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ABSTRACT 
 

 

White spot lesions (WSLs) commonly develop around orthodontic brackets. Amorphous 

calcium phosphate (ACP) is known for its remineralizing properties, which can help 

prevent WSLs. However, the incorporation of ACP may compromise the mechanical 

strength of the material. This study focuses on the development of experimental 

orthodontic adhesives incorporating cellulose nanocrystal (CNC) and amorphous calcium 

phosphate (ACP) to evaluate their bond strength and mineral release properties. The 

experimental resin formulation included BisEMA, TEGDMA, 4-META, 

camphorquinone, and DMAEM. Adhesive disks underwent characterization through FE-

SEM, EDS, and XRD techniques. The release of minerals was quantified using ICP-OES. 

The shear bond strength (SBS) was evaluated immediately after bonding metal brackets 

to bovine incisors. Adhesives containing various fractions of ACP (15%, 20%, and 40%) 

exhibited sustained release of calcium and phosphorus over a 30-day period. The 

incorporation of ACP and CNC contributed to a reduction in adhesive cytotoxicity. The 

adhesive formulation with 40% ACP + 5% CNC showed the lowest SBS, whereas the 

adhesive with 15% ACP + 5% CNC demonstrated suitable bond strength for orthodontic 

applications. Addition of 20% CNC to the experimental resin positively impacted bracket 

bond strength. Likewise, 20% ACP improved shear bond strength. However, the 

combination of 5% CNC with ACP did not significantly affect bond strength. ACP 

nanoparticles show promise for integration into experimental orthodontic adhesives 

containing BisEMA, TEGDMA, 4-META, CQ, and DMAEM. The synergistic use of ACP 

with CNC remains a topic of debate and warrants further investigation. 
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INTRODUCTION 

Tooth enamel, which is composed of long 

apatite crystals [1], can experience demineralization 

around orthodontic brackets, leading to the formation 

of white spot lesions (WSLs) [2]. WSLs are frequently 

observed in orthodontic patients [3]. To mitigate the 

risk of WSLs, researchers are exploring the use of 

remineralizing agents [4]. One approach involves 

enriching orthodontic adhesive with nanoparticles that 

contain minerals like calcium (Ca), phosphorus (P), 

and fluoride (F). These nanoparticles have the potential 

to inhibit tooth demineralization and promote 

remineralization, effectively preventing the occurrence 

of WSLs [5-8].  

Polymer-ceramic composites are widely 

utilized as biomaterials for the repair of bone and tooth 

defects [9-11]. These versatile materials find 

applications in dental implants, dental composites, and 

orthodontic adhesives [12-14]. Specifically, resin-

based composites are commonly employed in 

orthodontic treatments [15]. The incorporation of 

calcium phosphate into composite structures imparts 

bioactivity to these materials [16]. While previous 

studies have predominantly focused on the use of 

crystalline forms of calcium phosphates in dental 

applications [17], there has been a shift towards 

exploring the potential of Amorphous Calcium 

Phosphate (ACP) in dental resins [18-20]. As a result, 

several toothpastes based on ACP have been 

introduced to the market [17]. The dental composites 

containing small amounts of ACPs have the ability to 

release significant quantities of Ca and P due to the 

large surface area of ACPs. This characteristic allows 

for more fillers to be incorporated into the resin, thus 

reinforcing its structure [19]. However, it should be 

noted that an excessive amount of ACP in the adhesive 

can lead to a reduction in bond strength [7, 8]. For 

instance, Zhang et al. [7] successfully developed an 

orthodontic cement by incorporating 40% ACP, which 

not only exhibited sufficient ion release but also 

demonstrated adequate shear bond strength (SBS) for 

orthodontic applications. Their formulation consisted 

of nano-sized ACP mixed with a resin matrix 

comprising HEMA, BisGMA, and PMGDM-

EBPADMA [7]. However, it is important to note that 

the use of HEMA as a monomer in dental resins can 

lead to a weakening of the polymer mechanical 

properties since HEMA cannot form cross-links [21]. 

