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Abstract 

This paper presents an innovative method for operational planning of microgrids, focusing on 

maximizing profitability. The approach addresses key uncertainties, including the probabilistic 

charging/discharging behavior of EVs and the integration of renewable energy sources like 

wind and solar. A major challenge with renewables is energy wastage due to storage limitations 

and grid congestion. EVs offer a solution through Vehicle-to-Grid (V2G) technology, which 

enables them to supply electricity back to the grid, improving renewable energy utilization. This 

paper introduces two Energy Management System (EMS) models, with a key innovation being 

a Coordinated EMS that facilitates peer-to-peer (P2P) power trading between stations and 

prosumers. The model, evaluated across five stations under ten uncertainty scenarios, is 

formulated using Mixed-Integer Linear Programming (MILP) and implemented in 

GAMS/CPLEX. By integrating P2P transactions and organic photovoltaics (OPV) technology, 

it enables off-grid EV charging and utilizes excess solar energy in remote areas. Results 

indicate that the Coordinated EMS with P2P trading improves profitability by up to 1.17 times. 

The findings of this research align with efforts to reduce peak load in distribution grids by 

reducing reliance on centralized infrastructure, demonstrating the potential benefits of 

coordinated energy management strategies in microgrids. 

Keywords: Energy Management System, Distributed Energy Resources, Electric vehicles, 

Renewable Energy, Uncertainty, Peer to Peer, Organic Photovoltaics 
 

1. Introduction 

1.1 Motivation 

Over the past few centuries, renewable 

energy has been increasingly recognized as a 

means to alleviate energy shortages [1]. 

According to the planning by the 

International Renewable Energy Agency 

(IRENA), by the year 2050, over two-thirds 

of energy production will be derived from 

renewable sources, with contributions from 

renewable sources such as wind and solar 

energy reaching 60% [2]. However, both 

wind and solar energy face significant waste 

due to energy storage challenges. As the 

world’s largest producer of wind and solar 

power, China experienced an average wind 

curtailment rate of 3.2% and a discarded 

wind power quantity of approximately 6 

billion kilowatt-hours in the first quarter of 

2022. The solar curtailment rate was2.8%, 

with a discarded solar power quantity of 

around 2.4 billion kilowatt-hours[3]. 

Countries worldwide are also grappling to 

varying extents with energy storage issues 

leading to wastage of green energy. The 

prevailing viewpoint suggests that managing 

the surplus of wind and solar power is more 

challenging than addressing their 

deficiencies [4]. This is attributed to the 
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intricate nature of storing wind and solar 

energy, where surplus electricity can result in 

an increased burden on the power grid. 

Therefore, optimizing electrical energy 

storage and promptly integrating excess 

electricity into the grid are crucial measures 

to enhance the utilization of green energy and 

achieve sustainable development. EVs are 

considered a key solution to address energy 

storage challenges. V2G power technology is 

one of several storage technologies, enabling 

vehicles to feed electricity into the grid. 

Through unified demand control in the power 

system, V2G can better utilize fluctuating 

renewable energy. For power companies, 

V2G offers benefits such as backup power, 

load balancing, peak load reduction [5, 6], 

and reduced uncertainty in daily and hourly 

power load forecasts [7]. 

Importantly, numerous studies suggest that 

V2G can effectively enhance the energy 

efficiency of wind and solar power [3, 8]. 

Conventional EVs (battery EVs and plug-in 

hybrid EVs) can contribute to peak shaving 

by charging in an orderly manner at night, but 

they cannot feed power back to the grid 

during the day, offering only limited peak 

load reduction for fluctuating grids [9].  In 

contrast, V2G EVs not only contribute to 

peak shaving at night but can also provide 

power back to the grid during peak demand 

hours in the daytime [10], making their 

advantages more apparent in terms of green 

energy utilization [11].  

Expanding access to reliable, low-cost 

sustainable energy, such as solar power, can 

help reduce poverty, inequality, and climate 

change impacts. The Charge Around EVs 

involves driving an EV powered by portable 

OPV solar panels, demonstrating the 

potential of printed solar technology for off-

grid charging. These lightweight OPV panels 

generate renewable energy in remote areas, 

addressing EV range anxiety and showcasing 

the feasibility of off-grid solar charging [12]. 

 

1.2 Literature Review 

 Mohamed et al.in [13] designed a fuzzy 

controller to manage the charging processes 

of EVs to reduce the overall daily cost and 

mitigate their impact on the power grid. 

Tushar et al. in [14] proposed a classification 

scheme of EVs, such that the PV driven 

charging station can trade with different 

energy entities to reduce its total energy cost. 

Under the Time of Use (TOU) price, Liang et 

al. in [15] studied the charging/discharging 

scheme in Vehicle-to-Grid (V2G) system and 

obtained a state-dependent policy to 

minimize the charging cost for individual 

EVs. Considering the battery characteristic 

and TOU price, Wei et al. in [16] designed an 

intelligent charging management mechanism 

to maximize the interests of both the 

customers and the charging operator.  

