

answers produce far worse results than changing the number

of repetitions of the program.

C) Change in γ and β values

In this section, the values of γ and β will change, but the other

parameters of the program will be kept constant, given in

Table 3 of these parameters' values. Fixed parameters are

population size=100 and iterations =1000. According to the

parameters, the program results for different values of γ and

β are as follows.

As can be seen in the table above, by changing the values of

γ and β, the algorithm offers different answers, which for the

values of γ = 5.1 and β = 5.1, the proposed algorithm brings

better answers to the output, in Figure 6, a comparison

between different values of γ. Moreover, β is given.

Fig. 4. Program results for different by of iterations.

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

240

Fig. 5. Graph changes based on initial population size.

Fig. 6. Program results for different values of γ and β.

Fig. 7. Operating system software.

4.2. Comparison of proposed methods with other algorithms

In this section, the completion time of the last work of the

proposed algorithm is compared with the standard genetic

algorithm for different iterations.

A) Evaluation criteria

The main evaluation criteria used in the proposed cloud

network scheduling method are effective for a schedule

table's execution time. The main decision parameters to be

considered include CPU usage and memory usage. The

simulated datasets are compared based on different

parameters to evaluate the performance of the proposed

planning techniques. Time is also calculated based on the

time required to produce an effective planning process.

B) Performance measurement

In performance evaluation, we consider the simulated cloud

network as an evaluation system. The variable parameters in

the proposed evaluation section are CPU interest rate and

memory usage. Therefore, the mentioned decision

parameters are considered as loads for the nodes. Therefore,

the program production performance will be considered with

the balance of given loads. In performance analysis, two

types of analysis are presented.

Three different settings C1; C2; C3 are shown in Table 7 to

obtain the desired output, and the simulator is set. The actual

parameter settings are presented in Tables 4, 5, and 6.

Table 4
Cloud space configuration

Configuration Number of users Number of data centers

𝑪𝟏 25 10

𝑪𝟐 25 15

𝑪𝟑 30 20

Table 5
Basic physical settings

Memory Storage

space

The amount of

memory

available

Number of

processors

Cpu

speed

204800 100000000 1000000 4 10000

Table 6
Data center settings

Processor

type

Operating

system type

The cost of

the virtual

machine

Storage

rate

Data

center

transfer

rate

X64 Win2000 0.05 0.1 0.1

Table 7
User settings

Reply to user

every hour

 Data stored in

each request

Starting rate

by hour

Rate rates

by hour

60 Win2000 0.05 0.1

B. 1) CPU interest rate analysis

In this analysis, the maximum amount of CPU usage in other

credits is determined to evaluate the scheduling algorithm's

performance. This analysis shows how the proposed

approach performs well under different CPU load levels.

Here we set the maximum CPU usage from 10 to 100. The

results are shown in Figure 7. Timing and scheduling for

different CPU rates are indicated by the timeline and memory

used for synchronization. Memory usage is calculated in 100

KB. The analysis shows that the scheduling time is uniform

for different CPU rates, and the memory also increases as the

CPU rate increases.

B. 2) Analysis based on Memory Speed and CPU Rate

Here, the maximum amount of memory in other credits is set

to evaluate the scheduling algorithm's performance. This

analysis shows how the proposed approach shows high

performance under different loads. The selected memory is

set from 60 to 100, and the results of the analysis are

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

241

reviewed. The timeline and CPU rate line provide time and

CPU for programming on different amounts of memory.

CPU consumption rate is calculated at 100% CPU usage. The

analysis shows that the time required to perform different

tasks on different memory rates is uniform and balanced for

CPU rates.

The defined cloud configuration setting provides different

results than the initial state results, as shown in Figure 8.

Sharing the load in the data center, provided in parallel, saves

runtime for the request. Because the request is shared across

different data centers, the number of requests per data center

reduces processing time.

Figure 9 show the response time based on 21 users according

to the C3 configuration on GA, NSGA-II, PSO, and Fireflies.

As can be seen from the two diagrams, fireflies' response time

is much better than others.

Figure 10 show the processing time for the 13 data centers on

GA, NSGA-II, PSO, and Fireflies to the C3 configuration.

Firefly processing time is much better than others.

B. 3) Comparative analysis

The above section analyzes the performance of the proposed

approach. To understand the importance of the proposed

approach, we must compare it with other methods. Here, to

prove the importance of evaluating the proposed approach to

load balancing, the method was compared with GA, NSGA-

II, and PSO. A comparative analysis of interest rates, CPU

processing, and memory is presented. Figure 11-a show a

comparative analysis of the proposed approach with the

introduced approaches. The existing approach's values from

the load-balanced scheduling methods obtained from the

proposed method show that the proposed approach using a

higher processing rate is more effective than the existing

approach under load-balanced conditions. The analysis

shows that the average amount of memory usage in the

proposed approach is less. Therefore, considering the

balanced load conditions and CPU interest rates, the

proposed approach is more convenient than the existing

approaches.

