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Abstract– This paper introduces a novel micro-opto-electro-mechanical-systems accelerometer that leverages a 

tunable all-dielectric meta-material. The device operates by modulating the wavelength of incident light-wave. The 

utilized metamaterial takes advantage of highly tunable ultra-sharp Fano resonance peaks to create a high-performance 

accelerometer, offering enhanced sensitivity and resolution. Simulation results indicate the functional attributes of the 

proposed sensor: a mechanical sensitivity of 0.13 nm/g, a linear measurement range spanning ±38.4g, and an overall 

sensitivity of 1.17 nm/g. These characteristics render the device applicable across a broad spectrum of uses, from 

consumer electronics to inertial navigation. 
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1-Introduction 

In recent years, there's been a surge in commercializing 

high-performance MEMS inertial sensors for diverse 

applications. Among these, MEMS accelerometers stand 

out as one of the most appealing types in fields like 

navigation, aerospace, automotive, and more. 

Every MEMS accelerometer has a crucial mechanical 

part including a rigid frame that supports a seismic mass 

with a set of springs. When the system experiences external 

acceleration, this mass moves along a certain axis in 

relation to the frame. So, it's important to measure how 

much this mass moves to figure out the applied external 

acceleration. Different methods have been used to track this 

movement, like capacitive [1, 2], piezo-resistive [3, 4], 

piezo-electric[5, 6] and optical [7-10]. Among these, 

capacitive sensing technique is the most popular one due to 

its ease of fabrication and relatively high performance, but 

it's not perfect. Sometimes, especially for specific tasks 

needing really high accuracy, capacitive method might not 

be the best choice[8]. 

The optical sensing approach is seen as a better option 

because it offers higher resolution, accuracy, and sensitivity 

compared to other sensing methods. Additionally, optical 

approaches provide natural immunity against Electro 

Magnetic Interference (EMI), making them suitable for 

EMI-contaminated and harsh environments[11]. However, 

the processes for making and packaging these sensors are 

quite expensive and complex[7]. 

An optical MEMS accelerometer operates by using the 

modulation of light-wave properties due to applied 

acceleration. There have been recent developments in 

optical accelerometers employing various methods like 

intensity modulation[12], wavelength modulation [7, 13], 

photo elastic effect[14, 15], and phase modulation [16]. 

Each method has its own pros and cons. For example, 

intensity modulation methods are simpler to implement in 

terms of the optical detection system and the required light 

source. However, they're highly sensitive to fluctuations in 

the light source, which can impact the device's performance. 

Wavelength modulation technique could be a good 

alternative to overcome this problem. While the wavelength 

modulation method can address this issue, it requires a 

high-quality light source, and a complex read-out system is 

needed to detect the wavelength shifts caused by 

acceleration. This complexity can increase the cost and 

fabrication complexity of the accelerometer. 

This paper introduces a new Micro-Opto-Electro-

Mechanical System (MOEMS) accelerometer, which relies 

on a mechanically adjustable all-dielectric meta-material 

based on Fano resonance phenomena. The meta-material 

proposed here comprises pairs of bar antennas with bent 

arms situated on top of a silica substrate. This silica layer 

serves as both the MEMS part and the bottom layer of the 

meta-material. The device offers high sensitivity, a broad 

measurement range, and excellent resolution, making it 

suitable for various applications, from automotive use to 

inertial navigation. 

The rest of this paper is structured as follows: Section 2 

explains the working principle of the meta-material and the 

proposed accelerometer. Section 3 is dedicated to design 

and analysis of the mechanical and optical parts using an 

analytical method and a frequency domain solver by CST 
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between the quadrupole and dipole modes results in anti-

phase oscillations, leading to minimal radiative loss at the 

respective wavelength. Consequently, an extremely sharp 

Fano resonance peak is achieved[23]. 

Table 1: Geometrical characteristics of a unit cell of the proposed 

metamaterial. 