Considering unpredictable EVs patterns and 

EV various charging preferences, Wang et al. 

in [17] designed a Hybrid Centralized-

Decentralized (HCD) charging control 

scheme for EVs to coordinate the EV 

charging processes, such that the revenues of 

the whole charging system can be 

maximized. Kim et al. in [18] developed an 

algorithm to find the optimal charging 

scheduling, service pricing and energy 

storage scheme, such that the profit of 

charging stations can be maximized. Jin et al. 

in [19] presented a Lyapunov optimization 

for EV charging scheduling problems to 

maximize the utilization of renewable energy 

and reduce total charging cost. These works 

typically assumed that the EV charging 

requirements or the renewable energy can be 

estimated and do not consider the real time 

EV charging requirements and renewable 

energy. 
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Zhou et al.in [20] achieved the Demand Side 

Management (DSM) by scheduling 

intelligent EV charging to relieve the power 

grid pressure. Wang et al. in [21] designed a 

novel Two-stage EV charging mechanism to 

determine the energy generation and 

charging strategy dynamically, such that the 

peak-to-average ratio (PAR) and the energy 

cost can be reduced. Liu et al. in [22]. 

proposed a leader-follower game model 

between the EV owners and the distribution 

service provider, and then designed an 

optimal pricing based EV charging 

scheduling scheme to avoid system peak 

load.  

Zhang et al. in [23] proposed a Markov 

Decision Process (MDP) based charging 

scheduling scheme to minimize the mean 

waiting time for EVs. Wang et al. in [24] 

proposed a mobility-aware coordinated 

charging strategy for EVs in VANET-

Enhanced Smart Grid, which can improve the 

overall energy utilization, avoid power 

system overloading, and can address the 

range anxieties of individual EVs. Farzin et 

al. in [25] developed a novel framework 

based on the non-sequential Monte Carlo 

simulation method to quantify the potential 

contribution of parking lots to the reliability 

of PV–Grid charging systems. Yang et al. in 

[26] proposed a risk-aware day-ahead 

scheduling and real time dispatch algorithm 

to minimize the EV charging cost and the risk 

of the load mismatch. Lee et al. in [27] took 

into account the competition of neighbouring 

EV charging stations with renewable energy 

sources using game theory, and proved that 

there exists a unique pure Nash equilibrium 

for best response algorithms with arbitrary 

initial policy. These works mainly focused on 

operational efficiency of charging systems 

and the utilization of renewable energy in 

long-term, rather than the real time benefit of 

the parking lot. Also, they lack the quick 

response abilities to the real time changing 

information. Sheykhloei et al. optimized the 

operation of renewable energy resources and 

a natural gas network to reduce electrical 

load costs and improve system reliability in 

in [28] where a 24-bus power system with 

PV, wind turbines, battery storage, and a 7-

node gas network is analyzed over 24 hours 

to determine optimal resource placement and 

capacity. This work uses join units 

combining atural-gas-fired distributed 

generators and Power to Gas units. By 

utilizing MILP power and gas fluctuations 

are managed effectively. 

 

1.3 Contributions 

In this paper, an EMS model has been 

developed based on [29] for the EV station 

equipped with renewables and storage. An 

aggregator for the EV charge/discharge 

station is established in a way that applies the 

aggregated EMS model and P2P model to 

reduce the Energy cost of EVs station. 

Numerical studies with and without 

aggregators as well as P2P transactions have 

explained profit increase, especially from a 

balancing market point of view. By utilizing 

OPV-based portable solar panels, this study 

explores the feasibility of off-grid EV 

charging in remote areas, reducing 

dependence on traditional charging 

infrastructure while harvesting and utilizing 

excess solar energy. This approach not only 

mitigates range anxiety in long-distance EV 

travel but also helps address renewable 

energy wastage by enabling efficient energy 

use in locations without centralized grid 

access.  

The innovations in model are as follows: 

• Application of EMS for multi-EVs-

stations system in order to guarantee the 
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procumer benefits in coordinated 

structure and integration of OPV to 

provide additional renewable energy  

• Development of P2P power transaction 

between EVs stations for uncertainty and 

variability management of load and 

renewables  

 

In the remainder of this paper, section 2 

expresses the proposed model. The 

numerical studies are provided in section 3. 

Section 4 represents the conclusions. 

2. Proposed Model 

2.1. Mathematical Model of Individual 

EMS  

This paper introduces an EMS model for 

the EVs station based on [29]. 