Additionally, HEMA has been found to increase 

toxicity due to the metabolization of methacrylic acid 

[22]. The safety of Bis-GMA is also a subject of 

controversy due to the release of bisphenol-A [23], and 

these systems are prone to hydrolytic and enzymatic 

degradation, which can further reduce the strength of 

bracket bonds [17]. To address these concerns, other 

monomers such as Bis-EMA (which has a low 

viscosity), TEGDMA (which exhibits high water 

sorption properties), and DMAEM (which offers better 

biocompatibility) can be utilized in dental resins [24]. 

For example, Aleesa et al. [6] synthesized an 

orthodontic adhesive containing BisEMA, TEGDMA, 

DMAEM, Camphorquinone, 4-META, and bioactive 

glass, which demonstrated long-term release of 

fluoride, calcium, and phosphate ions while 

maintaining a satisfactory bracket bond [6]. It should 

be noted that the resin matrix composition of 

orthodontic adhesives plays a crucial role in bracket 

bond strength [7], necessitating the selection of 

appropriate monomers.  

Studies have indicated that orthodontic 

adhesives containing ACP nanoparticles can achieve 

acceptable bracket bonding [7, 8, 25]. However, other 

studies have reported that orthodontic adhesives 

incorporating ACP exhibit lower bond strength 

compared to conventional adhesives [14, 26, 27]. The 

aggregation of ACP particles may contribute to the 

reduction in mechanical properties of the composite 

[27, 28]. It has been observed that the inclusion of more 
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than 40% ACP in the adhesive leads to minimal bond 

strength despite maximum ion release [8]. To 

overcome this challenge, the combination of ACP with 

reinforcing fillers can help optimize the bracket bond 

without sacrificing ion release. In previous studies, 

barium boroaluminosilicate glass particles measuring 

1.4 μm have been used as reinforcing agents in tandem 

with ACP [8, 18, 19]. Another potential reinforcing 

agent is cellulose nanocrystals (CNCs), which are 

needle- shaped nanoparticles known for their high 

modulus of elasticity and dimensional stability. The 

longitudinal tensile modulus of CNCs (145 GPa) 

exceeds that of Kevlar (130 GPa), suggesting that 

CNCs have the potential to enhance the mechanical 

performance of the composite material [29-31]. Wang 

et al. [32] have reported that CNC/ZnO nanohybrids 

influence the mechanical properties of dental resin 

composites. However, more research is needed to fully 

understand the impact of CNC on the physical 

characteristics of dental resins [33].  

Cellulose/calcium phosphate hybrids have 

been identified as potential materials for dental repair 

[34]. Recent advancements in nanotechnology offer 

new possibilities for eradicating WSLs. One promising 

approach involves incorporating nanoparticles into 

adhesives to facilitate the regeneration of tooth enamel 

[35]. However, it is crucial to develop an orthodontic 

adhesive that can release mineralizing ions while 

maintaining sufficient bond strength. Limited research 

exists on the use of CNC in dental adhesives or the 

combination of ACP and CNC. In this study, 

experimental orthodontic adhesives were formulated 

with ACP as a bioactive filler and CNC as a reinforcing 

filler to investigate the release of minerals and the bond 

strength of the bracket. The study aimed to test the 

following hypotheses: (1) The presence of CNCs 

influences the bond strength of the experimental 

adhesive. (2) The presence of ACPs influences the 

bond strength of the experimental adhesive. (3) The 

combination of ACPs and CNCs influences the bond 

strength of the experimental adhesive. (4) The 

experimental adhesive containing ACP releases Ca and 

P. (5) The experimental adhesive, which includes ACP 

with CNC, releases Ca and P. 

EXPERIMENTAL  

 

Preparation of the fillers 

CNC was synthesized using the acid 

hydrolysis method as outlined in previous works [36, 

37]. The process involved grinding Whatman filter 

paper and subjecting it to hydrolysis with sulfuric acid. 

Cold water was used to halt the hydrolysis reaction, 

followed by removal of the supernatant from the settled 

solution. The resulting white slurry underwent 

centrifugation and dialysis. The CNC suspension was 

sonicated, filtered, and then stored at 4 °C. Prior to 

freeze-drying, the suspension underwent additional 

rounds of sonication and filtration. Initially, the 

suspension was frozen at –80 °C for 24 hours and 

subsequently dried for 72 hours. The resulting CNC 

powder was characterized using DLS, AFM, and FE-

SEM techniques. Amorphous calcium phosphate 

(ACP) nanoparticles with a particle size below 150 nm 

(BET) were procured from Sigma-Aldrich and utilized 

without further modification. 

