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Abstract 

The efficient operation of container terminals hinges on two crucial aspects: vessel scheduling and resource allocation. Thes e 
tasks, considered NP-hard optimization problems, aim to minimize the total processing time of vessels at docks.  
While prior research predominantly focused on optimizing vessel arrival and departure times, recent studies emphasize the 
significance of addressing resource allocation challenges to enhance overall port efficiency. Recognizing this, our study 
employs a mathematical model to deepen understanding and elucidate inherent constraints.  
To effectively resolve the model, we employ the Artificial Bee Colony (ABC) algorithm. This algorithm is chosen for its 
efficacy in addressing scheduling problems characterized by limited identical resources, unitary processing, and non -

repetitive tasks. 
By utilizing the mathematical model and ABC algorithm, our research aims to  optimize vessel scheduling and resource 
allocation in container terminals. Ultimately, the goal is to minimize the total processing time of vessels at docks, thereby  
streamlining operations and improving port efficiency. 
This research contributes to the field by offering a comprehensive approach to address the intertwined issues of vessel 
scheduling and resource allocation. Its findings hold significance for stakeholders in maritime logistics, providing strategi es 

to enhance service delivery and operational performance in container terminals. 
 
Keywords: Optimization – Scheduling - Berth Allocation - Crane Assignment – Artificial bee colony   

1. Introduction 

A terminal in a port is formed by a quay, or a group of 
berths, allowing the berthing and operation of ships 
assigned to a particular traffic, and completed by the land-

based facilities necessary for the exploitation of this 
traffic. A good illustration of this terminal concept for 
containerized traffic is that almost every port now has one 
or more container terminals, reflecting the port's 
adaptation to the trend towards increased 'containerization 
[10]. Although today there are still many conventional 

vessels carrying a variety of goods, particularly on routes 
serving developing countries, it can be estimated that in 
the future there will be only three main categories of 
cargo vessels: bulk carriers (solid/liquid), container ships 
and conventional or ro-ro specialized vessels (heavy lift, 
bulky, special products, cars, neo-bulk, i.e., non-

containerizable goods) [16]. 

Container terminals are specifically designed for 
containerships, serving as locations where various 
handling equipment is employed to transport containers 

between different points. The significance of these 
terminals is on the rise, especially in the face of new 
challenges posed by advancing shipping technologies, 
pushing for the construction of larger vessels. Given the 
sustained growth in containerized traffic, the operation of 
container terminals has evolved into a pivotal activity. 

Efficient management is crucial for these terminals to 
compete successfully in this dynamic environment. [1]. 
In our context, good terminal management means 
minimizing the time spent by a container or a ship in the 
port. More precisely, the fine management of container 
handling for loading/unloading appears to be a problem 

that must be studied. This handling represents the first 
link in the chain for imports and the last one for exports. 
The integration of the two components berth allocation 
and crane assignment plays a pivotal role in the import 
process, serving as the initial link in the logistics chain 
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within a port terminal. When adequately optimized, it 
ensures a level of efficiency crucial to the terminal's 
overall operation. Both berth allocation and crane 
assignment represent critical resources in the terminal due 

to their inherent limitation. The criticality stems from 
their finite nature, underscoring the necessity for efficient 
and optimized management to maintain competitiveness 
in a container terminal. [13]. 
Previous research in vessel scheduling has primarily 
focused on optimizing arrival and departure times, but 

recent studies highlight the critical importance of 
addressing resource allocation challenges to enhance 
overall port efficiency [3]. 
Various mathematical models and optimization 
techniques have been explored to tackle the complex 
problem of allocating handling resources in maritime 

transportation, aiming to minimize berth congestion and 
maximize utilization while considering various 
operational constraints. 
The studies published on this subject highlight the 
importance of resource allocation in vessel scheduling to 
improve port efficiency. However, some of these 

approaches may have limitations in terms of complexity 
or adaptability to dynamic port variations. and they may 
not have explored in depth the specific application of the 
artificial bee colony algorithm to solve this problem. By 
including this method in our research, we will provide a 
new perspective on solving this complex challenge. 

