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Abstract 

The efficient operation of container terminals hinges on two crucial aspects: vessel scheduling and resource allocation. These tasks, 

considered NP-hard optimization problems, aim to minimize the total processing time of vessels at docks.While prior research 

predominantly focused on optimizing vessel arrival and departure times, recent studies emphasize the significance of addressing resource 

allocation challenges to enhance overall port efficiency. Recognizing this, our study employs a mathematical model to deepen 

understanding and elucidate inherent constraints.To effectively resolve the model, we employ the Artificial Bee Colony (ABC) algorithm. 

This algorithm is chosen for its efficacy in addressing scheduling problems characterized by limited identical resources, unitary processing, 

and non-repetitive tasks.By utilizing the mathematical model and ABC algorithm, our research aims to optimize vessel scheduling and 

resource allocation in container terminals. Ultimately, the goal is to minimize the total processing time of vessels at docks, thereby 

streamlining operations and improving port efficiency.This research contributes to the field by offering a comprehensive approach to 

address the intertwined issues of vessel scheduling and resource allocation. Its findings hold significance for stakeholders in maritime 

logistics, providing strategies to enhance service delivery and operational performance in container terminals. 

 

Keywords: Optimization; Scheduling; Berth Allocation; Crane Assignment; Artificial bee colony   

1. Introduction 

A terminal in a port is formed by a quay, or a group of 
berths, allowing the berthing and operation of ships 
assigned to a particular traffic, and completed by the land-
based facilities necessary for the exploitation of this 
traffic. A good illustration of this terminal concept for 
containerized traffic is that almost every port now has one 
or more container terminals, reflecting the port's 
adaptation to the trend towards increased 'containerization 
(Stojaković & Twrdy. 2019). Although today there are 
still many conventional vessels carrying a variety of 
goods, particularly on routes serving developing 
countries, it can be estimated that in the future there will 
be only three main categories of cargo vessels: bulk 
carriers (solid/liquid), container ships and conventional or 
ro-ro specialized vessels (heavy lift, bulky, special 
products, cars, neo-bulk, i.e., non-containerizable goods. 
(Sheikholeslami et al. 2019) 
Container terminals are specifically designed for 

containerships, serving as locations where various 

handling equipment is employed to transport containers 

between different points. The significance of these 

terminals is on the rise, especially in the face of new 

challenges posed by advancing shipping technologies, 

pushing for the construction of larger vessels. Given the 

sustained growth in containerized traffic, the operation of 

container terminals has evolved into a pivotal activity. 

Efficient management is crucial for these terminals to 

(Dulebenets, 2020) . 

In our context, good terminal management means 

minimizing the time spent by a container or a ship in the 

port. More precisely, the fine management of container 

handling for loading/unloading appears to be a problem 

that must be studied. This handling represents the first 

link in the chain for imports and the last one for exports. 

For example, consider a large container terminal where a 

new mega-container ship arrives. Efficiently managing 

the berthing process and assigning cranes for loading and 

unloading containers is crucial. In this context, the 

combined problem of berth allocation and crane 

assignment (BACAP - Berth Allocation and Crane 

Assignment Problem) becomes particularly relevant. If 

the terminal fails to optimize these operations within the 

BACAP framework, the ship could experience excessive 

waiting times and delays in loading or unloading, leading 

to increased operational costs and reduced terminal 

throughput. In contrast, an optimized system addressing 

BACAP would ensure that the ship is promptly assigned 

to an available berth and that cranes are efficiently 

allocated to handle the containers, significantly reducing 

turnaround time and enhancing overall terminal 

efficiency. 

The integration of the two components berth allocation 

and crane assignment plays a pivotal role in the import 

process, serving as the initial link in the logistics chain 

within a port terminal. When adequately optimized, it 

ensures a level of efficiency crucial to the terminal's 

overall operation. Both berth allocation and crane 

assignment represent critical resources in the terminal due 

to their inherent limitation. The criticality stems from 

their finite nature, underscoring the necessity for efficient 

*Corresponding author Email address: souainisara@gmail.com 

 

a



Sara Souaini & et al. / Artificial bee colony to solve the berth allocation… 

206 

 

and optimized management to maintain competitiveness 

in a container terminal. (Pindeo, 2008) 

Previous research in vessel scheduling has primarily 

focused on optimizing arrival and departure times, but 

recent studies highlight the critical importance of 

addressing resource allocation challenges to enhance 

overall port efficiency (Issam  et al., 2019) . 