Preparation of the resin 

 The resin was prepared utilizing specific 

monomers detailed in Table 1, based on previous 

studies [6, 38]. All monomers, sourced from Sigma-

Aldrich, were directly used as received. The monomers 

were accurately weighed and transferred into an 

aluminum foil-wrapped bottle. A magnetic stirrer was 

employed to mix all components for 30 minutes at 

room temperature to ensure a homogeneous blend. The 

light-sensitive mixture was shielded from light 

exposure.  

Production and characterization of the 

adhesive disks 

The adhesive disks were fabricated following 

previous studies [6, 38]. The resin and fillers (ACP, 

CNC) were manually mixed using a spatula. This 
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adhesive mixture was filled into a metal mold 

measuring 10 mm in diameter and 1 mm in thickness. 

Acetate films were positioned above and below the 

mold, sandwiched between two glass slides. Gravity 

and pressure were utilized, with 200g weights placed 

on the glass slides to facilitate the escape of air bubbles 

and excess adhesive. Each side of the assembly was 

then cured with an LED light source 

(GuilinWoodpecker Medical Instrument, LED.D) for 

20 seconds per side (40 seconds total). The adhesives 

were formulated based on previous studies [6, 8, 18-20, 

39], yielding the following compositions:  

 R1: resin (control) 

 R2: resin + 20% CNC 

 R3: resin + 15% ACP + 5% CNC 

 R4: resin + 20% ACP 

 R5: resin + 40% ACP + 5% CNC 

Orthodontic adhesive disks were prepared 

(Fig. 1), with R1 representing an unfilled resin, 

designated as the control group. The adhesive disks 

were characterized using FE-SEM, EDS, and XRD.  

 

Table 1 Methacrylate monomers and the polymerization-initiating components in the experimental resin based on previous 

studies [6, 38] 

Resin Component Chemical name Acronym 
Content 

(mass%) 

Base monomer 
Ethoxylated bisphenol A glycol 

dimethacrylate 
Bis-EMA 42.25 

Diluent monomer Triethylene glycol dimethacrylate TEGDMA 55 

Adhesion promoter monomer 4-methacryloxyethyl trimellitate anhydride 4-META 2 

Light cure initiator monomer Camphorquinone CQ 0.5 

Co-initator & accelerator 

monomer 
Dimethylamino ethyl methacrylate DMAEM 0.25 

 

 

 

Fig. 1 Experimental adhesive disks: R1 (unfilled resin), R2 (20% CNC), R3 (15% CNC+ 5%ACP), R4 (20% ACP), R5 (40% 

ACP+5% CNC) 

Measurement of Ca and P release 

Following a previous study [40], seven disks 

were prepared for each experimental group. Disks were 

immersed in 11 ml deionized water within centrifuge 

tubes, and stored at 37 °C, as described in previous 

studies [6, 41-43]. The tubes were sealed, and after 30 

days, the release of Ca and P was quantified via 

inductively coupled plasma optical emission 

spectroscopy (ICP-OES, Spectro, ARCOS).  

Cytotoxicity test 

 Human gingival fibroblast cells (HGF, CELL 

No. IBRC C10459) were sourced from the Iranian 
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Biological Resource Center and cultured following 

previous protocols [44-46]. These cells were 

maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) and cultivated in a standard incubator. In line 

with previous methodologies [45, 47], one composite 

disk measuring 10 mm in diameter and 1 mm in height 

were fabricated for each experimental group. The top 

and bottom surfaces of the disks were cured for 20 

seconds, followed by UV sterilization of each side of 

the disks for 30 minutes (totaling 1 hour). Disks were 

eluted in a culture medium with a surface/volume ratio 

of 1.25 cm2/mL [45, 46, 48]. The eluates were 

incubated for 24 hours, after which the disks were 

removed, and the extracts were filtered for MTT assay. 

HGF cells were seeded at a concentration of 1×104 

cells/mL in a microplate and cultured in the incubator. 