This research focuses on leveraging approximate 
optimization methods, particularly meta-heuristics, to 
address the problem at hand.  
Initially, a mathematical model was formulated, and the 
artificial bee colony algorithm was employed to solve it. 
The effectiveness of this approach was validated through 

performance comparisons with other metaheuristic 
algorithms. 

2. Literature review 

2.1. Berth Allocation and Crane Assignment Problem 

1. Process in a container terminal 

 
In a container terminal, we are interested in the different 
activities starting with the unloading of the ships until 
their loading. We are also interested in the different 
handling equipment associated with them and discuss the 

different problems that are associated with them, figure 
(1). 

Fig. 1:  Process in a container terminal. 
 

2. Berth Allocation 

 
The objective is to assign incoming ships to the available 
berths within a container terminal, catering to various ship 
types, ranging from deep-sea vessels capable of carrying 
up to 13,000 container units (TEU) to conventional ships 

with a 4,000 TEU capacity. Upon the ship's arrival at the 
port, it needs to dock at the quay, and the port operators 
have a specific number of berths on the quay at their 
disposal. The capacity of a quay to accommodate ships 
depends on its length [9]. 
Before the ship arrives, terminal operators receive 

information about the ship's type, the number of 
containers to be loaded or unloaded, and the expected 
arrival and departure times. During the berth allocation 
planning, details such as berthing time, the precise 
position of each ship at the quay, and the availability of 
various resources on the quayside are determined. 

Berth Allocation Planning (BAP) is a critical operation in 
the terminal and berth planning process, directly 
impacting the ship's turnaround time and the flow of 
containers in the port [12]. Traditionally, terminal 
operators employed a first-come, first-served (FCFS) 
policy for berth allocation, but this approach is no longer 

viable today. 
BAP is defined as the challenge of allocating berth space 
for incoming ships in a port, considering multiple realistic 
constraints. As vessels arrive sequentially, the port 
operator must efficiently allocate berths to ensure prompt 
service, involving the loading and unloading of 

containers. 
 

3. Classification of the BAP 

 
The BAP can be considered and formulated according to 
discrete or continuous, static or dynamic variations. 
Static BAP: BAP can be modeled as a static problem 
(SBAP), if all ships are in port before the planning starts. 

Several research works on BAP have considered this 
theory with a discrete berth distribution. 
Dynamic BAP: If the SBAP assumption is relaxed, i.e., 
some ships may arrive after the start of the planning plan, 
the dynamic berth allocation problem arises (DBAP). This 
problem is difficult to solve even if there is only one berth 

available. Most of the research that deals with BAP 
focuses on this assumption, as it better represents the way 
terminals operate today. 
Discrete or Continuous BAP: Whether BAP is 
characterized as a discrete or continuous problem hinges 
on the conceptualization of the quay. If the quay is 

envisioned as a finite set of berths, with each berth 
represented as a segment of fixed length [17] [14], then 
BAP can be appropriately modeled as a discrete problem. 
 

4. BAP-CAP integration 

 
In this perspective, the targeted problem is a berthing area 
scheduling problem with resource allocation. The reason 
for the choice of integrating these two problems at the 

same time comes from their real and effective interaction 
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in a port. Indeed, the primary objective of the CAP is to 
define the service time for loading/unloading, a crucial 
input variable for the BAP problem. Consequently, 
simultaneously modeling both problems brings us closer 

to the operational reality of a port. Therefore, solving the 
combined problem holds immediate applicability for a 
port manager. The integration of the two components, 
BAP and QCAP (Quay Crane Allocation Problem), gives 
rise to the BACAP (Berth Allocation and Crane 
Assignment Problem). This amalgamation has been a 

focal point of interest among researchers in the field for 
the past decade [17] [14]. 

