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Abstract 

The escalating demand for electrical power propels the evolution of power systems from regional to national scales. However, 

this expansion introduces challenges such as congestion and transmission bottlenecks, compromising system reliability and 

stability. High Voltage Direct Current (HVDC) systems, particularly those employing Voltage Source Converter (VSC) 

technology, offer promising solutions due to their unique control capabilities. This paper proposes the utilization of 

supplementary control alongside VSC-based HVDC to mitigate low-frequency oscillations and enhance dynamic and transient 

stability in power systems. Through a comprehensive investigation, including linearization of nonlinear power system 

equations, the efficacy of different input signals for supplementary control is evaluated using techniques like Singular Value 

Decomposition (SVD), Relative Gain Array (RGA), and Damping Function. The design of a phase compensator as a 

supplementary controller, employing generator speed deviation as input, is presented based on the linearized model. 

Additionally, recognizing the limitations of linear controllers in nonlinear systems, an adaptive neural network-based damping 

controller is proposed to improve dynamical and transient stability. Results demonstrate the effectiveness of the adaptive neural 

network controller over the phase compensator, particularly in stabilizing the power system and damping oscillations, 

underscoring the significance of considering nonlinear dynamics in controller design for HVDC systems. 
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1. Introduction 

The ever-increasing demand for electrical 

power necessitates the continuous evolution of 

power systems, expanding from regional to national 

scales [1-3]. However, this expansion brings forth 

significant challenges such as congestion and 

transmission bottlenecks, which can compromise 

the reliability and stability of the entire system. In 

response to these challenges, High Voltage Direct 

Current (HVDC) systems, particularly those 

leveraging Voltage Source Converter (VSC) 

technology, emerge as promising solutions due to 

their unique control capabilities [4-7]. 

VSC HVDC systems have revolutionized 

power transmission by offering enhanced dynamic 

stability compared to traditional HVAC systems. By 

decoupling the transmission of active and reactive 

power, VSC HVDC systems enable independent 

control of power flow and voltage, thus improving 

system stability under varying operating conditions 

[8-11]. Inside a VSC HVDC system, various control 

loops are employed to regulate different aspects of 

the converter operation. These include voltage 

control loops to maintain the desired DC voltage 

level, current control loops to regulate the output 

current waveform, and power control loops to 

manage active and reactive power exchange with the 

AC grid [12-14]. In addition to these primary control 

loops, supplementary damping controllers are often 

integrated into VSC HVDC systems to mitigate 

power oscillations and enhance stability. These 

controllers, such as power oscillation damping 

(POD) controllers, utilize signals from the AC grid 

to generate supplementary control signals that are 

injected into the converter control system [15-20]. 

Optimal input-output signal coupling is 

essential for the design of effective damping 
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controllers in VSC HVDC systems. By ensuring 

proper coupling between input and output signals, 

the controller can effectively dampen power 

oscillations and improve system stability. 

Techniques such as Relative Gain Array (RGA) 

criteria and Singular Value Decomposition (SVD) 

are utilized to identify the most significant input-

output couplings, guiding the design of robust 

damping controllers [1-3]. 

In addition to conventional damping 

controllers, adaptive neural network-based 

controllers offer a promising alternative for 

enhancing the dynamic stability of VSC HVDC 

systems. These controllers leverage artificial 

intelligence techniques to adaptively learn and 

optimize control actions based on real-time system 

dynamics. By continuously adjusting their 

parameters, adaptive neural controllers can 

effectively mitigate power oscillations and improve 

transient stability, even in the presence of 

nonlinearities and uncertainties in the system. 

This paper presents a dynamic model of a 

power system equipped with VSC HVDC, which 

can be utilized for dynamic studies and simulations 

in power system analysis. Furthermore, this study 

introduces novel criteria based on Singular Value 

Decomposition (SVD) and Relative Gain Array 

(RGA) for optimal coupling between input and 

output signals in VSC HVDC systems. These 

criteria provide valuable insights into the selection 

of input signals for supplementary control, 

enhancing the effectiveness of damping controllers. 

Additionally, a novel adaptive neural controller 

design is proposed, strategically placed in the 

appropriate path between input and output signals, 

to dampen oscillations in the power system. 

Through innovative approaches like these, the study 

aims to advance the state-of-the-art in control 

strategies for VSC HVDC systems, ultimately 

improving the stability and reliability of power 

grids. Simulation results show the effectiveness of 

the proposed control strategy for damping power 

and frequency oscillations. 

2. Modelling of a Power System Equipped by 

VSC HVDC 

Three distinct modeling approaches for 

Voltage Source Converter (VSC) High Voltage 

Direct Current (HVDC) systems are recognized in 

literature. The electromagnetic model, primarily 

employed for detailed equipment investigations, 

captures electromagnetic transients within the 

millisecond range, representing VSCs using 

switches [11]. While suitable for detailed equipment 

analysis, this model lacks applicability in power 

oscillation studies. The steady-state model, on the 

other hand, is tailored for assessing the steady-state 

performance of power systems and computing initial 

operating conditions for dynamic studies [12]. 

Meanwhile, the dynamic model integrates dynamic 

equations of the power system with VSC HVDC 

dynamic equations, facilitating power system 

stability and transient studies [20,21]. 

 
(a) 

 
(b) 

 
(c) 

Fig.1  SMIB system equipped with a VSC HVDC 
(a)BtB VSC HVDC (b) VSC HVDC (c)Whole VSC HVDC  

 

Figure 1 illustrates three configurations of 

Single Machine Infinite Bus (SMIB) systems 

integrated with VSC HVDC. The first model depicts 

a Back-to-Back VSC HVDC setup [11], while the 

second showcases a VSC HVDC system with a DC 

line [12-13]. Previous studies [19-20] have 

highlighted the potential of HVDC systems in 

enhancing power system stability through 

supplementary controller implementation and have 

investigated the controllability of system inputs 

using singular value decomposition. However, it's 

noteworthy that the resistance of DC cables utilized 

in HVDC transmission systems has not been 

explicitly modeled. The third configuration depicts 

the entire system of VSC HVDC, which serves as 

the focus of this study. 

