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Abstract–A detailed modeling of the thermodynamic behavior of the gas turbine engine has been 

developed in this study. The modeling encompasses volume dynamics, shaft dynamics, Mach 

number and altitude variation. To achieve maintaining of engine in desired operational range, a 

two-level hybrid fuzzy-PID controller has been designed for controlling a turbojet engine in a 

software environment. The effectiveness of this design approach has been investigated, 

considering all nonlinear thermodynamic behaviors and variations in Mach/altitude. The controller 

effectively manages these factors and have desire response. Furthermore, a protection loop has 

been implemented to safeguard against sudden engine shutdown, sharp temperature increases, and 

surge using the Min-Max strategy coupled with a controller. This approach ensures a safe response 

of the controller to the engine and prevents damage to the engine. The model possesses the 

capability to simulate the engine's performance in both transient and steady-state conditions. The 

validation of the thermodynamic model has been carried out using the Gas Turb 13 software to 

ensure acceptable simulation results. The maximum error was 7% in thrust level. The simulation 

results indicate the capability of the hybrid two-level controller in various flight scenarios, 

resulting in an average 18.6% shorter settling time, 34.3% shorter rise time, and no permanent 

error compared to PID control.  
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1. Introduction 
 

The gas turbine engine, sometimes referred to as a 

combustion turbine, is widely used for power generation in 

aircraft, ships, trains, and power plants. It is predicted that 

in the coming decades, with advancements in 

manufacturing and design fields, gas turbines will play a 

more significant and prominent role in power generation 

across various industries. 

Aerospace engines and gas turbines are generally known 

for their high operating temperatures, high speeds, and high 

pressures [1].  

The control of aerospace engines and gas turbines is of 

great importance due to various performance and structural 

constraints, such as the rotational speed and acceleration of 

shafts, turbine inlet temperature, compressor surge margin, 

and so on [2,3].  

In recent years, we have witnessed an increase in 

complexity in the design and performance of aerospace gas 

turbine engines in order to overcome current limitations and 

meet the requirements of new air routes set by governments 

and various organizations [4]. 

From a historical perspective, the design and development 

of jet engine controllers can be categorized into four main 

groups: 1. Hydro-mechanical fuel controllers, 2. Hydro-

mechanical/electrical controllers, 3. Digital electronic 

controllers, and 4. Fully digital controllers [5].  

However, the use of fuel flow in controlling the closed-loop 

speed and limiting fuel flow in transient regimes remains 

the primary strategy in jet engine controller design. As the 

engine design becomes more complex, the expectations and 

constraints that the controller must fulfill increase 

accordingly.  

In recent years, more advanced and sophisticated 

algorithms have been employed in the control of gas turbine 

engines, including Model Predictive Control (MPC), Linear 

Quadratic Regulator (LQR), Linear Quadratic Gaussian 

(LQG) controller, and Fuzzy Logic controller.  

Among these algorithms, fuzzy controller offers advantages 

such as similarity to human reasoning, linguistic modeling, 

the use of simple mathematics for complex problems, the 

ability to interact with integrated and complex systems, 

high accuracy and high responsiveness.  
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It also has its drawbacks such as the need for more fuzzy 

rules to achieve higher accuracy, the inability to use 

feedback for self-learning strategies, and limitations in 

utilizing input variables [6]. Fuzzy logic controller is a 

heuristic methodthat can easily use in designing of non-

linear controllers.   

Fuzzy controllers outperform other controllers in complex, 

non-linear systems or systems that are not well-defined [7]. 

Due to its simplicity and high reliability, PID controllers are 

widely used for controlling the performance of aerospace 

engines and gas turbines.  

Common methods used to optimize PID controller 

coefficients in industries include the Cohen-Coon and 

Ziegler-Nichol’s methods.  

In these methods, it is assumed that the behavior of the 

system around the operating set point is linear. Based on 

this assumption and using the algorithms governing these 

methods, the values of the proportional gain (Kp), 

derivative gain (Kd), and integral time gain (Ki) are 

calculated to maintain the system's performance around the 

design points.  

To achieve an appropriate response in systems that exhibit 

uncertainty and multiple complex and nonlinear 

relationships, PID controllers need to be continuously 

optimized. Therefore, in this research, a two-level fuzzy-

PID supervisory system with its self-tuning algorithm is 

proposed for an integral-thermodynamic model of a turbojet 

engine.  