2.2. Artificial bee colony 

The Artificial Bee Colony (ABC) algorithm, developed 
based on the intelligent behavior of a bee swarm by 
Karaboga and Basturk in 2007, has become one of the 
most extensively used intelligent swarm algorithms in 

various applications in recent years [5] [4]. This 
population-based combinatorial optimization algorithm 
takes inspiration from the foraging behavior of real bees, 
employing a collective approach to imitate the actions of 
a bee colony in locating the optimal food source [11]. 
Adhering to the minimal selection model observed in real 

bee foraging, the artificial bee colony in ABC consists of 
three distinct groups of bees. Firstly, there are employed 
bees that are associated with specific food sources. 
Secondly, onlooker bees play a crucial role by observing 
and interpreting the dance of employed bees, enabling 
them to select a food source. Lastly, scout bees are tasked 

with conducting random searches to explore alternative 
food sources. Onlookers and scouts are also colloquially 
referred to as unemployed bees. At the outset, scout bees 
identify all food source positions [6]. 
Subsequently, employed and onlooker bees exploit nectar 
from the food sources, leading to their eventual 

exhaustion. A worker bee, having depleted a food source, 
transitions to becoming a scout bee searching for new 
food sources [5]. 
In the ABC framework, the position of a food source 
serves as a potential solution, representing an initial 
feasible solution to the problem. The quantity of nectar 

associated with a food source indicates the quality or 
fitness of the corresponding solution. In its basic 
structure, the number of employed bees aligns with the 
number of food sources or solutions. Each employed bee 
is dedicated to and associated with a specific food source 
[5] [4] [6]. This organization reflects the algorithm's 

approach to exploring and optimizing solutions through 
the collective efforts of the employed bee population. 

2.3. Related works 

 In my previous research, I delved into the task scheduling 
problem, a primarily non-deterministic polynomial (NP-
hard) challenge that entails organizing a sequence of tasks 
temporally while considering real constraints. I addressed 
this problem by employing various meta-heuristic 

algorithms, with a particular focus on comparing the 

performance of the genetic algorithm and the artificial bee 
colony in a scheduling scenario characterized by identical 
limited resources, unitary processing, and non-repetitive 
tasks. The study's findings revealed that the ABC 

algorithm surpassed the genetic algorithm, yielding 
superior results in the specific context of task scheduling 
[15]. 

3. Contextualization of the study 

Efficient scheduling of sea-side operations in container 
terminals significantly influences their competitiveness, 
serving as a critical bottleneck operation in terminals 

worldwide. One of the contemporary challenges in 
planning these operations involves integrating quay space 
and allocating cranes to vessels for loading/unloading, 
with the aim of optimizing service time [2]. 
The CAP is focused on determining the total berthing 
time at the quay, which includes both service time 

(loading/unloading) and waiting time. This cumulative 
berthing time is a vital input for the BAP. The CAP 
essentially contributes critical information to the broader 
challenge of optimizing berthing and crane assignments 
within a container terminal. The simultaneous modeling 
of this integrated problem provides a more realistic 

portrayal of port operations. Consequently, solving these 
problems jointly offers immediate practical applicability 
for a port manager. The amalgamation of BAP and CAP 
results in the intriguing problem known as BACAP, the 
focal point of our paper. We aim to formulate a new 
mathematical model and apply a solution approach to 

address this combined challenge. 

3.1. Mathematical model 

Within the non-linear framework of BACAP, the model 
takes into account both the discrete typology of berths and 
the dynamic temporal aspect of the ship arrival process 
[7][8]. 
 

To formulate BACAP, our proposed objective is to 
minimize the waiting and handling times of container 
ships, as depicted in the following expression: 

 

𝑀𝑖𝑛𝑍 = ∑ waiting  time + 

𝑛

𝑘=1

∑ handling  time       n = num of vessels

𝑛

𝑘=1

 

 

And explained by the chronology of the berthing 
operations in the figure. 

 
 
Fig. 2: Berthing operations 
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In what follows, we present the new mathematical 
formulation for the time-invariant assignment, referred to 
as BACAP (Berth Allocation and Crane Assignment 
Problem). 

 
Model’s notations & parameters: 

Input 

 

i = 1, … , I set of vessels ; 
j = 1, … , J set of discrete berths ; 

k = 1, … , K set of ship services at the same 
berth ; 

ai = ship arrival time ; i ∈ I 
ci = ship container capacity ; i ∈ I 
v = crane speed (cont/hour) 
H = number of available mobile Crane 
 

Decision Variables: 

 

xijk  {
 =  if the ship i is served at berth j as the kth ship.