The Infinite Bus configuration is supplied by a 

High Voltage Alternating Current (HVAC) system 

parallel connected with a Voltage Source Converter 

(VSC) HVDC power transmission system. Each 

converter's AC side is linked to the line via a 

coupling transformer. The first voltage source 

converter functions as a rectifier, regulating the DC 

link voltage and maintaining voltage magnitude at 
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the connected terminal. Meanwhile, the second 

voltage source converter serves as a controlled 

voltage source, managing power flow in the VSC 

HVDC feeder. The four input control signals to the 

VSC HVDC are represented by , , ,r r i iM M  , 

where M and   denote the amplitude modulation 

ratio and phase angle of the control signals of each 

VSC, respectively. Utilizing Park’s transformation 

and neglecting the resistance and transients of the 

coupling transformers, the VSC HVDC system 

(depicted in Fig. 1c) can be effectively modeled. 

Similarly, Figures 1a and 1b can be modeled 

utilizing the same approach. 

[
𝑉𝑙𝑑
𝑉𝑙𝑞

] = [
0 𝑥𝑟

−𝑥𝑟 0
] [
𝐼𝑟𝑑
𝐼𝑟𝑞

] +

[
(𝑀𝑟𝑉𝑑𝑐𝑟𝑐𝑜𝑠(𝜑𝑟))/2
(𝑀𝑟𝑉𝑑𝑐𝑟𝑠𝑖𝑛(𝜑𝑟))/2

]  

(1) 

 

[
𝑉𝑏𝑑
𝑉𝑏𝑞

] = [
0 𝑥𝑖
−𝑥𝑖 0

] [
𝐼𝑖𝑑
𝐼𝑖𝑞
] 

+[
(𝑀𝑖𝑉𝑑𝑐𝑖𝑐𝑜𝑠(𝜑𝑖))/2
(𝑀𝑖𝑉𝑑𝑐𝑖𝑠𝑖𝑛(𝜑𝑟𝑖))/2

]

 

(2) 

𝐶𝑉𝑑𝑐 = −(𝐼1 + 𝐼2) (3) 

𝐿1(𝑑𝐼1/𝑑𝑡) = 𝑉𝑑𝑐 − 𝑉𝑑𝑐𝑟 − 𝑅1𝐼1 (4) 

𝐿2(𝑑𝐼2/𝑑𝑡) = 𝑉𝑑𝑐 − 𝑉𝑑𝑐𝑖 − 𝑅2𝐼2 (5) 

 

Where ,l bV V  represent the middle bus voltage 

and infinite bus voltage, respectively. the ,r iI I  

denote current flowing into the rectifier and inverter, 

respectively. C and dcV  represent the DC link 

capacitance and voltage, respectively. Additionally, 

,r dcrC V represent the DC capacitance and voltage of 

the rectifier, while ,dci iV C  denote the DC 

capacitance and voltage of the inverter, respectively. 

The non-linear model of the Single Machine 

Infinite Bus (SMIB) system depicted in Figure 1 is: 

 

�̇� = 𝜔𝑏(𝜔 − 1) (6) 

�̇� = (𝑃𝑚 − 𝑃𝑒 − 𝐷𝜔)/𝑀 (7) 

𝐸𝑞
′̇ = (𝐸𝑓𝑑 − (𝑥𝑑 − 𝑥𝑑

′ )𝐼𝑡 − 𝐸𝑞
′ )/𝑇𝑑𝑜

′  (8) 

𝐸𝑓𝑑̇ = (𝐾𝐴(𝑉𝑟𝑒𝑓 − 𝑉𝑡 + 𝑢𝑝𝑠𝑠) − 𝐸𝑓𝑑)/𝑇𝐴 (9) 

Where: e td td tq tqP V I V I= +  ,
2 2

t td tqV V V= +  , 

td q tqV x I= , ' '

tq q d tdV E x I= −  ,
td ld rdI I I= −  , 

are the input and 
eP and 

mP where tq lq rqI I I= −

output power , respectively ; M and D  the inertia 

constant and damping coefficient , respectively ; b  

the synchronous speed ;the rotor angle   and    

and speed, respectively ; ' ,q fdE E  and tV the 

generator internal, field and terminal voltages, 

respectively; 
'

doT the open circuit field time constant; 

',d dx x  and qx  the d-axis, d-axis transient reactance, 

and q-axis reactance, respectively;the AT and AK  

exciter gain and time constant, respectively; refV  

the reference voltage. Also, from Fig.1.c we have: 

𝑉�̅� = 𝑗𝑥𝑡𝐼�̅� + 𝑉�̅�   (10) 

𝑉�̅� = 𝑗𝑥𝑡𝐼�̅� + 𝑗𝑥𝑙𝐼�̅� + 𝑉𝑏̅̅ ̅  (11) 

𝐼�̅� = 𝐼�̅� − ((𝑉�̅� − 𝑗𝑥𝑡𝐼�̅� − 𝑉�̅�)/𝑗𝑥𝑟)  (12) 

Where tI
−

 , rV
−

 ,are the armature current, bV
−

and  lI
−

 

rectifier voltage, infinite bus current and voltage 

respectively. From Eq (10)-(12) we can have: 

𝐼𝑡𝑞 = ((1/2𝑥𝑟)(𝑥𝑙𝑀𝑟𝑉𝑑𝑐𝑟cos⁡(𝜑𝑟)) 

+𝑉𝑏sin⁡(𝛿))/(𝑍𝑥𝑞 + 𝐴) 

(13) 

𝐼𝑡𝑑 = (𝑍𝐸𝑞
′ − (1/2𝑥𝑟)𝑥𝑙𝑀𝑟𝑉𝑑𝑐𝑟 sin(𝜑𝑟) 

−𝑉𝑏cos⁡(𝛿))/(𝑍𝑥𝑑
′ + 𝐴) 

(14) 

And For inverter side: 