Here are some of the notable achievements in the field of 

fuzzy controller design for gas turbine engines:  

In 1994, Balakrishnan et al. proposed a set of fuzzy rules, 

laws, and logics for gas turbine control to provide an 

optimal and precise controller compared to conventional 

methods. They implemented this controller entirely based 

on fuzzy logic on a single-shaft gas turbine engine as a case 

study [8].  

In 2002, Chipperfield et al. combined fuzzy logic with an 

evolutionary algorithm (EA) to optimize the controller's 

performance and enhance the system's maneuverability [9].  

In 2023, Davoodi et al. conducted an HIL test for a fuzzy 

controller with min-max strategy for a non-linear model of 

a two-axis turbofan engine with high bypass. The results 

showed the controller's ability to generate the required 

thrust while adhering to structural and functional limitations 

[10].  

In 2024, Zhimeng et al. successfully developed an accurate 

model of a three-axis gas turbine engine for ships and 

validated the model against actual test data. By optimizing 

the PID control coefficients using fuzzy rules, they were 

able to increase the power response from the model by 

approximately 3.1 times and prevent phenomena such as 

compressor surge and turbine overtemperature [11].  

In 2015, Hadroug and colleagues utilized an adaptive 

neuro-fuzzy controller to maintain the system's 

performance in the optimal state. The results of the 

implemented controller on the Rowen model demonstrated 

the effectiveness of the proposed controller [12].  

In 2018, Jafari and Nikolaidis improved the performance of 

the min-max strategy by replacing the maximum and 

minimum functions with different fuzzy norms and studied 

the advantages and disadvantages of each case [13].  

In 2020, Guolian et al. introduced a fuzzy modeling 

approach, a disturbance rejection capability, and reduced 

settling time. They also presented a predictive control 

algorithm related to this model and implemented it on a gas 

turbine system [14].  

During the activities and efforts carried out in the design 

and optimization of gas turbine controllers, the clear 

absence in using thermodynamic models that are highly 

accurate in simulating the dynamic behavior of the turbojet 

engine and also two-level controllers such as the fuzzy-PID 

two-level controller is evident; therefore, this research was 

conducted to take a step forward in this area. 

.  

2. Two-Level Non-Adaptive Fuzzy-PIDController 

 

 The common PID controllers tuned based on Ziegler-Nichols 

rules [15-17] for various gas turbine models have constant control 

gains. To have an optimized control system that dynamically 

adjusts control gains online during operations, we utilize a 

supervisory fuzzy-PID two-level controller.  

In gas turbine models with complex structures, multi-level 

controllers operate much more efficiently than single-level 

controllers. In this two-level controller, at the lower level, the PID 

controller performs direct and quick model control, while the 

fuzzy controller at the higher level carries out system monitoring 

operations at a slower pace.  

The main advantage of this control model, compared to single-

level control, is the use of different simple controllers to enhance 

the overall system efficiency. For example, it is possible to design 

a fuzzy controller without considering stability issues and use 

another controller to monitor it.  

As shown in Fig. 1, the error (e) and error rate (e� ) are the inputs to 

the control system, and �� , �� , and ��  are respectively the 

proportional gain, integral gain, and derivative gain of the outputs 

of the fuzzy block.  
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Ws{|| is acceleration control loop’s fuel mass flow signal 

and Ws�}| is deceleration control loop’s fuel mass flow 
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In the above equations, N�{�  represents the take-off 
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without the controller, is provided in Table 7

Comparison of thermodynamic and performance parameters 

in two conditions: without controller and with controller in the third 

scenario 

 

Fuzzy

PID 

hout 

Controller 

8.31 

 

7.96 

828.5

 

 

893.6 

 

15.844 

In this research in order to demonstrate 

nonlinear relationships on engine behavior, an integral 

thermodynamic model was developed. The developed 

model was implemented in the Matlab/Simulink 

environment. For the sake of simplicity and 

researches in fie

breathing engines [10

have been done by linearizing and 

simplifying the equations governing the engine. 

aforementioned researches conventional models such as the 

transfer function models around 

point are used, which cannot accurately simulate the 

transient behavior of the engine. By analyzing the results 

obtained from the present model and compari

validating it with the model implemented in the reputable 

software Gasturb 13, the credibility and reliability of the 

PID Controller for Microjet Engine 

Plot of surge margin in the third scenario 

, in this scenario, the control 

system successfully achieves its main objectives of having 

Fig. 21). the primary 

objective of the control system to keep the engine within 

currences such as 

surge (Fig. 23) 

exceeding acceptable limits is successfully achieved.  