Sets: 

𝜔 Scenarios 

𝑡 Time 

I Controllable EVs 

 

Parameters and Variables: 

𝛼 Aging coefficient of battery 

duo to cyclic charge and 

discharge 

𝑃𝑟𝑜𝑏𝜔 Probability of scenarios 

𝜆𝑡 Price of electricity 

𝐼𝑛𝑐𝑡 Incentive paid for demand 

curtailment 

𝑃𝑒𝑛𝑡 Penalty applied to demand who 

refuse DR adjustment 

𝑣𝑖
𝐶𝐸𝑉 Load inelasticity 

𝑃𝑖
𝑁𝑜𝑚 Nominal power of controllable 

EVs 

𝑃𝑖
𝑂𝑃𝑉 Power of organic photovoltaics 

EVs 

𝑆𝑂𝐶𝑚𝑖𝑛 .𝑏 Minimum State of charge 

battery 

𝑆𝑂𝐶𝑚𝑖𝑛 ,𝑒𝑣 Minimum State of charge EV 

𝑆𝑂𝐶𝑚𝑎𝑥 .𝑏 Maximum State of charge 

battery 

𝑆𝑂𝐶𝑚𝑎𝑥 ,𝑒𝑣 Maximum State of charge EV 

𝜂𝑐ℎ.𝑏        Charge rate of battery 

𝜂𝑐ℎ.𝑒𝑣 Charge rate of EV 

𝜂𝑑𝑖𝑠.𝑏 Discharge rate of battery 

𝜂𝑑𝑖𝑠.𝑒𝑣 Discharge rate of EV 

𝐶𝑎𝑝𝑏 Capacity of battery 

𝐶𝑎𝑝𝑒𝑣 Capacity of EV 

𝑟𝑐ℎ.𝑚𝑎𝑥𝑏 Maximum charge rate of 

battery 

𝑟𝑐ℎ.𝑚𝑎𝑥𝑒𝑣 Maximum charge rate of EV 

𝑟𝑑𝑖𝑠.𝑚𝑎𝑥𝑏 Maximum discharge rate of 

battery 

𝑟𝑑𝑖𝑠.𝑚𝑎𝑥𝑒𝑣 Maximum discharge rate of EV 

𝑃𝑖.𝜔.𝑡
𝐶𝐸𝑉.𝑖𝑛𝑖 Initial power of Controllable 

EV 

𝑃𝜔.𝑡
𝑆2𝐺 Power of station to grid  

𝑃𝜔.𝑡
𝐺2𝑆 Power of grid to station 

𝐵𝐴𝐶𝑡.𝜔
𝐵  Battery Aging Cost 

𝐵𝐴𝐶𝑡.𝜔
𝐸𝑉  EV Aging Cost  

𝑃𝜔.𝑡
𝐺2𝑆.𝑖𝑛𝑖 Initial power of grid to station 

𝑃𝜔.𝑡
𝑆2𝐺,𝑏𝑒𝑓𝑜𝑟𝑒

 Power of station to grid before 

DR application 

𝑃𝑖
𝐶𝑟𝑖𝑡 Critical demand of EVs at 

station 

𝑉𝜔.𝑡 Dissatisfaction of EV 

consumers 

𝑟𝜔.𝑡
𝑐ℎ.𝑋 Rate of charge 

𝑟𝜔.𝑡
𝑑𝑖𝑠.𝑋 Rate of discharge 

𝑃𝑖.𝜔.𝑡
𝐶𝐸𝑉 Power of Controllable EV 

 

𝑃𝜔.𝑡
𝑆2𝑉 Power of station to vehicle 

𝑃𝑖.𝜔.𝑡
𝑖𝑛𝑖.𝑆2𝑉 Initial power of station to 

Vehicle 

𝑃𝑖.𝜔.𝑡
𝑉2𝑆  Power of vehicle to station  

𝑃𝜔.𝑡
𝑤𝑖𝑛𝑑2𝑆 Power of wind to station  

𝑃𝜔.𝑡
𝑃𝑉2𝑆 Power of solar to station  
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𝑃𝜔.𝑡
𝐵2𝑆 Power of battery to station  

𝑃𝜔.𝑡
𝑆2𝐵 Power of station to battery 

𝑃𝜔.𝑡
𝐼/𝐶

 Interruptible curtailable EVs 

𝑆𝑂𝐶𝜔.𝑡
𝑏  State of charge / discharge for 

battery 

𝑆𝑂𝐶𝜔.𝑡
𝑒𝑣  State of charge / discharge for 

EV 

𝑌𝜔.𝑡
𝐵  Binary variable if battery 

charge set 1 

𝑍𝜔.𝑡
𝐵  Binary variable if battery 

discharge 

𝑌𝑖,𝜔.𝑡
𝐸𝑉  Binary variable if  EV charge 

set 1 

𝑍𝑖,𝜔.𝑡
𝐸𝑉  Binary variable if EV discharge 

set 1 

𝑥𝑖.𝜔.𝑡
𝐶𝐸𝑉  Binary variable if EV is ON 

 

2.2 System Modelling 

The mathematical formulation includes 

several key equations defining system 

operations and constraints. The objective 

function (OF) is represented by Equation (1).  