𝐼𝑖𝑑 = (−𝑉𝑏 𝑐𝑜𝑠(𝛿) 
+0.5𝑀𝑖𝑉𝑑𝑐𝑖𝑠𝑖𝑛⁡(𝜑𝑖))/𝑥𝑖 

(15) 

𝐼𝑖𝑞 = (𝑉𝑏 𝑠𝑖𝑛(𝛿) 

−0.5𝑀𝑖𝑉𝑑𝑐𝑖𝑐𝑜𝑠⁡(𝜑𝑖))/𝑥𝑖  

(16) 

By linearizing Eq (1)-(7), (13)-(16): 

Δ�̇� = 𝜔𝑏Δ𝜔 (17) 

Δ�̇� = (Δ𝑃𝑚 − Δ𝑃𝑒 − 𝐷Δ𝜔)/𝑀 (18) 

Δ𝐸𝑞
′̇ = (Δ𝐸𝑓𝑑 − (𝑥𝑑 − 𝑥𝑑

′ )Δ𝐼𝑡 − Δ𝐸𝑞
′ )/𝑇𝑑𝑜

′    

(19) 

Δ𝐸𝑓𝑑̇ = (𝐾𝐴(Δ𝑉𝑡 + Δ𝑢𝑝𝑠𝑠) − Δ𝐸𝑓𝑑)/𝑇𝐴 (20) 

Where: 

𝛥𝑉𝑡 = 𝐾5𝛥𝛿 + 𝐾6𝛥𝐸𝑞
′ + 𝐾𝑣𝑑𝑐𝑟𝛥𝑉𝑑𝑐𝑟  

+𝐾𝑣𝑀𝑟𝛥𝑀𝑟 + 𝐾𝑣𝜑𝑟𝛥𝜑𝑟  

(21) 

𝛥𝑃𝑒 = 𝐾1𝛥𝛿 + 𝐾2𝛥𝐸𝑞
′ + 𝐾𝑝𝑑𝑐𝑟𝛥𝑉𝑑𝑐 

+𝐾𝑝𝑀𝑟𝛥𝑀𝑟 + 𝐾𝑝𝜑𝑟𝛥𝜑𝑟 

(22) 

𝛥𝐸𝑞 = 𝐾4𝛥𝛿 + 𝐾3𝛥𝐸𝑞
′ + 𝐾𝑞𝑑𝑐𝑟𝛥𝑉𝑑𝑐𝑟  

+𝐾𝑞𝑀𝑟𝛥𝑀𝑟 + 𝐾𝑞𝜑𝑟𝛥𝜑𝑟 

(23) 

𝛥𝑉𝑑𝑐𝑟 = 𝐶31𝐶𝑟𝛥𝛿 + 𝐶32𝐶𝑟𝛥𝐸𝑞
′  

+𝐶33𝐶𝑟𝛥𝑉𝑑𝑐𝑟 + 𝐶𝑟𝛥𝐼1 

+𝐶34𝐶𝑟𝛥𝑀𝑟 ⁡+ 𝐶35𝐶𝑟𝛥𝜑𝑟 

(24) 

Substitute Eq(21)-(23) in (17)-(20) we can obtain 

the state variable of the power system installed with 

the VSC HVDC to be(state space model): 
�̇� = 𝐴𝑋 + 𝐵𝑈 

𝑎𝑛𝑑 

𝑋

= [𝛥𝛿, 𝛥𝜔, 𝛥𝐸𝑞
′ , 𝛥𝐸𝑓𝑑 , 𝛥𝑉𝑑𝑐𝑟 , 𝛥𝐼1, 𝛥𝑉𝑑𝑐 , 𝛥𝐼2, 𝛥𝑉𝑑𝑐𝑖] 

𝑈 = [𝛥𝑀𝑟 , 𝛥𝜑𝑟 , 𝛥𝑀𝑖 , 𝛥𝜑𝑖 , 𝑢𝑝𝑠𝑠] 

(25) 

Where: 

, , ,i r i rM M       and 
PSSu are the linearization of 

the input control signals of the VSC HVDC and PSS 

output i.e. modulation index of inverter, modulation 

index of rectifier, modulation angle of inverter, 

modulation angle of rectifier and input signal of 

PSS, respectively. 

 The linearized dynamic model of Eq.25 can be 

shown by Fig.2 . In this figure , , ,pu qu vu rK K K K  

and iK  are defined below: 

𝐾𝑣𝑢 = [𝐾𝑣𝑀𝑟 , 𝐾𝑣𝜑𝑟 , 0,0,0], 

𝐾𝑝𝑢 = [𝐾𝑝𝑀𝑟 , 𝐾𝑝𝜑𝑟 , 0,0,0],⁡ 
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𝐾𝑞𝑢 = [𝐾𝑞𝑀𝑟 , 𝐾𝑞𝜑𝑟 , 0,0,0] 

𝐾𝑣𝑢 = [𝐾𝑣𝑀𝑟 , 𝐾𝑣𝜑𝑟 , 0,0,0], 

𝐾𝑟 = [𝐶34𝐶𝑟 , 𝐶35𝐶𝑟 , 0,0,0], 
𝐾𝑖 = [0,0, 𝐶29/𝐶𝑖, 𝐶30/𝐶𝑖 , 0] 
Also it is possible to demonstrate VSC HVDC Block 

Diagram for Fig.1.a,b as shown in Fig.3 [22-23-24]. 