Subsequently, the cell cultures were exposed to the 

composite extract, and cytotoxicity levels were 

evaluated after 24 hours. The MTT solution was 

introduced into the culture plate, and the cells were 

incubated. After discarding the supernatant, the 

formazan crystals were dissolved, and the optical 

density (OD) was measured at 570 nm. Cell viability 

was calculated using the formula: (OD of test group / 

OD of control cells) × 100 [49]. The cytotoxicity 

outcomes were categorized as severe (≤30%), 

moderate (30–60%), mild (60–90%), and non-

cytotoxic (>90%) based on established criteria [44, 46, 

50-52]. 

Shear bond strength (SBS) and adhesive 

remnant index (ARI) 

 Fifty bovine incisors, sourced from a local 

slaughterhouse (East Livestock Industrial 

Slaughterhouse, Sari, Iran), were utilized in the study 

(Fig. 2a). The teeth underwent de-tissueing to remove 

soft tissues (Fig. 2b) before being embedded in cold-

cure acrylic (Acropars Cold-Cure Acrylic, Iran) (Fig. 

2c). Based on previous studies [53], ten teeth were 

assigned to each group for testing different adhesives. 

Mandibular incisor orthodontic brackets were affixed 

to the teeth, with all bonding procedures performed by 

a single operator. The teeth were initially polished 

using aluminum oxide paste (Dentonext, Iran) and 

etched with 37% phosphoric acid gel (Condac 37 - 

FGM, Brazil). A thin layer of adhesive was applied to 

the mesh of the stainless-steel bracket (IMD, China), 

which was then positioned near the center of tooth. The 

adhesive was light-cured for 10 seconds on each side 

(total of 40 seconds) and immediately subjected to 

shear force testing using a Universal Testing Machine 

(Koopa TB-5T, Iran) (Fig. 3) at a crosshead rate of 0.5 

mm/min. The maximum force required for bracket 

detachment was recorded in Newton and converted to 

MPa [54]. Post-debonding, each tooth was analyzed 

under a stereomicroscope (Dewinter Technologies) to 

assess the Adhesive Remnant Index (ARI) based on 

established criteria [55, 56], specifically: 

0: no residual resin on the tooth 

1: < 50% resin remaining on the tooth 

2: ≥ 50% resin remaining on the tooth 

3: 100% resin remaining on the tooth 

Statistical analysis 

 Data analysis was conducted utilizing IBM 

SPSS Statistics 20 software. Group comparisons were 

performed using the Kruskal-Wallis test, while 

pairwise comparisons were assessed using the Mann-

Whitney U test [53]. The difference was considered 

significant when P ≤ 0.05. 
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Fig. 2 Preparation of bovine teeth: a) Extraction of mandibular incisors, b) Removal of soft tissue, c) Embedding tooth in 

cold-cure acrylic 

 

 
 

Fig. 3 Placement of tooth for shear bond strength test 

 

 

RESULTS AND DISCUSSIONS  

 

Characterization of the CNCs 

The CNC powder underwent characterization 

using DLS, AFM, and FE-SEM techniques. The 

average length of the CNCs was found to be 105.06 ± 

7.38 nm based on DLS analysis (Fig. 4). 

 The morphology of the CNC powder was 

visualized in Fig. 5a, showing the presence of CNCs. 

The AFM image in Fig. 5b confirmed the needle-like 

shape of the CNCs. The FE-SEM image at 500x 

magnification (Fig. 6a) revealed the flake-like structure 

of the CNC powder. At a higher magnification of 

50000x, the typical rod and needle shapes of the CNCs 

were observed, providing evidence for successful CNC 

synthesis (Fig. 6b).  

Characterization of the adhesive disks 

The FE-SEM image of disk R1 (unfilled 

resin) is presented in Fig. 7. It also displays the 

presence of needle-shaped CNCs in the composite as 

evidenced by the image of disk R2 (20% CNC). Disks 

R3, R4, and R5 containing nano-ACP showed the 

presence of spherical ACP nanoparticles, although they 

were observed to be agglomerated within the matrix 

(Fig. 7). Elemental composition analysis of disk R1 

using EDS revealed the highest amounts of carbon 

and nitrogen. This is attributed to the absence 

of fillers in disk R1, which consisted solely of resin 

monomers (Table 2). Disk R5 (40% ACP + 5% CNC) 

had the highest filler content, and EDS analysis 
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confirmed the elevated levels of calcium and 

phosphorus in this disk (Table 2). Disk R2 (20% CNC) 

exhibited the highest amount of oxygen due to the 

presence of CNCs, which are rich in oxygen (Table 2). 