Various mathematical models and optimization 

techniques have been explored to tackle the complex 

problem of allocating handling resources in maritime 

transportation, aiming to minimize berth congestion and 

maximize utilization while considering various 

operational constraints. 

The studies published on this subject highlight the 

importance of resource allocation in vessel scheduling to 

improve port efficiency. However, some of these 

approaches may have limitations in terms of complexity 

or adaptability to dynamic port variations. and they may 

not have explored in depth the specific application of the 

artificial bee colony algorithm to solve this problem. By 

including this method in our research, we will provide a 

new perspective on solving this complex challenge. 

This research focuses on leveraging approximate 

optimization methods, particularly meta-heuristics, to 

address the problem at hand. Initially, a mathematical 

model was formulated, and the Artificial Bee Colony 

algorithm was employed to solve it. The effectiveness of 

this approach was validated through performance 

comparisons with other metaheuristic algorithms. 

However, several key questions remain: How can the 

optimized integration of berth allocation and crane 

assignment improve the overall efficiency of container 

terminals in the face of increasing traffic? What are the 

limitations of existing approaches in optimizing port 

resources, and how can the Artificial Bee Colony 

algorithm offer a more effective solution? Furthermore, 

how can meta-heuristic algorithms adapt to dynamic port 

operations while addressing issues such as berth 

congestion and crane assignment? Ultimately, we seek to 

analyze the impact of optimized resource management on 

ship and container processing times and the overall 

competitiveness of ports. 

 

2. Literature Review 

2.1. Berth Allocation and Crane Assignment Problem 

 Process in a container terminal 

In a container terminal, we are interested in the different 

activities starting with the unloading of the ships until 

their loading. We are also interested in the different 

handling equipment associated with them and discuss the 

different problems that are associated with them, figure 

(1). 

Fig. 1.  Process in a container terminal. 
 

 Berth Allocation 

The objective is to assign incoming ships to the available 

berths within a container terminal, catering to various ship 

types, ranging from deep-sea vessels capable of carrying 

up to 13,000 container units (TEU) to conventional ships 

with a 4,000 TEU capacity. Upon the ship's arrival at the 

port, it needs to dock at the quay, and the port operators 

have a specific number of berths on the quay at their 

disposal. The capacity of a quay to accommodate ships 

depends on its length (Lassoued & Elloumi, 2019). 

Before the ship arrives, terminal operators receive 

information about the ship's type, the number of 

containers to be loaded or unloaded, and the expected 

arrival and departure times. During the berth allocation 

planning, details such as berthing time, the precise 

position of each ship at the quay, and the availability of 

various resources on the quayside are determined. 

Berth Allocation Planning (BAP) is a critical operation in 

the terminal and berth planning process, directly 

impacting the ship's turnaround time and the flow of 

containers in the port (Nishimura & Papadimitriou, 2001). 

Traditionally, terminal operators employed a first-come, 

first-served (FCFS) policy for berth allocation, but this 

approach is no longer viable today. 

BAP is defined as the challenge of allocating berth space 

for incoming ships in a port, considering multiple realistic 

constraints. As vessels arrive sequentially, the port 

operator must efficiently allocate berths to ensure prompt 

service, involving the loading and unloading of 

containers. 

 

 Classification of the BAP 

The BAP can be considered and formulated according to 

discrete or continuous, static or dynamic variations. 

Static BAP: BAP can be modeled as a static problem 

(SBAP), if all ships are in port before the planning starts. 

Several research works on BAP have considered this 

theory with a discrete berth distribution. 

Dynamic BAP: If the SBAP assumption is relaxed, i.e., 

some ships may arrive after the start of the planning plan, 

the dynamic berth allocation problem arises (DBAP). This 

problem is difficult to solve even if there is only one berth 

available. Most of the research that deals with BAP 

focuses on this assumption, as it better represents the way 

terminals operate today. 

Discrete or Continuous BAP: Whether BAP is 

characterized as a discrete or continuous problem hinges 

on the conceptualization of the quay. If the quay is 

envisioned as a finite set of berths, with each berth 

represented as a segment of fixed length (Saharidis et al.,, 
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2010) (Wang et al., 2019), then BAP can be appropriately 

modeled as a discrete problem. 

