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This paper analyzed the dynamic system of billiards from a classic
perspective. For this purpose, mapping and cross-section methods were first
employed to study the behavior of this system and the results indicated that it
was a chaotic one. Then a deformed stadium was introduced and its long-term
behavior was analyzed. Considering changes in the behavior of this system
following the slightest deformation at the boundaries, Poincaré map was used
to demonstrate the occurrence of regular and irregular motions, indicating the
completely chaotic behavior of the system. The shape of the cross-section of
the regular motion shows that the points of contact with the boundary are
located on a line in the phase space. On the other hand, the cross-sectional
surface of a chaotic motion, the surface is covered with collision points and
the empty spaces are surrounded by invariant curves. These spaces are also
filled in case of n— o and they eventually disappear and the surface is
covered with collision points, completely. This behaviour is characteristic of
chaotic systems

1. Introduction
“Chaos” has a Greek origin, denoting a gaping

void or a chasm that existed before all things.
Romans applied the word to the rough, shapeless
mass from which architects of the world create
order and harmony. In modern language, chaos is
used to imply disorder and lawlessness. Upon the
introduction of Newton’s laws in 1687, scholars
used them to solve copious problems. Due to the
large variety of these problems, they believed that
the subsequent states of the system could be
reached at any other given point in time if the
initial conditions existed.

By the late 19" century, Poincaré showed that the
temporal evolution of some systems created by
the Hamiltonian equations could have chaotic

motions [1]. In 1963, Lorenz demonstrated that a
simple set of three linear first-order differential
equations could produce completely chaotic
trajectories. He found one of the first examples of
algebraic chaos in dissipative systems. Chaos can
be detected in a non-linear system where dynamic
rules uniquely determine its temporal evolution
through initial conditions [2]. In recent years, new
theoretical findings along with high-speed
computers and experimental results have helped
us realize that nature prevents these phenomena.
Furthermore, non-linearity is a necessary but not
sufficient condition for chaos to occur. Chaotic
motions are not observed due to external noise
sources, infinite degrees of freedom of the system,
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or uncertainty in quantum mechanics. However,
the main source of irregularity is a property of
nonlinear systems that exponentially separates
initial paths that are very close to each other in the
phase space [3]. Therefore, it is impossible to
predict the behavior of such systems for long
periods, as errors grow exponentially with the
limited accuracy of the initial conditions. Lorenz
called this sensitivity to initial conditions the
butterfly effect because the results of equations
can change by flaps of a butterfly’s wings [4].
Billiards is a dynamic system studied in classic
and quantum mechanics [5]. This paper aimed to
analyze the dynamic system of billiards from a
classic perspective. To this end, first dynamic
systems were introduced and examined their
properties. By analyzing the trajectories of these
systems in the phase space, the classic properties
of chaotic systems were introduced. Next,
building on our knowledge of classic chaotic
motions, the chaotic system of billiards was
introduced, proposing a method for studying
various motions of this system. Then different
types of motion in the stadium billiards were
examined. Finally, a specific billiard system was
introduced and investigated its various observed
motions.

2. Dynamic Systems

Newton’s laws are employed to analyze dynamic
systems, being the base from which describing
equations of these systems are derived. However,
the number of dynamic systems that can be fully
analyzed to obtain explicit solutions is very
limited. Most dynamic systems are non-
integrable, and their behaviors must be studied
through numerical methods.

Dynamic systems are characterized by two
specific features: 1) the states of the system at
each moment are determined by the values of N
variables X;,X,,...,Xy; 2) the evolution of the
system is determined by N differential equations.
In other words:

dx. .
d—t':fi(xl,...,xN) i=1..,N 1)

N is the order of the dynamic system, and N
variables X, , represent physical quantities such as

position and velocity. If X is defined with

X, X,,,Xy ~ COmponents and F  with

f.f,,...fy

equations are written more simply as[6-9]:

dX/ _E(X

$=F(X) @
This equation is completed with the following
initial conditions:

components, the differential

X(t=0)=X, (3)

Its product would be an integral curve passing
through X, . There are two states for the product

of a dynamic system. First state: the overall
product is explicitly written. In this case, the

product is written as X(a,,a,,...,ay,t), where a’s

are integration constants. Second state: the overall
product is not explicitly known, in which case, the
product can be divided into two categories: First:
The product is valid only within a limited time
interval, such as calculating the positions of
planets in the next few years, where direct
numerical integration leads to the desired product.
Second: The product is acceptable for a relatively
long time, such as the long-term stability of the
solar system. In such problems, the asymptotic
behavior of the product in t—oo is examined.
The paths resulting from such problems are
divided into two categories: 1) Nonreversible
paths that never return to their initial position; and
2) Reversible paths that return to their initial
position after a limited period [6].