=  0 else
 

 

xil     {
= 1 if the ship i is served before the completion 

time of ship l
=  0 else

 

 
hi = integer: {0,1,2}, number of cranes affected to ship i, i 

∈ I 

si = starting service time of ship i, i ∈ I 

fi = finishing service time of ship i, i ∈ I 
The mathematical nonlinear model is formulated as: 

 
𝑀𝑖𝑛 𝑍 = ∑ ∑ ∑ (𝑠𝑖 − 𝑎𝑖) 𝑥𝑖𝑗𝑘 + ∑ ∑ ∑ (𝑓𝑖 − 𝑠𝑖) 𝑥𝑖𝑗𝑘  𝑘𝑗𝑖𝑘𝑗𝑖  (2)  

 
∑ ∑  𝑥𝑖𝑗𝑘 = 1𝑘𝑗     (3) 
∑ 𝑥𝑖𝑗𝑘 ≤ 1       ∀𝑗 ∀𝑘 𝑖    (4) 

 
𝑠𝑖  ≥  𝑎𝑖       (5) 
 
ℎ𝑖   ≤ 2      ∀ 𝑖 ∈  𝐼    (6) 
 
∑ 𝑠𝑖𝑥𝑖𝑗𝑘 ≥ ∑ (𝑙 𝑠𝑙 +

𝑠𝑙

𝑣ℎ𝑙
) 𝑥𝑖𝑗(𝑘−1)         ∀𝑗 ∀𝑘 𝑖  (7) 

 
ℎ𝑖 + ∑ ℎ𝑙𝑦𝑖𝑙 ≤ 𝐻        ∀ 𝑖 ∈  𝐼 𝑙≠𝑖   (8) 
 

𝑒𝑖 = 𝑠𝑖 +
𝐶𝑖

𝑣ℎ𝑖
    (9) 

 
The objective function (2) is designed to minimize the 
total of waiting time and handling service duration for 

container ships. The formulated constraints are as follows: 
Constraint (3) ensures that only one vessel can be served 
at a berth concurrently.  
Constraint (4) limits each berth to hosting only one vessel 
at any specific time.  
Constraint (5) dictates that the initiation of service must 

commence either precisely at or after the arrival of the 
vessel. 
Constraint (6) governs the maximum number of cranes 
that can be concurrently assigned to a single vessel. 

Constraint (7) stipulates that a vessel may not be served at 
any berth after the departure of the preceding vessel. 
Constraint (8) ensures that the allocation of cranes does 
not surpass the available crane capacity at any given time. 

Constraint (9) sets the end times for loading/unloading 
containers. 
 

3.2. Solving approach  

The initial step in the heuristic solution approach involves 
generating an initial solution in the first phase, where 
berth and crane assignments are made for relevant vessels 

across the planning horizon, adhering to constraints (3) 
through (5). As mentioned earlier, two cranes can be 
assigned to container ships for handling operations. 
Consequently, constraint (10) is verified after each 
assignment attempt to ensure that the allotted number of 
cranes is not exceeded. If it is, the heuristic adapts by 

removing one crane for certain vessels. The presented 
structure for the construction heuristic is depicted in 
Figure 3. 

 

 Fig. 3: Framework for the construction heuristic 

3.3. Artificial Bee Colony (ABC) to solve BACAP  

The implemented ABC algorithm for resolving the 
BACAP encompasses the following main steps: 
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3.4. Experiments and Results 

The formulated mathematical model was implemented 

using the MATLAB programming language. 

Experimental trials were conducted on problem instances 

of varying sizes, spanning from 12 to 40 ships. This 

diverse range of scenarios aimed to draw conclusions 

regarding the performance of the instances. Additionally, 

the parameters of the Artificial Bee Colony (ABC) 

algorithm were adjusted to assess the influence of these 

modifications on the obtained results. 

 

1. Initial solution 

 

The input of the heuristic to build an initial solution is 

presented in Table 1. The scope of work is 6 ships, 3 

discrete berths, 8 available mobile Crane. 

The handling speed is 10 containers/time unit. 

 
Table 1:  

Input of the heuristic 

Containership Arrival Containers 

1 10 400 

2 12 400 

3 20 600 

4 15 400 

5 8 300 

6 10 200 

 
The output represented by Figure 4 shows the assignment 
of berths and cranes. 

 

 
Fig. 4: Output of the heuristic (Initial solution) 

In this preliminary solution, the cumulative service time 
amounts to 186 units. 
 