 

∑ 𝑃𝑟𝑜𝑏𝜔𝜔 ∑ {𝑃𝜔.𝑡
𝑆2𝐺𝜆𝑡 −𝑇

𝑡=1

𝑃𝜔.𝑡
𝐺2𝑆𝜆𝑡(−(𝐵𝐴𝐶𝑡.𝜔

𝐵 + 𝐵𝐴𝐶𝑡.𝜔
𝐸𝑉) +

𝐼𝑛𝑐𝑡(𝑃𝜔.𝑡
𝐺2𝑆 − 𝑃𝜔.𝑡

𝐺2𝑆.𝑖𝑛𝑖 + 𝑃𝜔.𝑡
𝑆2𝐺) −

𝑃𝑒𝑛𝑡(𝑃𝜔.𝑡
𝐺2𝑆.𝑖𝑛𝑖 − 𝑃𝜔.𝑡

𝑆2𝐺 +

𝑃𝜔.𝑡
𝑆2𝐺,𝑏𝑒𝑓𝑜𝑟𝑒

) − 𝑉𝜔.𝑡}                                                                        

         

(1) 

 

The first term accounts for the income 

generated from selling and purchasing power 

between the grid and the station. The second 

term represents the costs associated with 

battery and EV operations. The third term 

includes incentive income based on the 

Demand Response Program (DRP), while the 

fourth term corresponds to the penalty costs 

incurred for participation in the DRP. 

Finally, the fifth term models EV owners' 

dissatisfaction due to deviations from their 

initial consumption plans. 

Equation (2) represents the battery costs 

related to battery and EV wear, considering 

the additional cycling nature of the batteries 

in the given modes. 

𝐵𝐴𝐶𝑡.𝜔
𝑋 = 𝛼 ∙ (𝑟𝜔.𝑡

𝑐ℎ.𝑋 + 𝑟𝜔.𝑡
𝑑𝑖𝑠.𝑋)    

𝑋 ∈ {𝐵. 𝐸𝑉} 
(2) 

 

Equation (3) models EV owners' 

dissatisfaction, while Equation (4) ensures 

demand balance within the system. 

𝑉𝜔.𝑡 = ∑ 𝑣𝑖
𝐶𝐸𝑉

𝑖

(𝑃𝑖.𝜔.𝑡
𝐶𝐸𝑉 − 𝑃𝑖.𝜔.𝑡

𝐶𝐸𝑉.𝑖𝑛𝑖)

+ 𝑣𝐸𝑉[(𝑃𝜔.𝑡
𝑆2𝑉

− 𝑃𝑖.𝜔.𝑡
𝑖𝑛𝑖.𝑆2𝑉)

+ (𝑃𝑖.𝜔.𝑡
𝑖𝑛𝑖.𝑉2𝑆 − 𝑃𝑖.𝜔.𝑡

𝑉2𝑆 )]  

(3) 

 

𝑃𝜔.𝑡
𝐺2𝑆 + 𝑃𝜔.𝑡

𝑤𝑖𝑛𝑑2𝑆 + 𝑃𝜔.𝑡
𝑃𝑉2𝑆 + 𝑌𝜔.𝑡

𝐵 𝑃𝜔.𝑡
𝐵2𝑆

+ ∑ 𝑌𝑖,𝜔.𝑡
𝐸𝑉 𝑃𝜔.𝑡

𝑉2𝑆

𝑁𝐸𝑉

𝑖=1

 

= ∑ 𝑍𝑖,𝜔.𝑡
𝐸𝑉 𝑃𝜔.𝑡

𝑆2𝑉

𝑁𝐸𝑉

𝑖=1

+ 𝑍𝜔.𝑡
𝐵 𝑃𝜔.𝑡

𝑆2𝐵  + 𝑃𝜔.𝑡
𝑂𝑃𝑉  

(4) 

Equation (5) enforces the constraint that a 

station battery and EVs cannot charge and 

discharge simultaneously. 

𝑌𝑖,𝜔.𝑡
𝑋 + 𝑍𝑖,𝜔.𝑡

𝑋 ≤ 1     ∀𝑡. ∀𝜔,                 

𝑥 ∈ {𝐵 . 𝐸𝑉} 
(5) 

Equation (6) defines the controllable portion 

of station demand, which corresponds to the 

total consumption of controllable EVs, 

assuming each EV's consumption is equal to 

its nominal power. The operation of 

individual EVs is controlled by determining 

their ON/OFF states, 𝑥𝑖.𝜔.𝑡
𝐶𝐸𝑉 .  Additionally, 

EV operations are scenario-dependent, 

allowing both EVs and station batteries to 

compensate for renewable energy 

uncertainties. 