2.1. Hamiltonian Systems
Hamiltonian systems are a special case of

dynamic systems. The first feature of these
systems is their even dimensionality, N =2n [6, 7,
10]. n is the number of degrees of freedom of the
system and N dimensions of the phase space. The
2n variables that make up the phase space are
Qyse-s 0y Pysees P, - The system is described by a
2n-dimensional function (instead of N functions in
the general state), called the Hamiltonian
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H(p,.....q, ). and major differential equations for
the variables are:

da, _ oH

d  op

dp,  oH

=——— i=1...,n 4
dt oq, @

g, and p, are called conjugate variables.

Hamiltonian is an accessible integral and can be
demonstrated H fixes on a path, using equations
(2). Therefore, the order of the system is reduced
to 2n-1[6,7]. By introducing a cross-section for
the system, the problem is reduced to studying the
system in a 2n-2-dimensional space. An
appropriate method for reducing the dimension of
the problem under study is to first eliminate a
variable like p;, using the integral H, and then

define the cross-section using the equation g, =0.

In this method, one pair of variables is eliminated,
and n-1 pairs of conjugate variables determine the
cross-section [6-13].

The motion of Hamiltonian systems can be
divided into two categories: 1) Regular motion:
These motions can be described using Newton’s
equations, such as the motion of a simple
harmonic oscillator in one dimension and the
motion of planets if disturbances from other
planets are overlooked. In regular motion systems,
paths with close initial conditions linearly diverge.
2) Irregular motion: Motions such as the motion
of gas molecules when the molecules are confined
to a plane and all molecules except one are fixed.
In this case, a completely unpredictable motion
with two degrees of freedom exists. In irregular
motion systems, paths with roughly similar
boundary conditions exponentially diverge and
are highly sensitive to initial conditions. The
difference between regular and irregular motions
becomes apparent in the geometry of paths in
phase space in the long-term [7, 11].

2.2. Integrable Systems
Canonical transformations can help simplify the

Hamiltonian concept. Using these
transformations, variables p,,...,p, and q,...,q,

are transformed into new variables P,,...,P, and

10

Q,...,Q,, and motion equations are derived from
the new Hamiltonian, H(p,,...,q,) >H(P,..Q,)
If the canonical transformation is such that one of
the variables does not appear in H, then the
Hamiltonian will be simpler. If H does not depend
on variable Q,, then:

do,__oH

&0 (5)

As a result P,(t)=P (0)=const. This constant

value is a parameter that, if known, the
Hamiltonian will depend on 2n-2 variables;
meaning that there are n-1 conjugate variables and
the degrees of freedom of the system decrease by

two. Whenever there exists a canonical

transformation under which the Hamiltonian does

not depend on any Q; s, that is: H(P,,...,P,) then,
P. s are considered actions, Q; s. angles,

Pi(t)zci i=1...n (6)
dQ. oH

—=—=0(C,..,C, 7
dt  oP, (G, ) )
Qi (t)=wt+D, (8)

where C;s and D,s are 2n constants of

integration. If the above conditions hold for the
Hamiltonian of a system, the system is considered
to be in a normal state. If a system’s Hamiltonian
can be brought into the normal state, the system is
integrable. P,,...,P, actions are integrals of the
system and have constant values along any path.
Conversely, if there are n specified integrals in a
Hamiltonian system, there exists a canonical
transformation whose resulting P, s will be the
integrals of the system [6-12]. For a system with a
time-independent Hamiltonian, the Hamiltonian
itself is an integral of the system. All systems with
n=1 and a time-independent Hamiltonian are
integrable [14].