Parameters Sy

mbol 

Valu

e 

Length of the middle arm of antenna1 La1 220 

nm 

Length of the middle arm of antenna2 La2 220 

nm 

Length of the bent arm of antenaa1 Lb1 120 

nm 

Length of the bent arm of antenaa1 Lb2 120 

nm 

Width of antenna1 W1 50 

nm 

Width of antenna2 W2 50 

nm 

Length and width of the unit cell P 460 

nm 

The thickness of the silicon antennas Ha 100 

nm 

The thickness of the silica layer Hd 200 

nm 

The lateral distance between the top 

antennas 

Ga

p2 

45 

nm 

The lateral distance between the 

adjacent silica bars 

Ga

p1 

20-

120 nm 

The bent angle of the bent arm of 

antenna1 

�1 45° 

The bent angle of the bent arm of 

antenna2 

�2 45◦ 

Deviation angle of the antenna2 � 5◦ 

Total footprint of the sensor core for a 

200×200 array 

A 46×4

6 µm 

 

The spectral behavior of the proposed all-dielectric 

meta-material can also be characterized using the Fano 

model which is mathematically described by the following 

formula [23]. 

����� = 
�� + �� + �
ω − ω� + jγ �


�
 (1) 

 

 

Fig. 3: Comparison between the reflection and transmission spectra of 

the symmetrical and asymmetrical structures [17 ]. 

where �  and �  are real numbers, �  is a constant 

number, ��  is the Fano resonance frequency and � is the 

total damping rate. As mentioned earlier, Fano resonance 

represents a distinct resonant phenomenon distinguished by 

its asymmetric line-shape [17 ]. 

2.2. Operating principle of the proposed optical 

MEMS accelerometer 

The proposed MOEMS accelerometer is a wavelength 

modulation-based sensor. It means that the device detects 

the optical resonance mode shifts due to the displacements 

of the proof mass which is caused by the applied 

acceleration. A 3D schematic of the proposed accelerometer 

is shown in Figure 4. As can be seen from this figure, 

displacement sensing system of the proposed accelerometer 

is aall-dielectric meta-material reflector in which the 

movable beams of the meta-material are attached to an 

inner frameto realize a mechanically tunable reflector. Here, 

the proof mass consists of the movable beams and inner 

frame. 

The proposed accelerometer functions in the following 

manner: Initially, the optical signal from the light source is 

transmitted to the surface of the meta-material via an 

optical fiber. The reflected light wave modes are then 

transferred to the output optical fiber and directed to a 

photo-detector, which links to a readout system. When an 

external acceleration is applied to the reference frame along 

the sensing axis in the positive direction (+x), the movable 
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�  =  !ℎ#$

4&$ , (3) 

�(  =  !#ℎ$

4&$ , (4) 

where �   is the spring stiffness in the sensing direction, 

�( is the spring stiffness in the perpendicular direction, ! is 

the Young’s modulus of silica, ℎ  is the thickness of the 

springs,# is the width of the springs, and & is the length of 

the springs. Here, Young’s modulus of silica is chosen to be 

66.3 )*� and the density of silica is 2170 �+/�$. 

According to Formula 2, one of the most important 

parameters of any accelerometer is the proof mass which 

affects the total behavior of the accelerometer. In this 

design, the overall mass of the proof mass is computed as 

the volume of the inner frame plus the volume of the 

movable beams, multiplied by the density of silica. The 

geometrical characteristics of the 

Table 2: Geometrical characteristics of the mechanical part. 

Parameters Sy

mbol 

Value 

Length of the springs & 220 nm 

Width of the springs # 220 nm 

Thickness of the springs (= silica 

layer thickness) 

ℎ 200 nm 

Width of the inner frame W 150 µm 

Total footprint of the sensor core 

for a 200×200 array 

A ~100×10

0µm 

 

mechanical part, including the inner frame and the 

simple beam springs are addressed in Table 2. 

Based on the desired application and chosen physical 

and geometrical parameters listed in Table 2, functional 

characteristics of the mechanical part of the proposed 

accelerometer can be derived using formulas 2, 3 and 4. 

The overall functionality of the proposed mechanical 

transducer can be determined by a feature called the 

mechanical sensitivity. This characteristic shows the way 

the applied acceleration is converted into mechanical 

displacements of the proof mass. For our proposed design, 

the mechanical sensitivity is calculated using the following 

formula[24]: 

- = �
� 

 (5) 

-( = �
�(

 (6) 

Where -  is the mechanical sensitivity along sensing 

axis, -( is the mechanical sensitivity along y-axis, � is the 

total proof mass, �  and �(  are the spring stiffness in the 

sensing direction and perpendicular direction, respectively. 