𝑃𝜔.𝑡
𝐼/𝐶

= ∑{𝑥𝑖.𝜔.𝑡
𝐶𝐸𝑉 (𝑌𝜔.𝑡

𝐸𝑉

𝑖

− 𝑍𝜔.𝑡
𝐸𝑉 )𝑃𝑖

𝑁𝑜𝑚} 

∀𝑡. ∀𝜔                                   

(6) 

Equation (7) ensures that the daily 

consumption of each controllable EV is 
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limited to its required consumption, while 

Equations (8) and (9) guarantee that all 

controllable EVs operate continuously within 

their designated usage periods 

𝑃𝑖
𝐶𝑟𝑖𝑡 ≤ ∑{𝑃𝑖.𝜔.𝑡

𝐶𝐸𝑉}

𝑡

 

𝑡 ∈ 𝑇𝑖
𝐶𝐸𝑉, ∀𝑖 . ∀𝜔 

(7) 

 

𝑌𝑖,𝜔.𝑡
𝐸𝑉 + ∑ 𝑍𝑖,𝜔.𝑡+𝑗

𝐸𝑉 ≤ 1

𝑊𝐶𝑖−1

𝑗=1

 

∀𝑡. ∀𝑖. ∀𝜔              

(8) 

 

𝑍𝑖,𝜔.𝑡
𝐸𝑉 − 𝑌𝑖,𝜔.𝑡

𝐸𝑉 = 𝑥𝑖.𝜔.𝑡
𝐶𝐸𝑉 − 𝑥𝑖.𝜔.𝑡−1

𝐶𝐸𝑉  

  ∀𝑡. ∀𝑖. ∀𝜔          
 

(9) 

Equation (10) describes variations in station 

and EV battery levels, while Equation (11) 

defines the charging and discharging limits 

of both station and EV batteries. 

𝑆𝑂𝐶𝜔.𝑡
𝑋

= 𝑆𝑂𝐶𝜔.𝑡−1
𝑋 + 𝑍𝜔.𝑡

𝑋 𝜂𝑐ℎ.𝑋 (
𝑃𝜔.𝑡

𝑆2𝑋

𝐶𝑎𝑝𝑋
)

− 𝑌𝜔.𝑡
𝑋 (

𝑃𝜔.𝑡
𝑋2𝑆 + 𝑃𝜔.𝑡

𝑋2𝐺

𝜂𝑑𝑖𝑠.𝑋𝐶𝑎𝑝𝑋
) 

 𝑋 ∈ {𝐵. 𝐸𝑉}              

(10) 

 

𝑆𝑂𝐶𝑚𝑖𝑛 .𝑋 ≤ 𝑆𝑂𝐶𝜔.𝑡
𝑋

≤ 𝑆𝑂𝐶𝑚𝑎𝑥.𝑋 

 𝑋 ∈ {𝐵. 𝐸𝑉} 
(11) 

Equations (12) to (15) specify the constraints 

on charging and discharging rates for station 

and EV batteries 

𝑟𝜔.𝑡
𝑐ℎ.𝑋 =

𝑆𝑂𝐶𝜔.𝑡
𝑋 − 𝑆𝑂𝐶𝜔.𝑡−1

𝑋

𝜂𝑐ℎ.𝑋
 

 ∀𝑡. ∀𝜔, 𝑋 ∈ {𝐵. 𝐸𝑉}       
 

(12) 

  𝑟𝜔.𝑡
𝑑𝑖𝑠.𝑋 = (𝑆𝑂𝐶𝜔.𝑡−1

𝑋 − 𝑆𝑂𝐶𝜔.𝑡
𝑋 ) 

 𝑋 ∈ {𝐵. 𝐸𝑉}       
 

(13) 

0 ≤ 𝑟𝜔.𝑡
𝑐ℎ.𝑋 ≤ 𝑟𝑐ℎ.𝑚𝑎𝑥.𝑋 

 ∀𝑡. ∀𝜔, 𝑋 ∈ {𝐵. 𝐸𝑉}       
 

(14) 

0 ≤ 𝑟𝜔.𝑡
𝑑𝑖𝑠.𝑋 ≤ 𝑟𝑑𝑖𝑠.𝑚𝑎𝑥.𝑋 (15) 

 ∀𝑡. ∀𝜔, 𝑋 ∈ {𝐵. 𝐸𝑉}       
 

Equation (16) calculates the station's power 

balance, considering contributions from wind 

and solar power, as well as power transfers 

from the station battery and EVs. 