𝐴 = [0, 𝜔𝑏 , 0,0,0,0,0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡−
𝑘1
𝑀
,−

𝐷

𝑀
,−

𝐾2
𝑀

, 0, −
𝐾𝑝𝑑𝑐𝑟

𝑀
, 0,0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−
𝑘4
𝑇𝑑𝑜
′ , 0, −

𝑘3
𝑇𝑑𝑜
′ ,

1

𝑇𝑑𝑜
′ , −

𝑘𝑞𝑑𝑐𝑟4

𝑇𝑑𝑜
′ , 0,0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−
𝑘𝐴𝐾5
𝑇𝐴

, 0, −
𝑘𝐴𝐾6
𝑇𝐴

, −
1

𝑇𝐴
, −

𝑘𝐴𝐾𝑣𝑑𝑐𝑟
𝑇𝐴

, 0,0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝐶31
𝐶𝑟

, 0,
𝐶32
𝐶𝑟

, 0,
𝐶33
𝐶𝑟

,
1

𝐶𝑟
, 0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0,0,0,0, −
1

𝐿1
, −

𝑅

𝐿1
,
1

𝐿1
, 0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0,0,0,0,0, −
1

𝐶
, 0, −

1

𝐶
, 0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0,0,0,0,0,0,
1

𝐿2
, −

𝑅2
𝐿2

, −
1

𝐿2
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝐶27
𝐶𝑖

, 0,0,0,0,0,0, −
1

𝐶𝑖
, 𝐶28/𝐶𝑖] 

 

𝐵 = [0,0,0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡−
𝑘𝑝𝑀𝑟

𝑀
,−

𝑘𝑝𝜑𝑟

𝑀
, 0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡−
𝑘𝑞𝑀𝑟

𝑇𝑑𝑜
′ , −

𝑘𝑞𝜑𝑟

𝑇𝑑𝑜
′ , 0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−
𝑘𝐴𝐾𝑣𝑀𝑟

𝑇𝐴
, −

𝑘𝐴𝐾𝑣𝜑𝑟

𝑇𝐴
, 0,0,

𝑘𝐴
𝑇𝐴

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝐶34
𝐶𝑟

,
𝐶35
𝐶𝑟

, 0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡0,0,0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡0,0,0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡0,0,0,0,0 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0,0,
𝐶29
𝐶𝑖

,
𝐶30
𝐶𝑖

, 0] 

The configuration of the Phillips-Heffron 

model mirrors that of installations featuring Unified 

Power Flow Controller (UPFC) and Static 

Synchronous Compensator (STATCOM). 

Additionally, Equation 25 reveals five potential 

choices for input control signals of the VSC HVDC 

to be superimposed on the damping function, 

denoted by 
, , ,i r i rM M     

. Thus, in the design 

of the damping controller for the VSC HVDC, apart 

from parameter tuning, the selection of the input 

control signal to be superimposed on the damping 

function holds significance. 
 

 

 

 

 

 
Fig.2 VSC HVDC Block Diagram based Eq.25 

 

 
(a) 

 
(b) 

Fig.3 VSC HVDC Block Diagram  
(a)Fig1.a(b)Fig1.b 
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3. Proposed Damping Controller Design 

Damping controllers are devised to generate an 

electrical torque synchronized with the speed 

deviation. The modulation of the four control 

parameters of the HVDC enables the production of 

the damping torque, with the speed deviation 

serving as the input to the damping controllers. 

A) Classic Compensator Design 

The architecture of the HVDC-based damping 

controller is depicted in Figure 4, comprising gain, 

signal washout, and phase compensator blocks. The 

signal washout, acting as a high-pass filter, prevents 

steady speed changes from affecting the VSC 

HVDC input parameter. The washout time constant 

wT  should be sufficiently high to preserve signals 

associated with rotor speed oscillations. The specific 

value of 
wT  is not critical and may range from 1s to 

20s. For our study, 
wT is set to 10s. The parameters 

of the damping controller are determined using the 

phase compensation technique [25]. The following 

step-by-step procedure outlines the computation of 

damping controller parameters using the phase 

compensation technique: 

 
Fig.4 Structure of  lead-lag  controller 

1. Computation of natural frequency of oscillation 

n from the mechanical loop. 

𝜔𝑛 = √𝐾1𝜔0/𝑀 (26) 

2. Computation of GEPA  at
ns j= . Let it be  . 

3. Design of phase lead/lag compensator
CG : 

The phase lead/lag compensator
CG  is designed to 

provide the required degree of phase compensation. 

For 100% phase compensation, 

∠𝐺𝑐(𝑗𝜔𝑛) + ∠𝐺𝐸𝑃𝐴(𝑗𝜔𝑛) = 0 (27) 

Assuming one lead-lag network,the  1 2T aT=  

transfer function of the phase compensator becomes, 

𝐺𝑐(𝑠) = (1 + 𝑠𝑎𝑇2)/(1 + 𝑠𝑇2) (28) 

Since the phase angle compensated by the lead-lag 

network is equal to − , the parameters a and 
2T are 

computed as, 

𝑎 = (1 + sin⁡(𝛾))/(1 − sin⁡(𝛾)) 

𝑇2 = 1/(𝜔𝑛√𝑎) 

(29) 

4. Computation of optimum gain
dcK for desired 

damping. 

B) Adaptive Damping VSC HVDC based 

Controller Design Using Neural Network  

This section serves to provide a foundational 

understanding of neural networks (NN), with a 

particular focus on concepts relevant to their 

application in closed-loop control of discrete-time 

dynamical systems. It delves into various aspects of 

NNs, including their diverse topologies, memory 

recall properties, fundamental characteristics, 

training methodologies, and architectural 

configurations. By exploring these key topics, 

readers will gain insights into the theoretical 

underpinnings and practical considerations essential 

for comprehending NN-based control systems. 

In the work referenced as [24], researchers 

propose an adaptive neural controller tailored for 

integration into the Voltage Source Converter High 

Voltage Direct Current (VSC HVDC) model, as 

depicted in Figure 5. This adaptive neural controller 

comprises two distinct neural networks: an identifier 

and a controller. The identifier network serves to 

discern the system dynamics and characteristics, 

effectively capturing the underlying behavior of the 

VSC HVDC system. Meanwhile, the controller 

network leverages this acquired knowledge to 

dynamically adjust control signals, thereby 

optimizing system performance and stability. By 

delineating these components, the study offers a 

comprehensive framework for employing neural 

network-based controllers in enhancing the 

operation and efficiency of VSC HVDC systems. 

 
Fig.5 Structure of the online neural controller 

The neural identifier, as depicted in Figure 6, 

serves as a crucial component within the adaptive 

neural controller. Its architecture consists of layers 

of interconnected neurons, where each neuron 

applies an activation function to its input signals to 

produce an output. In this context, the activation 

function employed is the hyperbolic tangent, 

denoted as f.  