Comparatively, disk R4 (20% ACP) contained higher 

amounts of calcium and phosphorus than disk R3 (15% 

ACP + 5% CNC) (Table 2). These EDS findings 

validate the elemental composition consistency of the 

adhesive disks with their primary theoretical 

formulation. 

 

 

Fig. 4 Size distribution of CNCs obtained from DLS; (Red: first run, Green: second run, Blue: third run) 

 

 

Fig. 5 a) Dry powder of CNC, b) Corresponding AFM image 
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Fig. 6 FE-SEM image of CNC powder: a) 500x magnification, b) 50000x magnification 

 

 

Fig. 7 FE-SEM images of the adhesive disks: R1 (unfilled resin), R2 (20% CNC), R3 (15% CNC + 5% ACP), R4 (20% ACP), 

R5 (40% ACP + 5% CNC) 

Table 2 The elements of the adhesive disks based on EDS analysis 

Wt: weight, AT: atomic, R1 (unfilled resin), R2 (20% CNC), R3 (15% CNC + 5% ACP), R4 (20% ACP), R5 (40% ACP + 

5% CNC) 

 

Elements 
C O N Ca P 

Wt% AT% Wt% AT% Wt% AT% Wt% AT% Wt% AT% 

R1 62.81 68.92 33.37 27.49 3.82 3.59 - - - - 

R2 56.12 63.10 43.57 36.78 - - - - - - 

R3 54.83 62.49 40.75 34.86 1.57 1.54 1.45 0.49 1.33 0.59 

R4 51.85 60.13 41.81 36.40 1.57 1.56 2.36 0.82 2.33 1.05 

R5 35.30 47.01 41.70 41.70 1.26 1.44 11.74 4.68 9.82 5.07 
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The XRD analysis of the disks is presented in 

Figure 8. The scans were conducted within the 2ϴ 

range of approximately 10-90°. In the XRD pattern of 

disk R1, two humps can be observed in the 2ϴ range of 

about 10-50°, indicating the presence of the amorphous 

phase of the resin [57] (Fig. 8). These humps are also 

visible in the other four disks, albeit with lower 

intensity. Disk R2 (20% CNC) exhibits a prominent 

crystalline peak at 2ϴ=22.68°, along with smaller 

peaks at 2ϴ=14.75° and 2ϴ=16.71°, confirming the 

presence of CNC based on previous studies [58, 59] 

(Fig. 8). The XRD pattern of ACP is characterized by 

two broad humps in the 2ϴ range of 20° to 60° [60-62]. 

In this context, a hump is somewhat visible in disk R3 

(15% ACP + 5% CNC) within the 2ϴ range of 

approximately 25-35°, and with lower intensity in 

disks R4 (20% ACP) and R5 (40% ACP + 5% CNC), 

indicating the presence of ACP. The peak at 

2ϴ=22.91° in the pattern of disk R3 confirms the 

presence of CNC. Likewise, the peak at 2ϴ= 22.60° 

confirms the presence of CNC in disk R5. The patterns 

of disks R3, R4, and R5 exhibit two crystalline peaks 

at approximately 2ϴ=26° and 3 2ϴ=40°, which may be 

attributed to the crystallization of ACP particles. 

Premature crystallization poses a significant challenge 

in handling ACP particles, as studies have shown that 

ACP powder can transform into crystalline 

hydroxyapatite within a few hours at room temperature 

[63, 64]. ACP tends to crystallize rapidly under both 

wet and dry conditions [63, 65]. However, the XRD 

patterns of disks R3, R4, and R5 do not align with 

crystalline phases such as apatite or octacalcium 

phosphate, suggesting that the ACP particles were not 

fully crystallized. Overall, the XRD patterns (Fig. 8) 

are consistent with the components of the adhesive 

disks. 

Mineral release 

The adhesive disks were evaluated for the 

release of Ca and P following a 30-day immersion 

period (Fig. 9). Disk R5 (40% ACP + 5% CNC) 

demonstrated the highest Ca and P release compared to 

Disk R3 (15% ACP + 5% CNC) and Disk R4 (20% 

ACP), with statistically significant differences (P = 

0.002). Moreover, Disk R4 exhibited a greater Ca 

release than Disk R3, with a significant difference (P = 

0.048). Similarly, the P release from Disk R4 surpassed 

that of Disk R3, with a statistically significant 

difference (P = 0.035) (Fig. 9). 