𝑃𝜔.𝑡
𝑆2𝐺 = 𝑃𝜔.𝑡

𝑤𝑖𝑛𝑑 − 𝑃𝜔.𝑡
𝑤𝑖𝑛𝑑2𝑆 + 𝑃𝜔.𝑡 

𝑃𝑉

− 𝑃𝜔.𝑡 
𝑃𝑉2𝑆 + 𝑃𝜔.𝑡

𝐵2𝑆

+ ∑ 𝑌𝑖,𝜔.𝑡
𝐸𝑉 𝑃𝜔.𝑡

𝑉2𝑆

𝑁𝐸𝑉

𝑖=1

 

 ∀𝑡. ∀𝜔      

 

(16) 

𝑌𝜔.𝑡
S 𝑃𝜔.𝑡

𝐺2𝑆 + Z𝜔.𝑡
S 𝑃𝜔.𝑡

𝑆2𝐺 ≤ 𝑃𝐶.𝑚𝑎𝑥 

 ∀𝑡. ∀𝜔       
 

 

(17) 

Y𝜔.𝑡
𝑆 + Z𝜔.𝑡

𝑆 = 1 

 ∀𝑡       
 

(18) 

Power transactions between the grid and the 

station are limited by Equation (17), and 

Equation (18) ensures that the station can 

only transmit power in one direction at any 

given time. 

2.3 Modelling The Effect Of 

Uncertainty 

One of the well-known indicators to measure 

the financial risk is conditional value at risk 

(CVaR). CVaR is a risk assessment 

technique defined as follows: 

𝑂𝐹 = (1 − 𝛽) × 𝐸𝑄(1) + 𝐶𝑉𝑎𝑅         (19) 

 

𝐶𝑉𝑎𝑅 = 𝛽 × (£

−
1

1 − 𝛼
∑ 𝜋𝜔

𝜔

× 𝑆𝑊𝜔) 

(20) 

Decision variables of CVaR, £ and 𝑆𝑊𝜔, are 

as follows: 
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£ − 𝐸𝑄(1)𝜔 ≤ 𝑆𝑊𝜔 (21) 

 

𝑆𝑊𝜔 ≥ 0                  (22) 

In this study, the OF represents a 

maximization problem, where α and β denote 

confidence levels ranging between 0 and 1, 

determined by the decision maker. The 

positive variable 𝑆𝑊𝜔 measures the positive 

deviation between the value at risk (VaR) and 

the objective function obtained in each 

scenario. 

Compared to VaR, CVaR offers several 

advantages that enhance its applicability in 

risk management. While VaR is only 

continuous for normal probability 

distributions, CVaR remains continuous 

across all probability distributions, 

addressing this limitation. Additionally, 

CVaR extends beyond VaR by controlling 

losses in extreme scenarios, effectively 

capturing the risk that exceeds the VaR 

threshold. At the same confidence level, 

CVaR is considered more conservative than 

VaR, as it accounts for risks beyond the VaR 

threshold. However, due to its conservative 

nature, CVaR may not be a suitable risk 

measure for highly risk-averse decision-

makers. In this paper, CVaR is integrated into 

the objective function alongside the mean 

value, ensuring a comprehensive risk-aware 

optimization approach. This integration 

enhances the robustness of the model by 

considering extreme losses while 

maximizing system profitability. 

2.4  Coordinated EMS with P2P Power 

Trading between Stations 

 

The proposed EM model in the previous 

section can be aggregated to extend its 

application across multiple procumers. In 

this approach, the profitability of each 

procumer must be ensured within the 

coordinated model, considering the inherent 

uncertainties in renewable energy generation 

and load demand. By implementing a 

coordinated EM strategy for multipe stations, 

it is highly probable that the overall 

profitability of each station will increase due 

to optimized energy management. The 

schematic of coordinated model for EM is 

depicted in Fig.1. 

EMS for 
station n

EMS for 
station 2

EMS for 
station 1

Coordination Constrained to improved Fi

F1 F2 Fn

 
Fig .1. Coordinated EM model for procurers 

 

Coordinated EMS model is same as the 

introduced model with adding equations (23) 

to (25) as follows: 

𝑀𝑖𝑛: ∑ 𝑂𝐹(𝑆)    

𝑁𝑆

𝐻=1

 

𝑆. 𝑡: 
 

(23) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑆)             
 

(24) 

𝑂𝐹(𝑆) ≤ 𝑂𝐹𝑚𝑖𝑛(𝑆)         
 

(25) 

In the above equations, S represents the 

number of stations, while the constraints are 

equation (1)-(22) and 𝑂𝐹𝑚𝑎𝑥(𝑆) denotes the 

maximum objective variable for each station 

individually. 

To further enhance the EMS, P2P facilities 

are incorporated, allowing energy exchange 

between stations. The traded power between 

stations follows the approach outline in [21], 

while from perspective of each station, other 

stations are treated as a black box in the 

optimization process. 

𝑃𝑗.𝑘.𝑡
𝑆𝑜𝑢𝑡 = ∑ 𝑃𝑙.𝑡

𝑜𝑢𝑡

𝑁𝑆

𝑙=1.𝑙≠𝑗

∀𝑗. 𝑡. 𝑘           (26) 
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𝑃𝑗.𝑘.𝑡
𝑆𝑖𝑛 = ∑ 𝑃𝑙.𝑡

𝑖𝑛

𝑁𝑆

𝑙=1.𝑙≠𝑗

∀𝑗. 𝑡. 𝑘               (27) 

The power output and input summation of 

stations other than jth station, is determined 

by Equation (26) and Equation (27). 