Figure 11-b shows a comparative analysis of the proposed

approach with the introduced approaches. The existing

approach's values show that the proposed approach using a

lower execution time rate is more effective than the existing

approach under load-balanced conditions. The analysis

shows that the proposed method has reduced the load

balancing time compared to the GA, NSGA-II, and PSO

methods. According to the introduced diagrams, the proposed

method has a much better performance than the introduced

method.

(a) (b)
Fig. 11. Processor and Memory rate comparison chart.

Fig. 9. Response time based on 21 users.

Fig. 8. Memory interest rate.

Fig. 10. Processing time for the 13 data centers.

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

242

5. Conclusions

The simulation results show that the proposed algorithm is

highly dependent on the initial parameters. Among the initial

parameters of the algorithm, the algorithm repetition rate

yields much better results. The proposed method with 1000

repetitions gives us the best answer, which is the minimum

makespan. Reducing makespan is effective in keeping virtual

machines idle and balancing workload more in cloud

environments. The proposed algorithm was also compared

with other algorithms in the field of task scheduling. The

results showed that the proposed algorithm has a much better

execution time, completion time, and convergence process

than other algorithms. This means that the proposed method

is more effective and more efficient than the other two

methods. Also, due to the vastness and dynamism of cloud

computing data centers and the fact that these centers face a

very diverse and variable workload, methods should be used

to deploy virtual machines that are scalable, dynamic, and

fast to be able to cope with such workload. These methods

should behave optimally, and their efficiency should not

decrease with increasing volume and variety of requests.

In future research, we plan to explore and assess different

optimization algorithm models like Harris Hawks

Optimization (HHO). Structural adjustments will be

necessary in the firefly algorithm to accommodate the new

algorithm.

References

Amiri, E., Roozbakhsh, Z., Amiri, S., & Asadi, M. H. (2020).

Detection of topographic images of keratoconus disease

using machine vision. International Journal of

Engineering Science and Application, 4(4), 145-150.

Battula, A. R., & Vuddanti, S. (2022). Optimal

reconfiguration of balanced and unbalanced distribution

systems using firefly algorithm. International Journal of

Emerging Electric Power Systems, 23(3), 317-328.

Bhoyar, A. A., & Dharmik, R. C. (2015). Design and

implementation of job scheduling in grid environment

over IPv6. IJCSMC, 4(4), 243-250.

Cardellini, V., Fanfarillo, A., & Filippone, S. (2017).

Coarray-based load balancing on heterogeneous and

many-core architectures. Parallel Computing, 68, 45-58.

Cheng, Z., Song, H., Zheng, D., Zhou, M., & Sun, K. (2023).

Hybrid firefly algorithm with a new mechanism of

gender distinguishing for global optimization. Expert

Systems with Applications, 224, 120027.

Chung, I., & Bae, Y. (2004). The design of an efficient load

balancing algorithm employing block design. Journal of

Applied Mathematics and Computing, 14(1), 343-351.

Dam, S., Mandal, G., Dasgupta, K., & Dutta, P. (2014). An

ant colony based load balancing strategy in cloud

computing. In Advanced Computing, Networking and

Informatics-Volume 2: Wireless Networks and Security

Proceedings of the Second International Conference on

Advanced Computing, Networking and Informatics

(ICACNI-2014) (pp. 403-413). Springer International

Publishing.

Dos Santos, M. J., & Fagotto, E. D. M. (2015). Cloud

computing management using fuzzy logic. IEEE Latin

America Transactions, 13(10), 3392-3397.

Gabhane, J. P., Pathak, S., & Thakare, N. M. (2023). A novel

hybrid multi-resource load balancing approach using ant

colony optimization with Tabu search for cloud

computing. Innovations in Systems and Software

Engineering, 19(1), 81-90.

Gerez, C., Silva, L. I., Belati, E. A., Sguarezi Filho, A. J., &

Costa, E. C. (2019). Distribution network

reconfiguration using selective firefly algorithm and a

load flow analysis criterion for reducing the search

space. IEEE Access, 7, 67874-67888.

Hasan, R. A., & Mohammed, M. N. (2017). A krill herd

behaviour inspired load balancing of tasks in cloud

computing. Studies in Informatics and Control, 26(4),

413-424.

Kalra, M., & Singh, S. (2015). A review of metaheuristic

scheduling techniques in cloud computing. Egyptian

informatics journal, 16(3), 275-295.

Kanbar, A. B., & Faraj, K. (2022). Region aware dynamic

task scheduling and resource virtualization for load

balancing in IoT–fog multi-cloud environment. Future

Generation Computer Systems, 137, 70-86.

Kashikolaei, S. M. G., Hosseinabadi, A. A. R., Saemi, B.,

Shareh, M. B., Sangaiah, A. K., & Bian, G. B. (2020).

An enhancement of task scheduling in cloud computing

based on imperialist competitive algorithm and firefly

algorithm. The Journal of Supercomputing, 76(8), 6302-

6329.

Kaur, S., & Sengupta, J. (2017). Load balancing using

improved genetic algorithm (iga) in cloud computing.

Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET),

6(8), 1323-2278.

Kazemi, A., Shiri, M. E., Sheikhahmadi, A., & Khodamoradi,

M. (2021). A new parallel deep learning algorithm for

breast cancer classification. International Journal of

Nonlinear Analysis and Applications, 12(Special Issue),

1269-1282.

Kazemi, Z., Homayounfar, M., Fadaei, M., Soufi, M., &

Salehzadeh, A. (2024). Multi-objective Optimization of

Blood Supply Network Using the Meta-Heuristic

Algorithms. Journal of Optimization in Industrial

Engineering, 37(2), 63.

Keshk, A. E., El-Sisi, A. B., & Tawfeek, M. A. (2014). Cloud

task scheduling for load balancing based on intelligent

strategy. International Journal of Intelligent Systems and

Applications, 6(5), 25.

Khaledian, N., & Mardukhi, F. (2022). CFMT: a

collaborative filtering approach based on the

nonnegative matrix factorization technique and trust

relationships. Journal of Ambient Intelligence and

Humanized Computing, 13(5), 2667-2683.

Khazaei, A., Haji Karimi, B., & Mozaffari, M. M. (2021).

Optimizing the prediction model of stock price in

pharmaceutical companies using multiple objective

particle swarm optimization algorithm (MOPSO).

Journal of Optimization in Industrial Engineering, 14(2),

73-81.

Journal of Optimization in Industrial Engineering, Vol.18, Issue 1, Winter & Spring 2025, 233-243
Sana Booshehrian & et al. / LBO-HFA: A method of simulation to Load Balancing Optimization …

243

Lal, A., & Rama Krishna, C. (2018). Critical path-based ant

colony optimization for scientific workflow scheduling

in cloud computing under deadline constraint. In

Ambient Communications and Computer Systems:

RACCCS 2017 (pp. 447-461). Springer Singapore.

Li, J., Tian, Q., Zhang, G., Wu, W., Xue, D., Li, L., & Chen,

L. (2018). Task scheduling algorithm based on fireworks

algorithm. EURASIP Journal on Wireless

Communications and Networking, 2018, 1-8.

Lotfi, M., & Behnamian, J. (2024). Virtual alliance in

hospital network for operating room scheduling:

Benders decomposition. Journal of Optimization in

Industrial Engineering, 37(2), 15.

Mahendiran, A., Saravanan, N., Subramanian, N. V., &

Sairam, N. (2012). Implementation of K-means

clustering in cloud computing environment. Research

journal of applied sciences, engineering and technology,

4(10), 1391-1394.

Maruthanayagam, D., & Prakasam, A. (2014). Job

scheduling in cloud computing using ant colony

optimization. Int. J. Adv. Res. Comput. Eng. Technol.

(IJARCET), 3(2), 540-547.

Miao, Y. (2014). Resource scheduling simulation design of

firefly algorithm based on chaos optimization in cloud

computing. International Journal of Grid and Distributed

Computing, 7(6), 221-228.

Navimipour, N. J., & Milani, F. S. (2015). Task scheduling

in the cloud computing based on the cuckoo search

algorithm. International Journal of Modeling and

Optimization, 5(1), 44.

Negi, S., Rauthan, M. M. S., Vaisla, K. S., & Panwar, N.

(2021). CMODLB: an efficient load balancing approach

in cloud computing environment. The Journal of

Supercomputing, 77(8), 8787-8839.

Raghava, N. S., & Singh, D. (2014). Comparative study on

load balancing techniques in cloud computing. Open

journal of mobile computing and cloud computing, 1(1),

18-25.

Rajeshkannan, R., & Aramudhan, M. (2016). Comparative

study of load balancing algorithms in cloud computing

environment. Indian Journal of Science and Technology,

9(20), 1-7.

Shadloo, N. (2017). A hybrid grey based two steps clustering

and firefly algorithm for portfolio selection. Journal of

Optimization in Industrial Engineering, 22(22), 49.

Sheikh, S., Nagaraju, A., & Shahid, M. (2021). A fault-

tolerant hybrid resource allocation model for dynamic

computational grid. Journal of Computational Science,

48, 101268.

Shokry, M., Awad, A. I., Abd-Ellah, M. K., & Khalaf, A. A.

(2022). Systematic survey of advanced metering

infrastructure security: Vulnerabilities, attacks,

countermeasures, and future vision. Future Generation

Computer Systems, 136, 358-377.

Takeuchi, M., Matsushita, H., Uwate, Y., & Nishio, Y.

(2015). Firefly algorithm distinguishing between males

and females for minimum optimization problems.

submitted for publication.

Tapale, M. T., Goudar, R. H., Birje, M. N., & Patil, R. S.

(2020). Utility based load balancing using firefly

algorithm in cloud. Journal of Data, Information and

Management, 2, 215-224.

Xu, B., & Sun, Z. (2016). A fuzzy operator based bat

algorithm for cloud service composition. International

Journal of Wireless and Mobile Computing, 11(1), 42-

46.