Its advantage is clearly highlighted compared to a system 

without a controller.A summary of the control parameters' 

this scenario, both with the controller and 

Table 7. 

Comparison of thermodynamic and performance parameters 

in two conditions: without controller and with controller in the third 

PID Fuzzy-

 

 

11.18 

 

 

 

811.5 

 

828.5 

 

5.19

9 

 

7.400 

In this research in order to demonstrate the impact of 

nonlinear relationships on engine behavior, an integral 

thermodynamic model was developed. The developed 

model was implemented in the Matlab/Simulink 

environment. For the sake of simplicity and faster 

field of designing 

breathing engines [10-14]In the 

have been done by linearizing and 

simplifying the equations governing the engine. 

models such as the 

function models around 

point are used, which cannot accurately simulate the 

. By analyzing the results 

obtained from the present model and comparing and 

validating it with the model implemented in the reputable 

software Gasturb 13, the credibility and reliability of the 

 

the control 

system successfully achieves its main objectives of having 

the primary 

objective of the control system to keep the engine within 

currences such as 

) and 

Its advantage is clearly highlighted compared to a system 

without a controller.A summary of the control parameters' 

this scenario, both with the controller and 

Comparison of thermodynamic and performance parameters 

in two conditions: without controller and with controller in the third 

5.19

the impact of 

nonlinear relationships on engine behavior, an integral 

thermodynamic model was developed. The developed 

model was implemented in the Matlab/Simulink 

faster 

ld of designing 

In the 

have been done by linearizing and 

simplifying the equations governing the engine. In 

models such as the 

function models around 

point are used, which cannot accurately simulate the 

. By analyzing the results 

ng and 

validating it with the model implemented in the reputable 

software Gasturb 13, the credibility and reliability of the 



Journal of Applied Dynamic Systems and Control,Vol.7, No.3, 2024: 1-12 

 
11 

 

 

present model were established. Studying of engine and its 

behavior in steady-state and transient regimes clearly 

demonstrate the need for using a control system. In addition 

to that the quality of performance of the two-level hybrid 

controller is also demonstrated. In previous researches in 

this field [4, 13], credibility of pure fuzzy controller 

coupled with min-max strategy was proven with model in 

the loop approach and this research shows reliability of 

min-max strategy with hybrid fuzzy-PID controller. A 

comparison between pure fuzzy controller response [13] 

and hybrid fuzzy-PID controller is demonstrated in Table 8. 

 
Table 8. Comparison of rise time and settling time 

 

Author Type  
of data 

Type of 
controller 

Mean  
rise time 
(s) 

Mean 
settling 
time (s) 

Present 
work 
 

Numerical Fuzzy-
PID 

1.6 1.98 

Data [13] Numerical Pure 
fuzzy 

2.71 3.2 

 

In the transient regime studies, the worst-case scenario was 
considered for three different altitudes to precisely evaluate 
the performance of the control system. In all three cases, 
the hybrid supervisory fuzzy-PID controller successfully 
provided acceptable transient parameter responses.  
It also maintained surge margin within a logical range for 
both transient and steady-state conditions, reduced 
temperature spikes in the hot section of the engine to 
prevent turbine blade damage during acceleration, 
andeliminated negative temperature spikes to prevent 
flameout.  
Table 9andTable 10 summarize performance of two 

controllers in three case studies: 
 

Table 9. Fuzzy – PIDcontroller performance in 3 case studies 
 

Overshoot 

(%) 

Settling time 

(s) 

Rise 

time 

(s) 

 

Case study 

0 

 

3.16 

 

2.71 1 

0 

 

1.65 1.28 2 

0 1.15 0.83 3 

 
Table 10. PIDcontroller performance in 3 case studies 

 
Overshoot 

(%) 

Settling time 

(s) 

Rise 

time 

(s) 

 

Case study 

0.197 

 

3.16 

 

2.7 1 

2.28 

 

1.36 1.13 2 

0 2.98 2.208 3 

 

As it is evident from Tables 9-10 and figures presented in 
case studies, the main advantages of the two-level 

controller compared to the PID controller include: 
- No permanent error when reaching idle and take-off 

rotational speed. 
- Elimination of any overshoot and undershoot during 

response convergence. 
- The system control response being close to the 

physical reality governing the engine. 
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