3.2. Phase Space

In solving Hamiltonian equations for g and p as a
function of time, given the initial conditions g,
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and p, at time t,, the trajectory of the motion for
any time t, can be determined. This p-q space is

called the phase space of the system. A good way
to present a dynamic system is by using phase
space. Each state of the system at each point of
time is presented by a point in the phase space.
This point evolves concerning time and its

velocity is F, whose components are determined
by equation (1). The geometric location of the
points corresponding to the transformation of a
system forms a curve in the phase space, where
the velocity vector is at a tangent at every point in
time. Therefore, by drawing the velocity vector in
the phase space without integration, the trajectory
can be determined because the equation (2) is
independent of time and the first order [6-10]. The
integral curves of equation (2) create a flux in the
phase space, only one of the curves being a
solution to condition (3). The created flux in the
phase space has the following properties: 1) The
time evolution of each path is uniquely
determined as a function of the initial conditions;
2) The equation (2) is also integrable in time
reversal; that is, two different paths never collide;
and 3) Paths limited to a boundary in a region of
the phase space remain limited to the boundary
over time[14].

Py » 7,

I Il = const

I
*
— 1
.
4, 4, ——,
x

—

3

m ) 3)

Figure 1Motion in the phase space and definition of the
Poincaré cross-section: a) Points of collision of the path
with the cross section; b) Motion with two degrees of
freedom. 1) Four-dimensional phase space, 2) Image of

the path in the volume (ql,qz,qs), 3) Points of

successive collisions of the path with the cross section
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g, = const.

2.4. Cross section and Mapping

Since the aim of this study is analyzing the long-
term and asymptotic behavior of the path of the
dynamic system, following the path continuously
is not needed; instead, the path discretely point by
point is traversed in time. This idea is based on
the cross section method. If N=4 is considered as
figure. 1, then a four-dimensional phase space was
existed. In this space, the cross section surface is a
two-dimensional plane . The consecutive
intersection points of the path with this plane are
denoted as X,,X,,.... Since the path is reversible,

there are pointsx,,x ,,.. in the return path.

Using this property, if a point x; is known, the

point x,, can be determined. By following the

i+1

path from the point x.

. by integrating the
differential equations until it collides with the
plane > again, a new point x,,, is obtained. This
gives us a G mapping of the plane > to itself,

called the Poincaré map. In general state:

G:X->X and x,,=G(X) 9)
in general
Xisj sz(Xi) (10)

Since the path can be followed in both time
directions, the inverse mapping is defined as
follows:

X1 :Gil(xi) (11)

Overall, the equation (10) can be considered for
positive and negative j. For any N, in an N-
dimensional phase space, a N-1 dimensional
subspace is considered and the collision points
with ..., X ,, X , X, X, X,,...are denoted The
M=N-1 subspace should be called cross space, but
for similarity with the case of N=4, called the
cross section as well. In this space, the
Xy, X,,.., Xy COOrdinate system is introduced and

the X; with
Xips Xiny - Xipy 1S denoted The G mapping of this

coordinates of each point

space is as follows:
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Xij1 = gl(Xi,l""’Xi,M ),---. Xisam = 9w (Xi,l""’Xi,M) (12)

In this method, consecutive points of X, and

overlook other details of the path are considered.
These consecutive points are specified using G
mapping and not using differential equations;
thus, these equations are left out. Cross section
and mapping methods are preferred for the
following reasons: 1) the inherent properties of
the dynamic system can be seen in the mapping
and cross section equations. For example, a
simple periodic path that returns to the initial
point after one round corresponds to a fixed point
in the G mapping; that is, the periodic path is
stable if and only if the fixed point is constant;
X, =Gj(xi) 2) the new problem is much simpler
because instead of differential equations, mapping
equations are examined. Moreover, in an N-
dimensional case, the investigated space has N-1
dimensions, making theoretical and numerical
studies easier; 3) the inherent properties of the
system are clearly shown in the long-term
behavior, but the details of the short-term
evolution are omitted. Therefore, the cross section
should not be used to study the system in short
periods; 4) Graphical display of results is much
easier. For example, N=4 state is a two-
dimensional cross section and its representation is
much simpler than four-dimensional space [6, 7].

2.5. Ergodic Systems
In a Hamiltonian system, the path in the phase

space is confined to a fixed subspace, H =const .
This subspace is called the energy level. In an
ergodic system, each path fills its energy level and
the collision points cover all surfaces in the cross
sectional space [6, 8, 10].

2.6. Chaotic Systems

Integrability is an exceptional property for
Hamiltonian systems with over two degrees of
freedom. Integrable systems are so rare that it is
impossible to approximate a non-integrable
system with a series of integrable ones [15].
Therefore, in most problems, numerical methods
are used to obtain the solution of Hamiltonian

12

equations, where small changes in initial
conditions lead to significant changes in the
obtained solutions. There is a class of dynamic
systems where the particle passes through every
point in the phase space. These systems are called
chaotic systems. In a chaotic system, small
changes in initial conditions cause paths to
exponentially diverge, whereas paths diverge
linearly in integrable systems. In the cross section
of chaotic systems, chaotic regions can be seen,
which are separated from each other by invariant
and regular curves. However, the presence of
these empty areas in the cross section does not
contradict the ergodicity of the system, as these
areas disappear with the mapping for N — o, and
the entire cross section surface is filled[6].

