Transactions on Fuzzy Sets and Systems (TFSS)

URL: https://sanad.iau.ir/journal/tfss/

Online ISSN: 2821-0131 Vol.3, No.2, (2024), pp-pp

DOI: http://doi.org/ 10.xxxxx/tfss.2022.yyyyy.zzzz

Article Type: Original Research Article (Journal Pre-proof)

Fixed Point Theorems in Orthogonal Intuitionistic Fuzzy b-metric Spaces with an Application to Fredholm Integral Equation

Abstract. In this manuscript, the concept of an orthogonal intuitionistic fuzzy b-metric space is initiated as a generalization of an intuitionistic fuzzy b-metric space. We presented some fixed point results in this setting. For the validity of the obtained results, some non-trivial examples are given. In the last part, we established an application on the existence of a unique solution of a Fredholm-type integral equation.

AMS Subject Classification 2020: 47H10; 54H25

Keywords and Phrases: Orthogonal set, Intuitionistic fuzzy metric space, Unique solution, Integral equation.

1 Introduction

A publication showing there are solutions to differential equations established fixed-point theory in the second quarter of the eighteenth century (Joseph Liouville, 1837). This approach was further improved as a sequential approximation technique (Charles Emile Picard, 1890), and in the setting of complete normed space, it was generalized as a fixed-point theorem (Stefan Banach, 1922). It presents the a priori and a posteriori approximations for the convergence rate as well as a general way to actually determine the fixed point. Additionally, it ensures that a fixed point exists and is distinct. This information is helpful for studying metric spaces. Stefan Banach is acknowledged for developing fixed-point theory after that. Fixed-point theorems allow us to guarantee that the main problem has been resolved, as has the existence of a fixed point for a given function. In a large variety of scientific problems that are derive from many different branches of mathematics, the existence of a solution is equivalent to the existence of a fixed point for a suitable mapping.

In 1989, Bakhtin [2] established the notion of quasi-metric spaces and established some results for contraction mappings. In 1993, Czerwik [4] established the concept of b-metric spaces and discussed several fixed-point results. Eshaghi et al. [8] introduced the notion of orthogonal metric spaces and derived well-known Banach fixed point theorem. Uddin et al. [27] established orthogonal m-metric spaces and solve the integral equation. Eshaghi and Habibia [7] derived several fixed point results in the context of generalized orthogonal metric space. Senapati et al. [23] established some new fixed point theorems in the context of orthogonal metric spaces. In 1965, Zadeh [28] established the notion of fuzzy sets (FSs) to deal with those problems that do have not any clear boundaries.

*Corresponding Author: Salvatore Sessa, Email: salvatore.sessa2@unina.it, ORCID: 0000-0002-4303-2884
Received: 21 March 2024; Revised: 18 June 2024; Accepted: 21 June 2024; Available Online: 21 June 2024; Published Online: dd mmmm yyyy.

How to cite: Uddin F, Saeed M, Ahmed K, Ishtiaq U, Sessa S. Fixed point theorems in orthogonal intuitionistic fuzzy b-metric spaces with an application to fredholm integral equation. *Transactions on Fuzzy Sets and Systems.* 2024; 3(2): pp-pp. DOI: http://doi.org/10.xxxxx/xxxx.yyyyy.zzzz

In 1960, Schweizer [21] introduced the notion of continuous t-norm and worked on statistical metric spaces. In 1975, the combination of metric spaces and FSs, named fuzzy metric spaces (FMSs), have been introduced by Kramosil and Michlek [14]. In 1994, George and Veeramani [9] modified the notion of FMSs and gave an interesting analysis of FMSs in 1997 in a research paper [10]. Deng [5] established the notion of fuzzy pseudo-metric spaces and proved neumours results in the existence and uniqueness of a solution. Shukla and Abbas [24] established the notion of fuzzy metric-like spaces as a generalization of FMSs. Hezarjaribi [11] established the notion of orthogonal FMSs as a generalization of FMSs. Ndban [17] established the concept of fuzzy b-metric spaces (FBMSs) and Jeved et al. [12] introduced fuzzy b-metric like spaces as a generalization of FBMSs. The authors [22, 6, 20, 15] derived several fixed points results under some circumstances in the context of FBMSs. In 2004, Park [18] introduced the notion of intuitionistic fuzzy metric spaces (IFMSs), in which he combined the notions of continuous t-norm, continuous t-conorm, FSs and metric space.

Rafi and Noorani [19], Sintunavarat and Kumam [25], Alaca et al. [1] and Mohamad [16] derived some fixed point results for contraction mappings in the context of IFMSs. Konwar [13] introduced the notion of intuitionistic fuzzy b-metric spaces (IFBMSs) as a generalization of IFMSs and derived fixed point results. Baleanu and Rezapour [3] and Sudsutad and Tariboon [26] worked on fractional differential equations. In this manuscript, we aim to toss the notion of orthogonal Intuitionistic fuzzy b-metric spaces (OIFBMSs) as a generalization of IFBMSs. We provide some related fixed point theorems, including non-trivial examples and an application. Some of the following notions are used throughout this paper, as CTN for a continuous t-norm, CTCN for a continuous t-conorm and FP for fixed point.

2 preliminaries

In this section, we will discuss some important definitions that support our main result.