 

 BAP-CAP integration 

In this perspective, the targeted problem is a berthing area 

scheduling problem with resource allocation. The reason 

for the choice of integrating these two problems at the 

same time comes from their real and effective interaction 

in a port. Indeed, the primary objective of the CAP is to 

define the service time for loading/unloading, a crucial 

input variable for the BAP problem. Consequently, 

simultaneously modeling both problems brings us closer 

to the operational reality of a port. Therefore, solving the 

combined problem holds immediate applicability for a 

port manager. The integration of the two components, 

BAP and QCAP (Quay Crane Allocation Problem), gives 

rise to the BACAP (Berth Allocation and Crane 

Assignment Problem). This amalgamation has been a 

focal point of interest among researchers in the field for 

the past decade (Saharidis et al.,, 2010),(Wang et al., 

2019). 

2.2. Research gap and comparative analysis  

To address the research gap and highlight the 

contributions of our study, we include a comparative table 

that summarizes key features of existing research on berth 

allocation and crane assignment problems (BACAP) and 

compares them with the current research. This table helps 

to identify the strengths and limitations of previous 

studies and illustrates how our research advances the 

field. 

 

 

Table 1 

Comparative Analysis of Berth Allocation and Crane Assignment Studies
Reference Model Type Model 

Type 

Objective Key 

Features 

Contribution 

of this paper 

Correcher et al. (2022) 

The berth Allocation 

and quay Crane 

assignmen t problem 

with crane travel and 

setup times 

MILP model for 

BACASP (with and 

without crane 

Travel and setup 

times) 

Genetic 

algorithms 

and exact 

approach 

Minimize total 

Service time, 

Considerin g 

crane 

travel and setup 

times 

MILP model for 

BACASPS, crane 

travel times, exact 

and 

heuristic approach 

solving up to 40 

vessels over 1 km 

quay  

Our work differs by 

Simultaneous sly 

Integrating berth and 

Crane allocation in 

a more flexible 

approach, managing a 

broader range of 

situations without the 

added complexity of crane 

travel, while 

also reducing  computation 

time. 

Grubišić et al. (2021) – 

Optimizati on Process 

for Berth and 

QuayCrane Assignmen 

t in Container 

Terminals with 

Separate Piers 

Threestep optimiza 

Tion  chedule 

h for BACAP 

Three-step 

optimizati 

on 

methodol 

ogy 

Grubišić et al. 

(2021) – 

Optimizati on 

Process for 

Berth and 

QuayCrane 

Assignmen t in 

Container 

Terminals with 

Separate Piers 

Fixed crane 

allocation, 

improved crane 

utilization, three 

operational 

scenarios to 

enhance forecast 

and reliability 

Our unified approach optimizes 

berth and crane allocation in a 

standard context without 

requiring multiple scenarios, 

simplifying managemen t while 

achieving greater efficiency and 

adaptability in both standard 

and complex terminals. 

Rodrigues & Agra 

(2020) – Berth 

allocation and quay 

crane assignmen 

t/ chedule ng problem 

under uncertaint y: A 

survey 

Survey of stochast 

ic, robust, and fuzzy 

approach hes 

Proactive, 

reactive, 

and 

proactive/ 

reactive 

approache 

s  

Review 

approache s for 

BACAP 

optimizati on 

under uncertaint 

y 

Overview of key 

optimization 

methods for 

BACAP under 

uncertainty, 

identified common 

sources of 

uncertainty 

Unlike studies focusing solely 

on uncertainty, our model 

provides faster and more 

efficient optimization for 

dynamic scenarios such as 

vessel arrival while being 

adaptable to varying port traffic 

conditions without relying on 

complex stochastic methodologi 

es. 

Putri et al. (2023) – A 

Simulation of Berth 

Scheduling Problem for 

Container Terminals 

Considerin g Internal 

Trucks and Vessels 

Arrival Time 

Berth schedule Ng 

simulate on model 

Simulation 

of berth 

allocation 

Minimize vessel 

waiting times 

and 

optimize berth 

scheduling 

based on vessel 

and 

truck arrival 

Simulation 

considering internal 

trucks and vessel 

arrival, optimizing 

vessel waiting and 

handling times 

Our approach focuses on 

precise and rapid optimization 

of berth and crane allocation 

without the added complexity 

of managing internal trucks, 

making our model more 

adaptable to different terminal 

types while significantly 

reducing vessel waiting times. 
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 This table demonstrates that while previous studies have 

made significant contributions to the optimization of berth 

allocation and crane assignment, they often face 

limitations related to computational complexity, 

adaptability, or integration of both components. Our 

research addresses these gaps by applying the Artificial 

Bee Colony algorithm to BACAP, offering a more 

adaptable and potentially more efficient solution.
 