Training the neural identifier involves the error 

backpropagation method, a fundamental technique 

in neural network learning. This process begins with 

defining a cost function 𝐸𝑖𝑑, which quantifies the 

disparity between the actual rotor speed deviation 

Δ𝜔 and the predicted deviation Δ�̂� generated by the 

neural identifier. The cost function is formulated as: 

𝐸𝑖𝑑 = 0.5(Δ𝜔 − Δ�̂�)2 = 0.5𝑒𝑖𝑑
2  (30) 

where 𝐸𝑖𝑑 represents the error between the 

predicted and actual values. To adjust the neural 

identifier's parameters (weights), the gradient of the 

cost function with respect to these parameters is 

computed using the chain rule of calculus. 

Specifically, the derivative of 𝐸𝑖𝑑 with respect to the 
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output neuron's input V and weights Δ�̂� is 

determined as follows: 

𝜕𝐸𝑖𝑑

𝜕(∆�̂�)
= −(Δ𝜔 − Δ�̂�) = −𝑒𝑖𝑑 

(31) 

𝜕𝐸𝑖𝑑

𝜕𝑤𝑜ℎ
𝑖𝑑
= (

𝜕𝐸𝑖𝑑
𝜕𝑒𝑖𝑑

) (𝜕𝑒𝑖𝑑/𝜕(Δ�̂�) × 

(𝜕(Δ�̂�)/𝜕𝑣)(𝜕𝑣/𝜕𝑤𝑜ℎ
𝑖𝑑 ) 

(32) 

where 𝑣 represents the weighted sum of inputs 

to the output neuron. Utilizing this gradient 

information, the weights between the output and 

hidden layers 𝑤𝑜ℎ
𝑖𝑑  are updated iteratively to 

minimize the cost function: 

𝑤𝑜ℎ𝑛𝑒𝑤
𝑖𝑑 = 𝑤𝑜ℎ𝑜𝑙𝑑

𝑖𝑑 − 𝜂𝜕𝐸𝑖𝑑/𝜕𝑤𝑜ℎ
𝑖𝑑  (33) 

where 𝜂 represents the learning rate, 

controlling the size of weight updates during each 

iteration. Through this iterative process, the neural 

identifier learns to approximate the relationship 

between the input signals and the rotor speed 

deviation, facilitating accurate prediction and 

control within the adaptive neural controller 

framework. 

 

 
Fig.6 Structure of the online neural identifier 

 

Structure of neural identifier is shown in Fig.7. This 

is a feed forward network. Back propagation method 

used to train this network as described in following. 

Coast function to training this network is: 

𝐸𝑐𝑜 = 0.5(0 − Δ�̂�)2 = 0.5Δ�̂�2 = 0.5𝑒𝑐𝑜
2  (34) 

and  

𝜕𝐸𝑐𝑜/𝜕(∆�̂�) = Δ�̂� = −𝑒𝑐𝑜 (35) 

𝜕𝐸𝑐𝑜

𝜕𝑤𝑜ℎ
𝑐𝑜 = (

𝜕𝐸𝑐𝑜

𝜕𝑒𝑐𝑜
) (

𝜕𝑒𝑐𝑜

𝜕(Δ�̂�)
) 

× 𝜕(Δ�̂�)/𝜕𝑣)(𝜕𝑣/𝜕𝑤𝑜ℎ
𝑐𝑜) 

(36) 

V, 𝑤𝑜ℎ
𝑐𝑜 are the neural identifier output and the 

weights  between output and hidden layer of neural 

controller, respectively. 

𝑣 =∑𝜔𝑜ℎ
𝑖𝑑 𝑦ℎ

𝑚𝑖_𝑖𝑑

ℎ

 

𝑦ℎ
𝑚𝑖_𝑖𝑑 = 𝑓 (∑𝜔ℎ𝑖

𝑖𝑑𝑦𝑖
𝑖𝑛_𝑖𝑑

ℎ

) = 𝑓(𝑢ℎ) 

(37) 

𝑦𝑖
𝑖𝑛_𝑖𝑑

, 𝑦ℎ
𝑚𝑖_𝑖𝑑

, 𝜔ℎ𝑖
𝑖𝑑, 𝜔𝑜ℎ

𝑖𝑑 , i  and h are inputs , inputs 

to output layer, connection weights between  input 

and hidden layer, weights between output and 

hidden layer, number of  inputs and number of 

neuron in hidden layer of neural identifier, 

respectively. So: 

(
𝜕𝑣

𝜕𝑤𝑜ℎ
𝑐𝑜) = (

𝜕𝑣

𝜕𝑈𝑐

) (
𝜕𝑈𝑐

𝜕𝑤𝑜ℎ
𝑐𝑜) = 

(𝜕𝑣/𝑦ℎ
𝑚𝑖𝑖𝑑)(𝑦ℎ

𝑚𝑖𝑖𝑑/𝜕𝑈𝑐)(𝜕𝑈𝑐/𝜕𝑤𝑜ℎ
𝑐𝑜) 

(38) 

Using equations (36-38), it is possible to calculate 

the sensitive coefficient in output neuron of neural 

controller and correct the middle and output weights 

of neural controller. 

 
Fig.7 Structure of the online neural controller 

 

C) Control Structure Survey based on SVD, 

RGA , Damping Function Concepts 

To damp power system oscillations using VSC 

HVDC, control structure design is clearly important 

due to the complexity of power systems. Control 

structure design includes selecting inputs and 

outputs for a supplementary damping controller, 

which has the most effectiveness on system 

behavior. It governs how the supplementary 

damping controller interacts with the power system 

to mitigate oscillations and enhance stability. 

From a physical understanding of the power 

system, it is clear that the best choice for an output 

in stability issues is the deviation of rotor speed. 

However, according to Equation 25, it is evident that 

a power system equipped with a VSC HVDC line is 

a multivariable system, making input selection 

crucial for designing a controller. Equation 25 

highlights the multivariable nature of the power 

system, indicating the need for careful consideration 

in selecting inputs for optimal controller design. 