2. Neighborhood  

 

To generate a neighbor solution, we perform some 

disruptions on the initial solution. For this example, the 
ship 6 initially assigned to berth 2 will change to berth 3. 
This has been done to take account of arrival time 
constraints. 
Adjusting the start of handling operations can be 
employed to meet the constraint of utilizing the maximum 

number of available cranes. In this instance, the 
alternative solution from the neighboring adjustments  
yields a more favorable result for the total service time, 
reducing it to 155 units. 
 

 
Fig. 5: Output of the heuristic (Neighbor solution) 

 

3. Generating data 

 
To model the berth and crane assignment process across 
various horizons of time, we executed our program on 
instances of different sizes, generating data randomly for 

each scenario. 
 

4. Results and Discussions 

 
To evaluate the efficacy of the BACAP model in more 
extensive instances, additional test scenarios were 
randomly generated, preserving the constant number of 
berths and available cranes as in previous cases. The 

number of ships varied from 12 to 40 through adjustments 
in the ABC parameters. 
Throughout the search process, the final optimal solution 
was achieved after around 200 cycles and remained 
consistent in subsequent iterations.
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   12 vessels  

 
  24 vessels    

   

   30 vessels  

 
  40 vessels 

      

 

Instance Size 

Algorithm 

parameters  

(population, limit, 

Cmax) 

Running time 
Deviation of the 

initial solution  

Deviation of the 

final solution  

12 ships 
10,15,50 15s 0,11 0 

50,100,200  22s 0,01 0 

24 ships 
20,50,100  21s 0,13 0 

50,200,300 25s 0 0 

30 ships 
50,250,300 22s 0,05 0 

100,500,1000 40s 0 0 

40 ships 
50,250,300 22s 0,07 0 

100,500,1000  55s 0,03 0 
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The presented graphs are the result of simulating 
each experiment through 10 runs, and the final 
solutions from these simulations for the identical 
instance consistently converge to an identical 

outcome, demonstrating algorithm's efficiency. 
The initial solutions in each of the simulations exhibit 
limited dispersion, attributed to the population, in the 
algorithm ABC. The heuristic selects the best 
solution from this population of initial feasible 
solutions. 

Notably, even for the most extensive instance 
involving 40 ships, the algorithm achieves global 
optimality in approximately 1 minute, indicating a 
highly satisfactory time performance for ABC. 
The increase in Cyclemax occurs when the 
convergence graph indicates ongoing minimization of 

the total service time. This suggests that better results 
may be achievable with a higher number of iterations. 
It's worth highlighting that the NS parameter 
influences the initial solution significantly, playing a 
crucial role in the search process. Conversely, the 
Cyclemax parameter impacts the final solution, 

serving as a limit to enable the algorithm to explore 
different feasible solution areas. For smaller instances 
(12 vessels), the solution approach rapidly reaches 
the global optimum, whereas it takes longer for larger 
instances, particularly with increased tuning 
parameters. 

4. Conclusion  

In this paper, we have investigated a container 
terminal scheduling problem that involves the 
efficient scheduling of ships at berths and the 
allocation of cranes. Given the inherent complexity 
of this problem, known for its NP-hard nature, we 
have proposed a solution approach based on an ABC 

metaheuristic. The results demonstrate the efficacy of 
the proposed solving approach, showcasing its 
potential to obtain optimal solutions rapidly in 
simulation. The ABC algorithm proposed in this 
study exhibits remarkable efficiency in solving 
problems of both small and large scales. Notably, the 

algorithm consistently identifies optimal solutions, 
demonstrating its robustness across various 
simulation instances. 
Combining our findings with the broader context of 
optimizing vessel scheduling and resource allocation 
in container terminals, our research offers practical 

solutions to address the challenges faced by maritime 
logistics. By leveraging the mathematical model and 
ABC algorithm, we aim to streamline operations and 
improve port efficiency, ultimately contributing to 
enhanced service delivery and operational 
performance in container terminals. Our study 

provides valuable insights into addressing the 
intertwined issues of vessel scheduling and resource 
allocation, offering stakeholders in maritime logistics 
strategies to navigate this complex landscape 

effectively. 
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