𝑃𝑗.𝑡
𝑆𝑜𝑢𝑡 = 𝑃𝑗.𝑡

𝑖𝑛                              (28) 

 

𝑃𝑗.𝑡
𝑆𝑖𝑛 = 𝑃𝑗.𝑡

𝑜𝑢𝑡                               (29) 

Equation (28) and Equation (29) state that 

these summations are equal to the 

corresponding station (jth one) input/output, 

respectively. 

𝑃𝜔.𝑡
𝐺2𝑆 + 𝑃𝜔.𝑡

𝑤𝑖𝑛𝑑2𝑆 + 𝑃𝜔.𝑡
𝑃𝑉2𝑆

+ 𝑌𝜔.𝑡
𝐵 𝑃𝜔.𝑡

𝐵2𝑆

+ 𝑃𝜔.𝑡
𝑂𝑃𝑉    

∑ 𝑌𝑖.𝜔.𝑡
𝐸𝑉 𝑃𝜔.𝑡

𝑉2𝑆

𝑁𝐸𝑉

𝑖=1

+ 𝑃𝑆.𝜔.𝑡
𝑖𝑛

= ∑ 𝑍𝑖,𝜔.𝑡
𝐸𝑉 𝑃𝜔.𝑡

𝑆2𝑉

𝑁𝐸𝑉

𝑖=1

+ 𝑍𝜔.𝑡
𝐵 𝑃𝜔.𝑡

𝑆2𝐵 + 𝑃𝑆.𝜔.𝑡
𝑜𝑢𝑡  

(30) 

 

Equation (30) provides the power balance of 

each station after implementation of P2P 

transactions between microgrid and 

integration of OPV. 
 
 

3. Numerical Studies 

To evaluate the proposed model, a station in 

Italy is considered as the case study. All 

relevant data for this study is available in [25].  

Fig.2 depicts the correlation expected cost 

and risk level sensitivity. It can be concluded 

that increased risk sensitivity results in 

higher financial impacts, highlighting 

heightened volatility and financial risk.  

Electric vehicles (EVs) are treated as 

controllable EVs, with a waiting capacity of 

three hours in the morning and four hours in 

the evening. The verification of the model 

has been conducted through the following 

analyses: 

• Risk Analysis 

• Comparison between Coordinated 

EMS and Individual EMS 

Two scenarios have been examined for a 

system consisting of five EV stations: 

• Senario 1: Implementation of 

Individual EMS 

• Senario2: Implementation of 

Coordinated EMS 

 

 
Fig .2. Expected cost changes by β 

 

The income for each station and aggregated 

income of all stations are shown in Fig.3.  

 
Fig .3. Comparative chart of individual station   

profits and coordinated profits 
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The income distribution among these 

stations, highlights a noticeable improvement 

in total earnings when a coordinated EMS is 

implemented.  Moreover, Table.1 further 

quantifies this enhancement, demonstrating 

the specific financial gains achieved by each 

station under EMS. 

Based on Table 1, the total difference 

between EM and EMS provides a profit 

enhancement amounting to $95,044.87, 

which reflects a 1.17-fold increase in overall 

profitability. 

It can be concluded that coordinating energy 

management through the integration of P2P 

transactions leads to a more profitable EMS 

for consumers. 

Table (1). Profit in coordinated model 

Station 
Individual (EM) 

($) 

Coordinated 

(EMS) ($) 

1 111024.472 127316.193 

2 111145.897 128589.355 

3 111186.712 129875.249 

4 111320.274 131174.001 

5 111430.973 132485.741 

Total 554395.666 649440.540 
 

The incorporation of OPV systems further 

enhances this profitability by enabling 

decentralized and flexible energy generation. 

Consequently, the participation of EV 

stations in demand response (DR) programs 

can be increased, as OPV technology 

facilitates more sustainable and efficient 

energy trading, encouraging greater 

engagement from EV owners.  

The total wind and solar generation across 

the stations is illustrated in Fig.4.  

 

 

(a) 

 
(b) 

 
(c) 

 
Fig.4. (a)Wind, (b)Solar, (c)Total Renewable 

Energy Generation (Appendix, Table I) 

 

Fig.5 presents a comparison of load profiles 

under three different conditions: without 

EMS, with individual EMS, and with 

coordinated EMS. The results demonstrate 

that the DPR effectively reduces energy 

purchases during peak price periods, leading 

to cost savings. Furthermore, the coordinated 

EMS outperforms the individual EM, 
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providing greater efficiency in load shifting 

and energy cost reduction. 