So in this section, SVD and RGA are used for 

input selection. Singular Value Decomposition 

(SVD) and Relative Gain Array (RGA) are 

mathematical techniques employed to analyze the 

input-output relationships and interactions within 

the multivariable power system, aiding in the 

selection of inputs for the supplementary damping 

controller. 

The smallest singular value of the plant, 

denoted as (𝐺)−
𝜎 , assessed across frequency, serves 

as a valuable metric for determining the feasibility 

of achieving satisfactory control outcomes. When 

inputs and outputs undergo scaling, it becomes 

feasible to generate an output magnitude of at least 

(𝐺)−
𝜎  in any output direction with a manipulated 

input of unit magnitude, as measured by the 2-norm. 
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Generally, to prevent input saturation, it is preferred 

that (𝐺)−
𝜎  exceed 1 across all frequencies 

necessitating control. Interested readers are directed 

to [26] for more comprehensive insights. 

In the subsequent discussion, the application of 

Singular Value Decomposition (SVD) is elucidated 

for the selection of the system's output. Assessing 

the controllability of the Electromechanical (EM) 

mode by a designated input (control signal) involves 

employing SVD [22-23-24]. Mathematically, if G  

represents an nm  complex matrix, then there 

exist unitary matrices U and V with dimensions of 

mm and nn , respectively, satisfying: 
HVUG = Here,   denotes an n m  matrix 

containing nonnegative real numbers along the 

diagonal. The minimum singular value min serves 

to quantify the distance of matrix G from all 

matrices having a rank equivalent to min(m, n), 

offering a means to gauge modal controllability. 

The minimum singular value, min of matrix 

G, indicates the capability of the n input to regulate 

the mode associated with eigenvalue  . 

Consequently, higher min values correspond to 

increased mode controllability by the selected input. 

As such, evaluating the controllability of the EM 

mode with all inputs facilitates identification of the 

most effective input for oscillation mode control. 

"A straightforward yet potent screening tool 

for input and output selection, circumventing 

combinatorial challenges, is the Relative Gain Array 

(RGA). Its inception can be traced to [27], 

furnishing designers with a swift means to gauge 

interaction within multivariable system control 

loops. For an 𝑙 × 𝑚 matrix G, RGA is delineated as: 

𝑅𝐺𝐴(𝐺) = Λ(𝐺) = 𝐺 × (𝐺𝜄)𝑇 (39) 

Here, 𝐺𝜄⁡symbolizes the pseudo-inverse, 

(. )𝑇denotes transposition, and × signifies element-

wise multiplication. RGA harbors several salient 

control properties. In cases with numerous input 

manipulations, columns with sums markedly below 

1 may warrant exclusion. Similarly, in scenarios 

with manifold output candidates, rows with sums 

significantly under 1 may merit omission [26]. 

Thus, RGA unveils the interplay among 

diverse input/output pairs on the overall system. 

This aspect is pivotal in gauging input 

controllability: the sum of the i-th row in RGA 

corresponds to the square of the i-th output 

projection, while the sum of the j-th column equates 

to the square of the j-th input projection. Further 

elucidation can be found in [26, 27]. 

In [28], RGA was employed to assess input 

controllability in a Back-to-Back (BtB) VSC HVDC 

system. The method involved solving Equation 25 

for each low frequency, followed by computation 

and graphical representation of 𝐺(𝑗𝜔) and the row-

wise summation. This approach facilitated the 

identification of the primary input for applying the 

damping signal derived from the supplementary 

controller. 

The linearized model of the power system 

installed with the BtB VDC HVDC can be expressed 

by Fig. 8 [29], where H(s) is the transfer function of 

the HVDC damping controller. From Fig. 8 we can 

obtain the electric torque provided by the HVDC 

damping controller to the electromechanical 

oscillation loop of the generator to be: 

Δ𝑇𝐻𝑉𝐷𝐶
= (𝐾𝑐(𝜆0)𝐾0(𝜆0)𝐻(𝜆0)
/(1 − 𝐾𝐼𝐿(𝜆0)𝐻(𝜆0)))Δ𝜔 

(40) 

An ideal HVDC damping controller should 

contribute a pure positive damping torque to the 

electromechanical oscillation loop with 

HVDC HVDCT D  =  that is: 

𝐷𝐻𝑉𝐷𝐶 = (𝐾𝑐(𝜆0)𝐾0(𝜆0)𝐻(𝜆0) 
/(1 − 𝐾𝐼𝐿(𝜆0)𝐻(𝜆0)) 

(41) 

which results in: 

𝐷𝐻𝑉𝐷𝐶 = [𝐾𝑐(𝜆0)𝐾0(𝜆0) 
+𝐷𝐻𝑉𝐷𝐶𝐾𝐼𝐿(𝜆0)𝐻(𝜆0) = 𝐹(𝜆0)𝐻(𝜆0) 

(42) 

0( )F   which is named as the forward path of the 

BtB VSC HVDC damping controller, has a decisive 

influence on the effectiveness of the HVDC 

damping controller. 

 
 

Fig.8. Closed-loop system installed with UPFC dumping controller 

 

If we assume the set of the operating conditions of 

the power system is 0( ), ( )F   can be denoted as 

the function of system operating condition   and 

input control signal of the HVDC 
ku . The criterion 

of the selection can be [29]: 

𝜇𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = min 𝐹(𝜆0, 𝜇, 𝑢𝑘), 𝜇𝜖Ω(𝜇)⁡ (43) 

0max ( , , )

{ , , , }

k

selected selected k
u

k r i r i

u F u

u M M

 

 

=


 

(44) 

𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
= max⁡ 𝐹(𝜆0, 𝜇𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑢𝑘), ⁡𝑢𝑘𝜖{𝑀𝑟 , 𝑀𝑖, 𝜑𝑟 , 𝜑𝑖}, 𝜇𝜖Ω(𝜇) 

(45) 

a) Eq.43 requires that the operating condition, 

where the HVDC damping control is least 
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effective, is selected for the design of the 

controller. 

b) For the efficient operation of the HVDC 

damping function. The required damping 

should be provided at minimum control cost. 

c) A good design of damping controller requires 

that it provides a steady damping over all the 

range of power system operating conditions. 