2.3 Artificial bee colony
 

The Artificial Bee Colony (ABC) algorithm, developed 

based on the intelligent behavior of a bee swarm by 

Karaboga and Basturk in 2007, has become one of the 

most extensively used intelligent swarm algorithms in 

various applications in recent years (Karaboga, & 

Basturk, 2008). (Karaboga & Akay, 2009).This 

population-based combinatorial optimization algorithm 

takes inspiration from the foraging behavior of real bees, 

employing a collective approach to imitate the actions of 

a bee colony in locating the optimal food source (Nayak 

et al. , 2012). 
Adhering to the minimal selection model observed in real 

bee foraging, the artificial bee colony in ABC consists of 

three distinct groups of bees. Firstly, there are employed 

bees that are associated with specific food sources. 

Secondly, onlooker bees play a crucial role by observing 

and interpreting the dance of employed bees, enabling 

them to select a food source. Lastly, scout bees are tasked 

with conducting random searches to explore alternative 

food sources. Onlookers and scouts are also colloquially 

referred to as unemployed bees. At the outset, scout bees 

identify all food source positions (Karaboga, 2005). 

Subsequently, employed and onlooker bees exploit nectar 

from the food sources, leading to their eventual 

exhaustion. A worker bee, having depleted a food source, 

transitions to becoming a scout bee searching for new 

food sources (Karaboga, & Basturk, 2008). 

In the ABC framework, the position of a food source 

serves as a potential solution, representing an initial 

feasible solution to the problem. The quantity of nectar 

associated with a food source indicates the quality or 

fitness of the corresponding solution. In its basic 

structure, the number of employed bees aligns with the 

number of food sources or solutions. Each employed bee 

is dedicated to and associated with a specific food source 

(Karaboga, & Basturk, 2008). (Karaboga & Akay, 2009), 

(Karaboga, 2005). This organization reflects the 

algorithm's approach to exploring and optimizing 

solutions through the collective efforts of the employed 

bee population. 

2.4. Related works 

 In my previous research, I delved into the task scheduling 

problem, a primarily non-deterministic polynomial (NP-

hard) challenge that entails organizing a sequence of tasks 

temporally while considering real constraints. I addressed 

this problem by employing various meta-heuristic 

algorithms, with a particular focus on comparing the 

performance of the genetic algorithm and the artificial bee 

colony in a scheduling scenario characterized by identical 

limited resources, unitary processing, and non-repetitive 

tasks. The study's findings revealed that the ABC 

algorithm surpassed the genetic algorithm, yielding 

superior results in the specific context of task scheduling 

(Sart et al. 2023). 

3. Contextualization of the Study 

Efficient scheduling of sea-side operations in container 

terminals significantly influences their competitiveness, 

serving as a critical bottleneck operation in terminals 

worldwide. One of the contemporary challenges in 

planning these operations involves integrating quay space 

and allocating cranes to vessels for loading/unloading, 

with the aim of optimizing service time (Gu et al, 2012). 

The CAP is focused on determining the total berthing 

time at the quay, which includes both service time 

(loading/unloading) and waiting time. This cumulative 

berthing time is a vital input for the BAP. The CAP 

essentially contributes critical information to the broader 

challenge of optimizing berthing and crane assignments 

within a container terminal. The simultaneous modeling 

of this integrated problem provides a more realistic 

portrayal of port operations. Consequently, solving these 

problems jointly offers immediate practical applicability 

for a port manager. The amalgamation of BAP and CAP 

results in the intriguing problem known as BACAP, the 

focal point of our paper. We aim to formulate a new 

mathematical model and apply a solution approach to 

address this combined challenge. 

3.1. Mathematical model 

Within the non-linear framework of BACAP, the model 

takes into account both the discrete typology of berths and 

the dynamic temporal aspect of the ship arrival process 

(Kramer et al., 2019), (Lalla-Ruiz & Voß, 2016) 

 

To formulate BACAP, our proposed objective is to 

minimize the waiting and handling times of container 

ships, as depicted in the following expression: 
 

𝑀𝑖𝑛𝑍 = ∑ waiting time + 

𝑛

𝑘=1

∑ handling time       n = num of vessels

𝑛

𝑘=1

 

 

And explained by the chronology of the berthing 

operations in the figure. 