Adhesive R5 (40% ACP + 5% CNC) 

demonstrated higher calcium (Ca) and phosphorus (P) 

release when compared to R3 (15% ACP + 5% CNC) 

and R4 (20% ACP) (Fig. 9), a finding consistent with 

previous studies [7, 8, 17, 20]. Skrtic et al. [66] 

highlighted the critical role of filler quantity in 

determining ion release capacity, noting a significant 

increase in Ca and P release at specific ACP content 

thresholds (0.37 to 0.40) [66]. In this study, there was 

a sharp escalation in Ca and P release as ACP content 

rose from 0.15 to 0.40 (Fig. 9). Higher ACP content in 

adhesives promotes water and ion diffusion by 

enhancing interface availability [8]. The nano-sized 

ACPs, with their extensive surface area and strong 

water affinity, facilitate rapid mineral release [7, 17, 

19]. ACP content exceeding 40% was deemed 

impractical in this study as it resulted in overly dry 

adhesives. While the Ca and P release from adhesives 

R3 (15% ACP + 5% CNC) and R4 (20% ACP) did not 

exhibit significant levels, it provides valuable insights 

into mineral release from the experimental resin. 

Aleesa et al. [38] highlighted that a composite 

containing bioactive glass in a neutral solution has a 

subdued reaction but can induce apatite precipitation in 

Ca and PO4 ion-enriched solutions. Given that disk R5 

(40% ACP + 5% CNC) released the highest levels of 

Ca and P (Fig. 9), it holds promise for apatite formation 

in neutral solutions. ACPs are known to transition from 

volatile states to crystalline CaPs in solutions, 

suggesting potential tooth mineral regeneration 
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through ACP composites [17, 67]. Therefore, the 

mineral loss of teeth can be regenerated by the use of 

ACP composites [68, 69]. It is postulated that 

ACP/CNC particle distribution was uneven in this 

study. During the water absorption and ion release 

process, the filler-resin matrix interfaces were subject 

to unpredictable spatial variations [70].  

In this study, triethylene glycol 

dimethacrylate (TEGDMA) was introduced into the 

resin to regulate viscosity, boasting a degree of 

hydrophilicity leading to water absorption. On the 

other hand, ethoxylated bisphenol A glycol 

dimethacrylate (Bis-EMA) exhibited lower viscosity 

and hydrophilicity [71, 72]. Polymerization was 

initiated using a free radical mechanism involving 

camphoroquinone (CQ), with an accelerator like 

dimethylaminoethyl methacrylate (DMAEM) included 

[73-75]. The ion release kinetics from the adhesive 

disks (R3-R5) were chiefly influenced by the 

TEGDMA monomer content, as its hydrophilic nature 

aids water absorption, ion diffusion, and potentially 

internal mineral saturation [17, 22, 73-75]. Moreover, 

the experimental adhesives featured 4-

methacryloxyethyl trimellitate anhydride (4-META), 

which may enhance the composite-to-tooth bond by 

acting as a chelator of calcium ions and improving 

enamel surface wetting [76, 77], potentially impacting 

calcium release. 

 

 

Fig. 8 XRD patterns of the adhesive disks: R1 (unfilled resin), R2 (20% CNC), R3 (15% CNC + 5%ACP), R4 (20% ACP), 

R5 (40% ACP + 5% CNC) 
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Fig. 9 Average Ca and P release (Mean ± SD) from adhesive disks after 30 days. Symbols (*♦) indicate pairwise significant 

differences between groups (P < 0.05). R1 (unfilled resin), R2 (20% CNC), R3 (15% CNC + 5% ACP), R4 (20% ACP), R5 

(40% ACP + 5% CNC) 

 

Cell viability 

 Cell viability was lower for all adhesive disks 

in contrast to the pure medium, with statistical 

significance (P = 0.05), except for disk R4 (20% ACP) 

(Fig. 10). This suggests that disk R4 displayed superior 

biocompatibility among the adhesive disks. Notably, 

the cell viability post-exposure to disk R1 (unfilled 

resin) was 61.3 ± 0.8%, indicating mild toxicity. In 

comparison, adhesive R2 (20% CNC) demonstrated a 

cell viability of 86.9%, signaling low toxicity attributed 

to cellulose nanocrystals (Fig. 10). 