Furthermore, from Eq.42 we can see that the phase 

compensation method can be used to set the 

parameters of the HVDC damping controller. 

4. Simulation Results 

To evaluate the capabilities of the proposed 

control, MATLAB software is used to simulate the 

power system along with the additional controllers. 

All system data is provided in the appendix of the 

article. Mechanical power changes in the turbine are 

used as disturbances in the linearized system. In the 

non-linear system, a three-phase short circuit is used 

to assess the performance of the proposed 

controllers. 

To design the supplementary stabilizer 

controller described in this article, it is essential to 

determine the appropriate coupling between input 

and output signals based on the provided dynamic 

model. This ensures the optimal and robust 

performance of the supplementary controller. 

Accordingly, the RGA criteria (used to measure the 

interference of an input-output coupling with other 

couplings) and SVD criteria (used to identify the 

input with the greatest effect on the 

electromechanical mode of the power system) are 

employed. The damping function also provides the 

optimal operating point for additional controller 

design. 

To select the coupling of input and output 

signals with minimal interference with other control 

channels, the sum of the columns of the RGA matrix 

is calculated for frequencies below 20 Hz. Based on 

this calculation, the input with the highest sum of 

RGA values across different frequencies has less 

interference with the other existing control channels. 

The results of these calculations are shown in 

Figure 9. It can be seen that the input related to the 

modulation angle of the rectifier in VSC HVDC has 

less interference compared to other inputs. 

Additionally, the input related to the power system 

stabilizer (PSS) also shows less interference than 

other system inputs. However, in the case of inverter 

control inputs, the signal coupling interference is 

significant. 

 
Fig.9. RGA Results 

The SVD criterion was introduced to select the 

input with the most significant effect on 

strengthening the oscillation mode damping of the 

power system. In this article, the SVD values of the 

controllability matrix are calculated for different 

operating points of the system as well as certain 

inputs, and the smallest singular value of this matrix 

is plotted. The input with the smallest singular value, 

compared to the values corresponding to other 

inputs, has the greatest effect on the oscillation 

mode. The results of applying the SVD criterion are 

shown in Figure 10. It can be seen that the phase 

angle of the rectifier and the phase angle of the 

inverter have the greatest effect on the oscillatory 

modes of the power grid. 

 
Fig.10. SVD Results 

The results of the RGA and SVD criteria show 

that the best input for the supplementary control 

signal of the damper in a power system equipped 

with VSC HVDC is the rectifier phase angle. 

Therefore, this input will be used to design the 

controller proposed in this paper. 

The results of plotting the damping function 

for the oscillatory mode at different operating points 

of the system are shown in Figure 11. It can be seen 

that the damping is at its lowest value for any of the 

system inputs under light operating conditions. The 

controller must be configured to provide sufficient 

damping for the network. This controller must 

ensure the necessary damping for oscillations under 

operating conditions of Pe = 0.65, which represents 

the worst conditions in terms of oscillatory mode 

damping. Therefore, the proposed controller is 

designed based on this operating point. 
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Fig.11. DF Results - Damping of oscillation mode over the 

operating condition 

Table.1. 
Classic Controller Design 

 
rM  r  

i  

1T  0.28 0.39 5.2 

2T  0.31 0.42 0.03 

dcK  -53 -79.1 11.1 

 

Based on the above results, a supplementary 

controller is used in the path between rotor speed 

changes and the rectifier modulation phase angle in 

VSC HVDC. The operating point of the power 

system for the design of this controller is Pe = 0.65. 

Using the phase compensation method, the classical 

controller is designed in various directions. The 

coefficients of this controller are provided in Table 

1. 

Figures 12, 13, and 14 show the results of the 

simulation of the linearized system in the presence 

of the proposed classical damper controllers (based 

on the coefficients in Table 1). The mechanical 

power deviation is considered 0.05pu as input 

disturbance to the synchronous generator. It can be 

seen that the best damping of power fluctuations 

(Figure 12), frequency fluctuations (Figure 13), and 

load angle (Figure 14) is achieved by the controller 

designed for the rectifier phase angle. Although 

other controllers provide the necessary damping for 

the stable operation of the power system, the settling 

time and overshoot of the output signals are 

minimized using the controller in the direction of the 

rectifier phase angle. 

 
Fig.12. Generated Active Power in Synchronous Generator 

 

 
Fig.13. Rotor Speed Deviation in Synchronous Generator 

 

 
Fig.14. Load Angel Deviation in Synchronous Generator 

 

The neural network adaptive controller is 

designed to dampen power system fluctuations. This 

controller is implemented using S-function 

functions in MATLAB software. For comparison 

purposes, the performance of the adaptive neural 

controller (ANN) and the classical controller in 

damping oscillations by applying a damping signal 

to the rectifier phase angle is evaluated first. The 

heavy system working condition (Pe=1.1pu) is 

considered. The simulation results are presented in 

Figures 15, 16, and 17. It is evident that the adaptive 

neural controller outperforms the classical controller 

in damping frequency-power fluctuations 

significantly. Specifically, the settling time and 

overshoot of the output signals have been 

significantly reduced by the adaptive neural 

controller. Some neural controller weights are 

shown in Figure 17. 

 
Fig.15. Generated Active Power in Synchronous Generator 

 

 
Fig.16. Rotor Speed Deviation in Synchronous Generator 
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Fig.17. Load Angel Deviation in Synchronous Generator 

 

 
Fig.18. ANN Weights 

 

Both classical and neural controllers are 

utilized to dampen the oscillations caused by load 

change disturbances in the turbine (at t=0s and for 

Pm=0.05pu), as well as three-phase short circuits 

(for 6 cycles at time t=5s). The results of the 

simulation for these conditions are depicted in 

figures (19) and (20). It is evident that both 

controllers effectively mitigate the fluctuations in 

frequency and power. However, the adaptive neural 

controller outperforms the classical controller in 

terms of overshoot and settling time. 