It is desired to design the mechanical transducer to have a 

large sensitivity along sensing axis and zero sensitivity 

along perpendicular axis. Functional characteristics of the 

mechanical transducer used in this accelerometer are listed 

in Table 3. 

Table 3:  functional characteristics of the accelerometer. (gr: gram. g: 

m/s2, N: Newton)  

Parameter sy

mbol 

value 

Proof mass (including inner 

frame and movable beams) 

� 13.8 

ngr 

Spring constant along sensing 

axis(x) 

�  0.106 

N/m 

Mechanical sensitivity along 

sensing axis (x) 

-  1.3 

nm/g 

Spring constant along sensing 

axis(y) 

�( 2.65 

N/m 

Mechanical sensitivity along y 

axis 

-( 0.052 

nm/g 

Measurement range . ± 38.4 

 

In an accelerometer, a critical factor is its sensitivity to 

accelerations perpendicular to the sensing axis, ideally 

being zero. For our proposed accelerometer, the value of 

this parameter is small enough due to the negligible 

mechanical sensitivity in the sensing direction. This 

minimal sensitivity along the y axis is attributed to the use 

of simple beam springs, which provides significant stiffness 

in the y direction. 

4.2. design and analysis of the optical displacement 

sensing system 

As explained in section 2, movements of the meta-

material’s movable beamslead to alterations in the gap size 

of the antennas, subsequently resulting in a shift in the 

central wavelength of the output resonance mode.For more 
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5-Comparative study 

In this section, we conduct a comparative analysis 

between our proposed accelerometer and some recent 

works [13, 14] within this domain. The main advantage of 

our proposed work over other recent contributions 

employing a wavelength modulation scheme is the ultra-

high sensitivity of the optical sensing system, which is the 

highest reported sensitivity to date. This exceptional feature 

is attributed to the remarkable sensitivity of the Fano 

resonance peaks to external stimuli [20-23]. 

When considering the trade-off between sensitivity and 

the measurement range of the accelerometer, our device 

exhibits an overall sensitivity larger than that of other 

recent works, albeit with a smaller measurement range 

compared to its counterparts. 

An additional critical parameter in wavelength 

modulation-based sensing systems is optical  

Table 4:A comparative table between our proposed accelerometer and 

other recent works in this era. 

parameter 
This 

work 
[7] [8] [9] [10] 

Footprint of 

the core part 

[µm] 

100×100 

µm 

2.8×2.8 

mm 

400×400 

µm 

4×4 

mm 
- 

Mechanical 

sensitivity 

[nm/g] 

1.3 - 3.18 1009 130 

Sensitivity of 

the optical 

sensing 

system 

[nm/nm] 

0.9 - 0.368 0.032 0.026 

Overall 

sensitivity of 

the 

accelerometer 

[nm/g] 

1.17 1.63 1.17 32.9 3.4 

Measurement 

range [g] 
± 38.4 g ± 5.2 g ± 22 g ± 1 g ± 5 g 

 

sensitivity, depicting wavelength shifts in response to 

proof mass displacements. In our proposed sensing system, 

this sensitivity is larger than all other works in this era.The 

summarized results of this comparative review are 

presented in Table 4. 

6-Conclusion 

This paper introduces an integrated optical MEMS 

accelerometer that relies on an optical read-out approach. 

The device's optical sensing system is based on a 

wavelength modulation method, achieved using an LD light 

source, a photo-detector, and a mechanically tunable all-

dielectric meta-material. Analytical and frequency domain 

simulations were conducted to study the mechanical 

structure and optical sensing system, respectively. The 

simulations provided the following functional 

characteristics for the proposed micro-device: a mechanical 

sensitivity of 0.13 nm/g, a linear measurement range of -

38.4 g to 38.4 g, an optical sensitivity of 0.9 nm/g, an 

overall sensitivity of 1.17 nm/g, and negligible non-

linearity across the total measurement range. These 

characteristics make it suitable for various applications, 

from consumer electronics to inertial navigation. The 

fabrication of the proposed MOEMS accelerometer using 

Deep Reactive Ion Etching is an ongoing effort, which 

could be the subject of a separate paper. 
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