 In Fig. 11, the appearance of HGF cells 

post-exposure to the composite extracts is depicted. 

Mediums R1 (unfilled resin) and R2 (20% CNC) 

showcased more cells with spherical shapes, implying 

a distinct cellular response compared to mediums R3 

(15%ACP+5%CNC), R4 (20%ACP), and R5 

(40%ACP+5%CNC), where cells exhibited 

predominantly polygonal and spread shapes similar to 

those in the pure medium (Fig. 11a). The presence of 

polygonal and spread cell shapes in mediums R3, R4, 

and R5 signifies the biocompatibility of ACP 

nanoparticles, as evidenced by cellular morphology 

akin to that of healthy cells. The microscopic 

observations align with the Elisa reader outcomes 

(Fig. 10 & 11). To mitigate toxicity, nanoparticles 

were incorporated into the resin, although further 

research is warranted to confirm the safety of 

cellulose nanocrystals (CNC) for clinical applications. 

Menezes-Silva et al. [78] successfully enhanced the 

biocompatibility of commercial glass ionomer cement 

(GIC) by incorporating CNC. 

SBS & ARI assessment 

Significant differences were observed in the 

mean SBS of the control adhesive (R1: unfilled resin) 

compared to other experimental groups (P < 0.05) (Fig. 

12), suggesting diverse adhesive performances. No 

substantial difference was noted in the bond strength 

between adhesive R2 (20% CNC) and R3 (15% ACP + 

5% CNC) (P = 0.199) (Fig. 12). While the mean SBS 

of adhesive R4 (20% ACP) exceeded that of R2 (20% 

CNC), the distinction was not statistically significant 
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(P= 0.096) (Fig. 12). Adhesive R5 (40% ACP + 5% 

CNC) demonstrated the lowest SBS among the groups, 

with a statistically significant difference (P < 0.01), 

indicative of a weaker bond when compared to other 

formulations.  

In terms of bonding strength, the composite 

resin displayed a range of 2 to 13 MPa with metal 

brackets in previous studies [79]. Adhesive R1 (pure 

resin) demonstrated a reasonably strong bond strength 

of approximately 10 MPa, indicating that Bis-EMA 

and TEGDMA in combination form a robust bond with 

enamel (Fig. 12). The mechanical functionality of 

adhesives R3 (15% ACP + 5% CNC), R4 (20% ACP), 

and R5 (40% ACP + 5% CNC) containing ACP is 

predominantly influenced by the irregular distribution 

of ACP clusters rather than the composition of the resin 

[17, 80]. Skrtic et al. [70] integrated Zr-ACP particles 

into dental resin, with a median particle diameter of 8.6 

± 2.4 µm. They suggested that reducing the size of ACP 

particles enhances the interaction between ACP and 

resin, thereby improving the mechanical strength of the 

composite [70]. In this study, nano-sized ACP particles 

(<150 nm) were utilized, potentially impacting the 

shear bond strength (Fig. 12). Furthermore, Skrtic et al. 

[66] noted that amorphous calcium phosphate could 

weaken the filled polymer compared to the unfilled 

polymer. The inherent aggregation of ACP particles 

weakens ACP/resin interactions, leading to the 

destabilization of the filler/polymer interface and 

reduced mechanical strength [17, 27, 62], limiting the 

use of ACP-based composites to non-stress-bearing 

applications like fissure sealants [14, 17, 69, 80]. 

Unexpectedly, adhesives R3 (15% ACP + 5% CNC) 

and R4 (20% ACP) exhibited higher shear bond 

strength than the unfilled resin (R1) in this study (Fig. 

12). This enhanced strength in adhesives R3 and R4 

(Fig. 12) can be attributed to the incorporation of nano-

sized ACP and CNC. Nano-ACPs offer a larger surface 

area, providing more room within the polymer matrix 

for incorporating reinforcing fillers and enhancing 

mechanical properties [8]. However, adhesive R5 (40% 

ACP & 5% CNC) displayed an SBS of approximately 

6 MPa, the minimum acceptable bond strength that 

could result in premature bracket debonding during 

treatment [8] (Fig. 12). It is hypothesized that the 

heterogeneous ACP/CNC fillers could not establish a 

close interlocking network with the experimental resin. 