 
Fig.19. Generated Active Power in Synchronous Generator 

(Nonlinear System) 

 

 
Fig.20. Rotor Speed Deviation in Synchronous Generator 

(Nonlinear System) 

 

 

 

 

 

5. Conclusion 

The study introduces a novel approach for modelling 

parallel AC/DC power systems and evaluates the 

effectiveness of classical and neural controllers in 

mitigating power system fluctuations. Simulation 

results, conducted using MATLAB, demonstrate the 

superior performance of the adaptive neural 

controller compared to the classical controller, 

particularly in terms of overshoot and settling time, 

under heavy system working conditions. These 

findings contribute to the advancement of control 

strategies for voltage source converter (VSC) 

HVDC systems, offering potential applications in 

enhancing transient stability and power oscillation 

damping. 

 

Appendix 
Adaptive Neural Controller (for Both Neural 

Identifier and Controller): 3 layer 

feedforward Neural Network (Input Layer;3 

Neurons, Hidden Layer: 6 Neurons, Output 

Layer: 1 Neuron), Activation Function: 

Sigmund, Sampling Time: 1E-6;Learning 

Rate:0.1.  

Pe=1.1; Qe=0.3; Xq=.6; Xd=1; Xdp=.3; 

Xtl=.18; Xlb=1, Xs=.18; Xsp=.18; 

Vdcr=2;Vdci=2; Cdcr=1; Cdci=1; Pac=Pe*(.5); 

Pdc=Pe-Pac; Ln=0.06;Tdop=4;M=12; D=0; Ka=45; 

Ta=0.03; Ka=140; Ta=.015; B=Xl/Xr;  

Z=1+(Xl/Xr); A=Xt+Xl+((Xt*Xl)/Xr); 

AA=A+(Z*Xdp); BB=A+(Z*Xq); Vdc=Vdcr; 

C1=Vbq/BB; C2=-((Xl)/(2*BB*Xr))* 

Mr*Vdc*sin(PHr; C3=((Xl)/(2*BB*Xr))* 

Vdc*cos(PHr); 

C4=(Xl/(2*BB*Xr))* Mr*cos(PHr); C5=Z/AA; 

C6=(Vbd)/AA; C7=-(Xl/(2*AA*Xr))* 

Mr*Vdc*cos(PHr); C8=-(Xl/(2*AA*Xr))* 

Vdc*sin(PHr);C9=-(Xl/(2*AA*Xr))* 

Mr*sin(PHr); C111=Eqp+((Xq-Xdp)*Itd); 

C112=(Xq-Xdp)*Itq; K1=((C111*C1)+ 

(C112*C6)); K2=((Itq)*(1+(Xq-Xdp)*C5)); 

Kpdcr=((C111*C4) + (C112*C9)); 

Kpmr=((C111*C3) + (C112*C8)); 

Kpphr=((C111*C2)+(C112*C7)); J=Xd-Xdp; 

K3=1+(J*C5); K4=J*C6; Kqphr=J*C7; Kqmr=J*C8; 

Kqdcr=J*C9; L=(1/Vt); K5=L*((Vtd*Xq*C1)-

(Vtq*Xdp*C6)); K6=L*(Vtq)*(1-(Xdp*C5)); 

Kvdcr=L*(Vtd*Xq*C4 - Vtq*Xdp*C9); 

Kvmr=L*(Vtd*Xq*C3 - Vtq*Xdp*C8); 

Kvphr=L*(Vtd*Xq*C2 - Vtq*Xdp*C7); 

E=(Xt+Xdp)/Xr; C10=E*C5-(1/Xr); C11=E*C6; 

C12=E*C7-((Mr*Vdcr*sin(PHr))/(2*Xr)); 

C13=E*C8+((Vdcr*sin(PHr))/(2*Xr)); 

C14=E*C9+((Mr*cos(PHr))/(2*Xr)); 

F=(Xq+Xt)/Xr; C15=F*C1; 

C16=F*C2+((Mr*Vdcr*sin(PHr))/(2*Xr)); 

C17=F*C4-((Mr*cos(PHr))/(2*Xr)); 

C18=F*C3-((Vdcr*cos(PHr))/(2*Xr)); 

C19=Vbd/Xi; C20=Mi*sin(PHi)/(2*Xi); 

C21=Vdci*sin(PHi)/(2*Xi); 

C22=Mi*Vdci*cos(PHi)/(2*Xi) 

C23=Vbq/Xi; C24=-(Mi*cos(PHi))/(2*Xi); 

C25=-(Vdci*cos(PHi))/(2*Xi); 

C26=(Mi*Vdci*sin(PHi))/(2*Xi); 

f5=-0.5*(cos(PHr)*Ird + sin(PHr)*Irq); 
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f6=-0.5*(Mr*sin(PHr)*Ird+Mr*cos(PHr)*Irq); 

f7=-0.5*Mr*cos(PHr);f8=-0.5*Mr*sin(PHr); 

C31=f7*C11+f8*C15; C32=f7*C10; 

C33=f7*C14+f8*C17; C34=f5+f7*C13+f8*C18; 

C35=f6+f7*C12+f8*C16; f1=-0.5*(cos(PHi)*Iid 

+ sin(PHi)*Iiq); f2=-0.5*(-Mi*Iid*sin(PHi) +  

Mi*Iiq*cos(PHi)); f3=-0.5*Mi*cos(PHi); f4=-

0.5*Mi*sin(PHi); C27=f3*C19+f4*C23; 

C28=f3*C20+f4*C24; C29=f1+f3*C21+f4*C25; 

C30=f2+f3*C22+f4*C26;  Wb=2*pi*Frequency; 

P1=2*Xq*Itq; P2=2*Xdp*Itd; P3=P2-Eqp; P4=-

Itd; q1=P1*C1+P3*C6; q2=P3*C5+P4; 

q3=P1*C4+P3*C9; q4=P1*C2+P3*C7; 

q5=P1*C3+P3*C8; 
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