 
 

Fig. 2. Berthing operations 
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 In what follows, we present the new mathematical 

formulation for the time-invariant assignment, referred to 

as BACAP (Berth Allocation and Crane Assignment 

Problem).
 

 

Model’s notations & parameters: 

Input 

 

i = 1, … , I set of vessels ; 

j = 1, … , J set of discrete berths ; 

k = 1, … , K set of ship services at the same 

berth ; 

ai = ship arrival time ; i ∈ I 
ci = ship container capacity ; i ∈ I 
v = crane speed (cont/hour) 

H = number of available mobile Crane 

 

Decision Variables: 

 

xijk  {
 =  if the ship i is served at berth j as the kth ship.

=  0 else
 

 

xil     {
= 1 if the ship i is served before the completion 

time of ship l
=  0 else

 

 

hi = integer: {0,1,2}, number of cranes affected to ship i, i 

∈ I 

si = starting service time of ship i, i ∈ I 

fi = finishing service time of ship i, i ∈ I 

The mathematical nonlinear model is formulated as: 

 
𝑀𝑖𝑛 𝑍 = ∑ ∑ ∑ (𝑠𝑖 − 𝑎𝑖) 𝑥𝑖𝑗𝑘 + ∑ ∑ ∑ (𝑓𝑖 − 𝑠𝑖) 𝑥𝑖𝑗𝑘  𝑘𝑗𝑖𝑘𝑗𝑖  (2)  
 
∑ ∑  𝑥𝑖𝑗𝑘 = 1𝑘𝑗     (3) 
∑ 𝑥𝑖𝑗𝑘 ≤ 1       ∀𝑗 ∀𝑘 𝑖    (4) 
 
𝑠𝑖  ≥  𝑎𝑖        (5) 
 
ℎ𝑖   ≤ 2      ∀ 𝑖 ∈  𝐼    (6) 
 
∑ 𝑠𝑖𝑥𝑖𝑗𝑘 ≥ ∑ (𝑙 𝑠𝑙 +

𝑠𝑙

𝑣ℎ𝑙
) 𝑥𝑖𝑗(𝑘−1)        ∀𝑗 ∀𝑘 𝑖  (7) 

 
ℎ𝑖 + ∑ ℎ𝑙𝑦𝑖𝑙 ≤ 𝐻        ∀ 𝑖 ∈  𝐼 𝑙≠𝑖   (8) 
 

𝑒𝑖 = 𝑠𝑖 +
𝐶𝑖

𝑣ℎ𝑖
    (9) 

 

The objective function (2) is designed to minimize the 

total of waiting time and handling service duration for 

container ships. The formulated constraints are as follows: 

Constraint (3) ensures that only one vessel can be served 

at a berth concurrently.  

Constraint (4) limits each berth to hosting only one vessel 

at any specific time.  

Constraint (5) dictates that the initiation of service must 

commence either precisely at or after the arrival of the 

vessel. 

Constraint (6) governs the maximum number of cranes 

that can be concurrently assigned to a single vessel. 

Constraint (7) stipulates that a vessel may not be served at 

any berth after the departure of the preceding vessel. 

Constraint (8) ensures that the allocation of cranes does 

not surpass the available crane capacity at any given time. 

Constraint (9) sets the end times for loading/unloading 

containers. 

3.2. Solving approach  

The initial step in the heuristic solution approach involves 

generating an initial solution in the first phase, where 

berth and crane assignments are made for relevant vessels 

across the planning horizon, adhering to constraints (3) 

through (5). As mentioned earlier, two cranes can be 

assigned to container ships for handling operations. 

Consequently, constraint (10) is verified after each 

assignment attempt to ensure that the allotted number of 

cranes is not exceeded. If it is, the heuristic adapts by 

removing one crane for certain vessels. The presented 

structure for the construction heuristic is depicted in 

Figure 3. 

 
Fig. 3. Framework for the construction heuristic 

3.3. Artificial Bee Colony (ABC) to solve BACAP  

The implemented ABC algorithm for resolving the 

BACAP encompasses the following main steps: 
 

 



Sara Souaini

 

& et al. /

 

Artificial bee colony to solve the berth allocation…

 

210 

 

3.4. Experiments and results 

The formulated mathematical model was implemented 

using the MATLAB programming language. 