Optimal CNC content within the resin can create a 

permeated network, as seen with the incorporation of 

20% CNC (R2), yielding a suitable shear bond strength 

(Fig. 12). Past research has demonstrated that CNC can 

effectively enhance the mechanical properties of dental 

resins [32, 81]. Sabir et al. [81] successfully enhanced 

the mechanical properties of dental adhesive by 

incorporating CNC. Likewise, Moradian et al. [82] 

discovered that incorporating bacterial CNC into resin-

modified glass ionomer cement (RMGICs) can 

improve shear bond strength properties.  

There were no substantial differences in ARI 

values between the control adhesive (R1) and the other 

experimental groups (P > 0.05) (Fig. 13), suggesting 

similar patterns of adhesive residue distribution post-

bond failure. 

The performance of composites is influenced 

by the type of filler, filler quantity, and resin 

composition [83]. An effective adhesive must not only 

endure the functional stresses in the oral cavity but also 

safeguard oral tissues from damage [84]. The high 

Adhesive Remnant Index (ARI) scores observed in this 

study (Fig. 13) could impact the enamel post-

orthodontic treatment. A higher amount of adhesive 

remnant necessitates additional enamel polishing to 

eliminate the adhesive residue after bracket debonding 

[85]. Nonetheless, there is conflicting information in 

the literature regarding ARI scores. A greater presence 

of adhesive remnants on the enamel suggests bracket 

debonding occurs at the bracket/adhesive interface, 

preventing enamel chipping and fracturing [85-88]. In 

our investigation, the elevated ARI scores across all 

adhesives correlated with increased bond strength, with 
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the exception of adhesive R5 (Fig. 12 & 13). A high 

ARI score (2 & 3), indicative of greater bond strength, 

could be advantageous in orthodontic applications [85, 

88, 89].  

 

 

Fig. 10 Results of MTT assay after 24 h. Symbol (*) denotes significant differences between pure medium (untreated cells) 

and adhesive disks (P = 0.05).  R1 (unfilled resin), R2 (20% CNC), R3 (15% CNC + 5% ACP), R4 (20% ACP), R5 (40% ACP 

+ 5% CNC) 

 

 

Fig. 11 Optical micrographs of HGF cells post exposure to extracts from adhesive disks. a) Pure medium (untreated cells), R1 

(unfilled resin), R2 (20% CNC), R3 (15% CNC + 5% ACP), R4 (20% ACP), R5 (40% ACP + 5% CNC) 
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Fig. 12 Shear bond strength (Mean ± SD) of experimental adhesives. Symbol (*) indicates significant differences between R1 

(control) and other groups (P < 0.05). Symbols (♦∆■) represent pairwise significant differences between groups (P < 0.05). 

R1 (unfilled resin), R2 (20% CNC), R3 (15% CNC + 5% ACP), R4 (20% ACP), R5 (40% ACP + 5% CNC) 

 

 

Fig. 13 Average ARI (Adhesive Remnant Index) score (Mean ± SD) based on adhesive remnants on tooth after bracket 

debonding. R1 (unfilled resin), R2 (20% CNC), R3 (15% CNC + 5% ACP), R4 (20% ACP), R5 (40% ACP + 5% CNC) 

 

CONCLUSION 

The effects of incorporating ACP and CNC into an 

experimental resin were investigated for orthodontic 

use. The adhesive R2, which contained 20% CNC, had 

a suitable shear bond strength for orthodontic 

applications. Adhesive R4, which contained 20% ACP, 

released calcium and phosphorus and also provided 

acceptable shear bond strength. Adhesive R3, a 

combination of 15% ACP and 5% CNC, released 

calcium and phosphorus but had a lower shear bond 
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strength compared to R4. Adhesive R5, with 40% ACP 

and 5% CNC, had the highest mineral release but the 

lowest shear bond strength. The incorporation of ACP 

into the experimental resin showed promise for 

orthodontics and prevention of white spot lesions 

(WSLs). However, the addition of 5% CNC alongside 

ACP did not significantly affect the bracket bond 

strength. Further experiments are needed to confirm the 

therapeutic benefits of ACP and the mechanical 

properties of CNC in resin-based orthodontic 

adhesives.  
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