2.7. Liapunov Exponent

In a chaotic motion, the mapping points
Xp =G(X,) The
Liapunov exponent defines this divergence. As
shown in the Figure 2:

diverge  exponentially.

gexp(NA(X,))=[GN (%, +8) -GN (x,)|  (13)

A(X,)=lim IimilogIGN(Xo +82_GN(X°)|(14)

N—we—sw \

A(Xo)=lim lIog

N—oow N

dG" (x,)

dx, (15)

That is, exp(A(x,)) is the average amount by

which the distance between two neighboring
points changes after one iteration [16]. Depending

on the value of A(Xx,), there are three different

situations: 1) If it is positive, the two paths
diverge exponentially; 2) If it is negative, the two
paths converge; and 3) If it is zero, the distance
between the two paths remains constant[17].

£ N Iteration gem)
——— . .

X, +E& GY(x,) GM(x, +£)

Figure 2 Liapunov Exponent

3. Billiards

Billiards is an important class of dynamic
systems. By definition, billiards is a dynamic
system with a closed environment (usually two-
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dimensional) that includes a free and
dimensionless  particle  [6,11,15,16,18]. In
billiards, the particle undergoes elastic collision
with the boundary, therefore, energy conservation
results velocity conservation. The particle behaves
like a geometric ray with uniform angle of
incidence and reflection at each collision point. A
small group of billiards has interesting features. In
this group, all velocity components are reversed at
the reflection point. This type of reflection is
Andreev reflection and billiards with this
reflection is called Andreev billiards. Andreev
billiards are of interest in condensed matter
physics, especially in superconductivity [19]. To
examine billiards, they are classified into two
categories: 1) Integrable billiards: systems with n
motion constants like rectangular and circular
billiards; 2) Non-integrable billiards: systems
where only energy conservation holds. These
types of billiards are ergodic and chaotic systems
[10]. Sinai and Bunimovich billiards are examples
of these billiards. By defining billiards in a 2D
state, Sinai proved that billiards is an ergodic and
chaotic system and the moving particles of
billiards behave chaotically [18]. Bunimovich also
defined billiards with two degrees of freedom
called the stadium billiards and proved that the
stadium is an ergodic and chaotic system [20,21].

3.1. Birkhoff Mapping

In billiards, the movement of the particle starts
from a point on the boundary, and the path is
extended according to the differential equations
describing the path until the particle hits the
boundary at another point and reflects. This point
is the end of the previous path and the beginning
of the new one. Therefore, with the coordinates of
this point, the path of the motion can be
determined and it seems that the billiard wall is a
suitable cross section to describe the motion of the
particle. To investigate the behavior of the
Hamiltonian billiard system, the state of the
system with the coordinates of the reflection
points on the boundary and in the direction of the
motion is described. Thus, the phase space is
determined as a mapping between consecutive and
discrete collisions. The location of the reflection

13

point on the billiard boundary is determined by
the length of the arc S along the boundary and the
direction of the motion after reflection by the
angle ¥, the angle of the velocity vector, V, and
the tangent vector on the boundary. If the total
length of the boundary is L, the length of the arc is

. S . .
normalized to S:E' The conjugate coordinate s,

is the tangential component of momentum,
P=cos¥. If the magnitude of the velocity is

considered 1 in the selection of units, 0 <y <180°
then the cross-sectional area is limited to a
rectangle with the following dimensions:

~1<p<l, 0<s<1 (16)

s and p are defined coordinates of Birkhoff and
the defined mapping, called the Birkhoff mapping,
which is a class of Poincaré mappings[22,23,24].
Paths obtained are divided into three categories:
1) A finite set of N points,
(S0+Po )+ (S1:Py )seves (SnsP -y )+ IS Obtained, which
correspond to a closed path, and since for each
closed path, there is:

(Sn+N’pn+N)=MN(Sn’pn)z(sn’pn)

each of these N points is a fixed point of the

(17)

mapping; 2) Repeating (s,,p,) forms a smooth
and well-behaved curve in the phase space. Thus,
the curve is called an invariable curve because,
under the M mapping, each point on the curve
returns to a point on the curve. This behavior can
be seen in integrable systems, where there is a

motion constant as a function F(s,p) that:
F(Se:Po) =F(s;,p,) and each invariant curve is a
contour of F(s,p); 3) The repetition of (s,p) fills
a certain level in the phase space, and in this case,
the path is not limited by any constant quantity
and is very sensitive to initial conditions (s,,p, ).
All three types of paths are observed in the study
of a billiard dynamic system [19, 23]. By
comparing the solution method of differential
equations and numerical integration and the

mapping method, it becomes apparent that using
the mapping method, the volume of computations
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and errors decreases significantly. Therefore,
studying billiards using mapping is a suitable
method for investigating dynamic systems.

3.2. Stadium

Stadium is an example of non-integrable and
chaotic billiards (Bunimovich billiards). The
stadium consists of two semicircles with the same
radius, which are separated from each other by
two parallel line segments of length a. The

a

parameter nzﬁ is called the characteristic

parameter of the stadium. Due to the above
change, a stadium is perturbed by circular
billiards, which turns into a stadium for non-zero
values of n[16, 20, 23]. In the stadium, in

addition to observing chaotic motions, in some of
the initial conditions, completely regular and
predictable motions are observed, which may
disappear and be replaced by chaotic motions
upon a small change in the initial conditions.

Figure 3 Regular and irregular motion in stadium. (a)
Singular regular motion y, =90",(b) chaotic motion
v, =89, (c) Singular regular motion , =30",(d)
chaotic motion y, =29, (e) Non-singular regular

motion \, = 90" (f) chaotic motion y, =89",

Figure 3 shows three examples of regular motion
states of a particle in the stadium. With a small
change in the initial conditions, the trajectory
undergoes a major change and covers the entire
surface of the stadium. Regular motions are
divided into two categories: 1) Singular regular
motion: there is a regular path corresponding to

14

certain initial conditions, figure 3(a) and (c); 2)
Non-singular regular motion: there is a set of
regular trajectories corresponding to certain initial
conditions, figure 3(e). Singular and non-singular
paths are both unstable, and a small change in the
location or momentum can cause the path to
exponentially diverge from the regular state and
cover the entire energy surface [10]. In examining
the cross section area of the motion of the particle
in the stadium using Birkhoff mapping, the
obtained cross-sectional area can be seen in two
forms: 1) The collision points lie on a one-
dimensional curve shown in figure 4(a), which
corresponds to the regular motion. 2) The
collision points cover a two-dimensional surface
that corresponds to the irregular motion of the
particle in the stadium, shown in figure 4(b).

1.0 1 —

— 1.0 e

©c0 00O 3
0.8
“ 05
056 -
Q Q 0u
0.4

0.2 - 0.5

00— 1.0
(a) 00 02 04 06 08 1.0 (b) 0.0 0.5 1.0
S S

Figure 4 Collision cross section (a) regular, (b) irregular
motion

Figure 5 deformed stadium

3.3. Deformed Stadium

To better investigate the chaotic behavior of
billiards, the effect of changing various
parameters and changing the shape of the billiard
boundary, a deformed stadium that specifies two
arcs of a circle representing the boundary instead
of two line segments (dumbbell shape) is
introduced. To investigate this problem from a
classic point of view, the free motion of a particle
in billiards is considered. Using the Birkhoff map,



Using Soft Computing and Chaos Theory in investigating the Deformed Stadium

points of collision of the particle with the
boundary are determined and the cross section is
plotted. The path corresponding to the cross
section at the billiard level can also be
determined. For this purpose, collision points are
obtained using repeated calculations of obtained
mapping equations. This eliminates the need for
solving differential equations, integration, or
dealing with errors resulting from these stages. To
calculate the collision points of the particle with
the billiard boundary, the relationship between p,

and p,, or (X,.y,) and (X, Y,.) can be
determined. Assuming the starting point of the

movement is point (X,,y,) at Cartesian
coordinates and (s,,p,) in the mapping
coordinates, where p,=cosy,. Given the

coordinates of (X,,Y,) 6, can be defined as the

polar angle relative to the positive x-axis, shown
in figure 5. The motion equations for the particle
are as follows,

X=X, +Vo, b , Y=Y, +Vy,t (18)

is a constant

)%

where the velocity v =(vj, + Vv,

value. By removing the time parameter from the
equations (18), the path equation is obtained as
follows:

V
Y=Y, +(X=X,)—~ (19)
0x

quantity v, /vOx represents the slope of the

particle’s path. Therefore, for two consecutive
points, there are:

i
y:)/o4’()(_)(0)'["'“1[3 ) B:E"‘eo"'\l’o

X=X, =(Y~=Yo)tan(6, +y,) (20)
for two points in a row
Xo =X, _(yn+1 -Y, )tan(en + Wn) (21)

for the collision point on one of the two arcs, the
Y,.,-coordinate boundary is determined by

calculating the collision point of the path with the

15

equation of boundary, and for the collision point
on the two ends:

Yo = Rlsin 9n+1 v You = Rz sin en+1 (22)

using the above equations, the mapping equations
are obtained and the coordinates and collision
points are determined by repetitive computer
calculations. The particle’s trajectory and the
collision cross-section are thus determined
without solving differential equations describing
the path.

4. Results

Figure 6(a) depicts the trajectory of a regular
motion, whereas figure 6(b) displays the trajectory
of a chaotic motion resulting from changes in the
initial conditions. The cross-sectional surfaces of
these two motions are also shown in figure 7. The
shape of the cross-section of the regular motion
shows that the four points of contact with the
boundary are located on a line in the phase space.
Figure 7(a) presents the cross-sectional surface of
a chaotic motion, where the surface is covered
with collision points and the empty spaces are
surrounded by invariant curves. These spaces are
also filled in case of n — and they eventually
disappear. In Figure 8, 9, 10 and 11, the cross-
section of the motion are determined with
different initial conditions, from which the
following results can be obtained: 1) As shown in

~— - &
() (®) §

Figure 6 (a) regular motion y = 45", n =100 (b) chaotic

motion = 46°,n =100

1.0 4
0.8 -
0.6 -
Q

0.4

0.2 -

0.0 T T T T
0.0 0.2 04 0.6 0.8 1.0
(a)

S

Figure 7 (a) cross section of 6(a), (b) cross section of 6(b).

figures 6 and 7, like the stadium, for some initial
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conditions, regular paths are obtained, and with a
slight change in the initial conditions, these paths
disappear, and irregular paths fill the entire
billiard surface, covering the entire cross-sectional
surface in phase space; 2) In contrast to the
stadium case, where there are only two empty
areas around two fixed points,

2] s

which correspond to the non-singular motion
perpendicular to two line segments, in the
deformed stadium, the number and size of the
empty areas in the cross-section depend on the
parameters defining the shape of the boundary.
For example, with the increase of the angle o, the
angle of the perpendicular line to the point of
contact of two parts of the boundary with the
positive direction of the axis y, the number of
empty areas increases and they are obtained

around points,
j , (1—“R1,oj
2L

1 N nR, ol nR, 1
2 2L 2L
which are surrounded by invariant curves.

S

Figure 8 chaotic motion in the deformed stadium for
initial conditions S =0.1, ¥ =30°, ¢ =55".

Conclusions
A deformed stadium that specifies two arcs of a
circle representing the boundary instead of two
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line segments (dumbbell shape) is introduced to
investigate the chaotic behavior of billiards. The
results show:

N

Figure 9 chaotic motion in the deformed stadium for
initial conditions $=0.1, ¥ =30°, ¢ =10°.

1

-1

s

Figure 10 chaotic motion in the deformed stadium for
initial conditions S=0,¥ =45, =35°.

. The shape of the cross-section of the regular
motion is located on a line in the phase space.
1) The cross-sectional surface of a chaotic

motion is covered with collision points and the
empty spaces are surrounded by invariant curves.

2) The empty spaces are also filled in case
of n — oo and they eventually disappear.
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3) Like the stadium, for some initial
conditions, regular paths are obtained, and with a
slight change in the initial conditions, these paths
disappear, and irregular paths fill the entire
billiard surface, covering the entire cross-sectional
surface in phase space

1

Figure 11 chaotic motion in the deformed stadium for

initial conditions S=0.5,¥ =40°, o« =35°

4) In contrast to the stadium case, where
there are only two empty areas around which
correspond to the non-singular  motion
perpendicular to two line segments, in the
deformed stadium, the number and size of the
empty areas in the cross-section depend on the
parameters defining the shape of the boundary.

The observation of chaotic motions in classic
mechanics prompts the question of how this
randomness manifests in quantum mechanics. To
find the answer to this question, the wave
equation for these systems shall be studied in the
following.
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