Experimental trials were conducted on problem instances 

of varying sizes, spanning from 12 to 40 ships. This 

diverse range of scenarios aimed to draw conclusions 

regarding the performance of the instances. Additionally, 

the parameters of the Artificial Bee Colony (ABC) 

algorithm were adjusted to assess the influence of these 

modifications on the obtained results. 

 

 Initial solution 

The input of the heuristic to build an initial solution is 

presented in Table 2. The scope of work is 6 ships, 3 

discrete berths, 8 available mobile Crane. 

The handling speed is 10 containers/time unit. 

 
Table 2  
Input of the heuristic 

Containership Arrival Containers 

1 10 400 

2 12 400 

3 20 600 

4 15 400 

5 8 300 

6 10 200 

The output represented by Figure 4 shows the assignment 

of berths and cranes. 

 

 
Fig. 4: Output of the heuristic (Initial solution) 

In this preliminary solution, the cumulative service time 

amounts to 186 units.
 

 

 Neighborhood  

To generate a neighbor solution, we perform some 

disruptions on the initial solution. For this example, the 

ship 6 initially assigned to berth 2 will change to berth 3. 

This has been done to take account of arrival time 

constraints. 

Adjusting the start of handling operations can be 

employed to meet the constraint of utilizing the maximum 

number of available cranes. In this instance, the 

alternative solution from the neighboring adjustments 

yields a more favorable result for the total service time, 

reducing it to 155 units. 

 

 
Fig. 5. Output of the heuristic (Neighbor solution) 

 

 Generating data 

To model the berth and crane assignment process across 

various horizons of time, we executed our program on 

instances of different sizes, generating data randomly for 

each scenario. 

 

4. Solution Representation  

 

A solution is represented as a vector where the length 

equals the number of ships to be allocated, with each 

value indicating the index of the assigned berth. For 

example, for allocating 10 ships across 3 berths, a 

solution might look like: 

3 1 2 1 1 3 2 1 3 1 

The program I developed outputs a solution matrix where 

the columns represent the number of ships and the rows 

represent the number of solutions in the population (food 

number), including the index of the best solution. 

 

 
Fig. 6. Example of solution matrix 

 

 
Fig. 7. Best solution index 

 

Additionally, we also obtain the number of cranes per 

berth. In this example, we have 3 berths and a maximum 

of 4 cranes. 
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Fig. 8. Number of cranes per berth 

This representation of the solution allows us to assign 

each ship to a specific berth while also considering the 

allocation of cranes to each berth. By using this 

vectorbased approach, we ensure that every ship is 

allocated to a berth, and we can effectively manage the 

distribution of cranes across berths. This approach 

adheres to the maximum number of cranes permitted at 

each berth, thus guaranteeing that the solution is feasible. 

In essence, this method not only provides a clear and 

structured way to handle the allocation but also ensures 

that all constraints are met, including the capacity limits 

of each berth. Consequently, this representation helps us 

achieve an optimal and practical solution that satisfies all 

operational requirements. 

 

5. Results and Discussions 

 

To evaluate the efficacy of the BACAP model in more 

extensive instances, additional test scenarios were 

randomly generated, preserving the constant number of 

berths and available cranes as in previous cases. The 

number of ships varied from 12 to 40 through adjustments 

in the ABC parameters. 

Throughout the search process, the final optimal solution 

was achieved after around 200 cycles and remained 

consistent in subsequent iterations. 

 

 

 

 

 

 

  

12 vessels 30 vessels 
 

 
 

24 vessels 40 vessels 

 Fig. 9. The presented graphs result from simulating each experiment through 10 runs. 
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Table 3   

The presented result from simulating each experiment through 

10 runs. 