 

 

 
Fig.5.  Total station load (a)without use of 

EMS, (b)with individual EMS and 

(c)coordinated EMS (Appendix, Table II) 

 

Fig.6depicts the difference in EV loads in 

scenario 2 and 3. During the 6-hour peak 

period, the load in scenario 3 is higher, 

primarily due to the enhanced integration of 

solar, wind, and OPV energy for EV 

charging. In contrast, during off-peak 

periods, scenario 3 shows a lower load, as 

renewable energy generation does not 

sufficiently meet the demand, leading to 

greater reliance on conventional power 

sources or stored energy. The inclusion of 

OPV further supports the system by 

providing additional renewable energy, thus 

facilitating improved load management and 

balancing. 

 

Fig.6. Difference of EV loads between scenarios 

3 and 2 

Fig.7illustrates the comparison of station 

income under two different scenarios.  
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Fig.7. Income of stations (a) Individual and  (b) 

Coordinated two scenarios (Appendix, Table 

III) 

The results indicate that the coordinated 

model proves to be more profitable not only 

for individual entities but also for the grid 

operator. This is primarily due to its ability to 

effectively manage and shift loads, resulting 

in improved energy utilization and economic 

benefits compared to the individual EMS 

application. Additionally, when 

incorporating OPV, the coordinated model's 

efficiency and profitability are further 

enhanced, as OPV contributes to renewable 

energy generation, lowering overall energy 

costs and maximizing grid stability. 

 

4. Conclusion 

In this paper, the energy management of the 

system is analyzed to maximize network 

profitability by integrating renewable energy 

sources (wind, solar) and controllable EVs, 

while incorporating certainty with the 

conditional risk criterion in two different 

modes. The results show that the total profit 

has increased in all stations compared to the 

other mode. Additionally, both individual 

station profits and the overall network profit 

have improved. By utilizing OPV 

technology, the profitability of both 

individual stations and the overall network 

has increased. On a larger scale, this concept 

can also contribute to reducing peak loads in 

distribution grids. 

5. The use of bi-level optimization could 

ensure profitability at both upper and 

lower levels, providing a balanced and 

efficient approach to energy 

management. Additionally, integrating 

V2G technology into EMS could further 

increase station profits while lowering 

EV charging costs. Moreover, efforts to 

develop adoption models for multi-mode 

transportation patterns could be explored. 

For future research, hub energy systems 

could be considered as a test model to 

enhance cooperation between various 

energy resources. 
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Appendix 

 

Table I. Solar, Wind and Total Energy 

Generation 

Hour Pwind PPV Total 

1 15000  15000 

2 15500  15500 

3 16000  16000 

4 17000  17000 

5 18000  18000 

6 19000  19000 

7 19500  19500 

8 20000 1000 21000 

9 18000 10000 28000 

10 17500 17000 34500 

11 17000 25000 42000 

12 16500 30000 46500 

13 16000 27000 43000 

14 15000 21000 36000 

15 15200 18000 33200 

16 15300 15000 30300 

17 15400 10000 25400 

18 15500 5000 20500 

19 15000  15000 

20 1000  1000 

21 9000  9000 

22 13000  13000 

23 19000  19000 

24 21000  21000 

 

 

Table II. Load Distribution 
Hour Load Individual 

EMS 

Coordinated 

EMS 

Difference 

1 2 1.84 1.8 -0.04 

2 2 1.38 1.35 -0.03 

3 1 1.012 0.99 -0.022 

4 2 1.38 1.35 -0.03 

5 1 0.92 0.9 -0.02 

6 1 1.104 1.08 -0.024 

7 1 1.288 1.26 -0.028 

8 2 1.472 1.44 -0.032 

9 2 1.38 1.35 -0.03 

10 3 2.75 3 0.25 

11 3 3.3 3.6 0.3 

12 3 3.08 3.36 0.28 

13 3 3.41 3.72 0.31 

14 3 3.08 3.36 0.28 

15 3 2.75 3 0.25 

16 2 2.2 2.4 0.2 

17 2 1.656 1.62 -0.036 

18 2 1.472 1.44 -0.032 

19 1 0.92 0.9 -0.02 

20 1 0.736 0.72 -0.016 

21 1 0.828 0.81 -0.018 

22 1 0.736 0.72 -0.016 

23 1 1.104 1.08 -0.024 

24 1 1.288 1.26 -0.028 
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Table III. Income 

Hour 

Coordinated 

Income 

Individual 

Income 

1 1555.436 1292.003 

2 1584.96 1318.668 

3 1774.272 1441.092 

4 1754.002 1468.198 

5 1811.231 1518.144 

6 2015.577 1631.564 

7 2127.395 1746.552 

8 2124.844 1749.753 

9 2838.521 2241.657 

10 3450 2760 

11 4200 3360 

12 4650 3720 

13 4300 3440 

14 3600 2880 

15 3320 2656 

16 3030 2424 

17 2540 2307.496 

18 2050 1640 

19 1500 1200 

20 100 80 

21 900 720 

22 1300 1040 

23 1900 1520 

24 2490.548 2109.046 

 
 