Instance 

Size 

Algorithm parameters  

(population, limit, 

Cmax) 

Running 

time 

Deviation 

of the 

initial 

solution 

Deviation 

of the 

final 

solution  

12 ships 
10,15,50 15s 0,11 0 

50,100,200  22s 0,01 0 

24 ships 
20,50,100  21s 0,13 0 

50,200,300 25s 0 0 

30 ships 
50,250,300 22s 0,05 0 

100,500,1000 40s 0 0 

40 ships 
50,250,300 22s 0,07 0 

100,500,1000  55s 0,03 0 

 

The final solutions from these simulations for identical 

instances consistently converge to the same outcome, 

demonstrating the algorithm's efficiency. This consistent 

convergence is a key indicator of the algorithm's 

robustness, showing that it reliably finds optimal 

solutions. The initial solutions in each simulation exhibit 

limited dispersion, which can be attributed to the 

population size in the ABC algorithm. The heuristic 

selects the best solution from this population of initial 

feasible solutions. This means that even at the outset, the 

solutions generated by the algorithm are close to optimal, 

contributing to the overall efficiency of the algorithm. 

Notably, even for the largest instance involving 40 ships, 

the algorithm achieves global optimality in approximately 

one minute. This extremely short computation time 

indicates highly satisfactory performance for the ABC 

algorithm, even for complex and large-scale instances. 

The increase in the Cyclemax parameter is observed when 

the convergence graph indicates ongoing minimization of 

the total service time. This suggests that better results 

could be achieved with a higher number of iterations, 

highlighting the importance of this parameter for 

optimizing the search process. It is also important to note 

that the NS parameter significantly influences the initial 

solution, playing a crucial role in the search process. 

Conversely, the Cyclemax parameter impacts the final 

solution, serving as a limit to enable the algorithm to 

explore different feasible solution areas. For smaller 

instances (e.g., 12 vessels), the solution approach quickly 

reaches the global optimum, while for larger instances, 

particularly with increased tuning parameters, the time 

required to find the optimal solution is longer. In 

summary, Our research focuses on the Berth Allocation 

and Crane Assignment Problem (BACAP), optimizing 

both berth allocation and crane assignment. We 

demonstrate that the Artificial Bee Colony (ABC) 

algorithm efficiently finds optimal solutions, even with 

increasing problem sizes, outperforming other 

metaheuristic approaches in computational efficiency. 

This work extends from our previous research, where we 

investigated task scheduling problems using various 

metaheuristic algorithms, including ABC, and found it 

superior to genetic algorithms in that context. Our current 

study advances the field by providing a novel approach to 

BACAP, leveraging the ABC algorithm's strengths to 

improve computational performance. Unlike existing 

studies that may focus on specific aspects or limitations 

such as internal truck delays or uncertainty, our approach 

excludes these factors to streamline the problem and 

enhance efficiency. This contribution offers a new 

perspective on BACAP and highlights the advantages of 

targeted optimization techniques for achieving superior 

results. 

4. Conclusion  

In this paper, we explored a container terminal scheduling 

problem involving the efficient management of berths and 

crane allocation. Due to the inherent complexity of this 

NP-hard problem, we proposed a solution approach based 

on an Artificial Bee Colony (ABC) algorithm. The results 

demonstrate the effectiveness of this approach, 

showcasing its potential to obtain optimal solutions 

rapidly through simulation. The ABC algorithm exhibited 

remarkable efficiency, solving both small- and large-scale 

problems effectively, and consistently identifying optimal 

solutions even for complex instances with up to 40 ships. 

However, our study has certain limitations. First, our 

simplified model does not account for practical factors 

such as internal truck delays and uncertainties related to 

vessel arrivals, which could affect its real-world 

applicability. Additionally, the performance of the ABC 

algorithm is sensitive to its parameters, which presents a 

challenge for optimization in various contexts. To address 

these limitations, we recommend several avenues for 

future research. It would be valuable to incorporate 

additional factors, such as internal truck delays and vessel 

arrival uncertainties, to enhance the model's applicability 

to real-world scenarios. Furthermore, developing 

automated or adaptive methods for tuning the parameters 

of the ABC algorithm could improve its performance. 

Finally, practical validation of the algorithm through real-

world case studies or pilot projects would help assess its 

effectiveness and feasibility in actual port operations. By 

integrating our findings with the broader context of 

optimizing vessel scheduling and resource allocation in 

container terminals, our research provides practical 

solutions to the challenges faced in maritime logistics. By 

leveraging the mathematical model and the ABC 

algorithm, we aim to streamline operations and improve 

port efficiency, contributing to enhanced service delivery 

and operational performance. Our study offers valuable 

insights into addressing the intertwined issues of vessel 

scheduling and resource allocation, providing 

stakeholders in maritime logistics with strategies to 

navigate this complex field effectively. 
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