Definition 2.1. [2] Suppose $\Xi \neq \phi$. Given a five tuple $(\Xi, G, H, *, \Delta)$ where * is a CTN, Δ is a CTCN, $\theta \geq 1$ and G, H are FSs on $\Xi \times \Xi \times (0, \infty)$. If $(\Xi, G, H, *, \Delta)$ meets the below conditions for all $w, k \in \Xi$ and $\pi, \tau > 0$:

```
(B1) G(w, k, \tau) + H(w, k, \tau) < 1;
```

(B2)
$$G(w, k, \tau) > 0$$
;

(B3)
$$G(\mathbf{w}, \mathbf{k}, \tau) = 1 \Leftrightarrow \mathbf{w} = \mathbf{k};$$

(B4)
$$G(w, k, \tau) = G(k, w, \tau);$$

(B5)
$$G(\mathbf{w}, e, \theta(\tau + \pi)) \ge G(\mathbf{w}, \mathbf{k}, \tau) * G(\mathbf{k}, e, \Pi);$$

- (B6) $G(\mathbf{w}, \mathbf{k}, \cdot)$ is a non decreasing function of R^+ and $\lim_{\tau \to \infty} G(\mathbf{w}, \mathbf{k}, \tau) = 1$;
- (B7) $H(w, k, \tau) > 0$;
- (B8) $H(\mathbf{w}, \mathbf{k}, \tau) = 0 \Leftrightarrow \mathbf{w} = \mathbf{k};$
- (B9) $H(w, k, \tau) = H(k, w, \tau);$
- (B10) $H(\mathbf{w}, e, \theta(\tau + \pi)) \le H(\mathbf{w}, \mathbf{k}, \tau) \Delta H(\mathbf{k}, e, \Pi);$
- (B11) $H(\mathbf{w}, \mathbf{k}, \cdot)$ is a non increasing function of R^+ and $\lim_{\tau \to \infty} H(\mathbf{w}, \mathbf{k}, \tau) = 1$;

Then $(\Xi, G, H, *, \Delta)$ is an IFBMS.

Definition 2.2. Assume $\Xi \neq \phi$. Let $\bot \in \Xi \times \Xi$ be a binary relation. Suppose there exists $w_0 \in \Xi$ such that $w_0 \bot w$ or $w \bot w_0$ for all $w \in \Xi$. Thus, Ξ is known as orthogonal set (OS) and denoted by (Ξ, \bot)

Definition 2.3. Assume that (Ξ, \bot) is an OS. A sequence $\{w_n\}$ for $n \in \mathbb{N}$ is known to be an O-sequence if $(\forall n, w_n \bot w_{n+1})$ or $(\forall n, w_{n+1} \bot w_n)$

3 Orthogonal Intuitionistic Fuzzy b-metric Spaces

Now, we establish the notion of OIFBMSs and derive several FP results with non-trivial examples.

Definition 3.1. $(\Xi, G, H, *, \Delta)$ is known to be an OIFBMS if Ξ is a (non empty) OS, * is a CTN, Δ is a CTCN, and G, H are FSs on $\Xi \times \Xi \times (0, \infty)$ verifying the below conditions for a given real number $\theta \ge 1$:

- $(B_{\perp}1)$ $G(w,k,\tau) + H(w,k,\tau) \leq 1$ for all $w,k \in \Xi, \tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_{\perp}2)$ $G(w,k,\tau) > 0$ for all $w,k \in \Xi, \tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_{\perp}3)$ $G(w, k, \tau) = 1 \Leftrightarrow w = k$; for all $w, k \in \Xi$, $\tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_{\perp}4)$ $G(w, k, \tau) = G(k, w, \tau)$ for all $w, k \in \Xi, \tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_{\perp}5)$ $G(w, e, \theta(\tau + \pi)) \ge G(w, k, \tau) * G(k, e, \Pi)$ for all $w, k \in \Xi, \tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_{\perp}6)$ $G(\mathbf{w}, \mathbf{k}, \cdot)$ is a non decreasing function of R^+ and $\lim_{\tau \to \infty} G(\mathbf{w}, \mathbf{k}, \tau) = 1$ for all $\mathbf{w}, \mathbf{k} \in \Xi$, $\tau > 0$ such that $\mathbf{w} \perp \mathbf{k}$ and $\mathbf{k} \perp \mathbf{w}$;
- $(B_{\perp}7)$ $H(w, k, \tau) > 0$ for all $w, k \in \Xi, \tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_{\perp}8)$ $H(w, k, \tau) = 0 \Leftrightarrow w = k$ for all $w, k \in \Xi, \tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_{\perp}9)$ $H(w, k, \tau) = H(k, w, \tau)$ for all $w, k \in \Xi, \tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_{\perp}10)$ $H(w, e, \theta(\tau + \pi)) \leq H(w, k, \tau)\Delta H(k, e, \Pi)$ for all $w, k \in \Xi, \tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_{\perp}11)$ $H(\mathbf{w}, \mathbf{k}, \cdot)$ is a non increasing function of R^+ and $\lim_{\tau \to \infty} H(\mathbf{w}, \mathbf{k}, \tau) = 1$ for all $\mathbf{w}, \mathbf{k} \in \Xi$, $\tau > 0$ such that $\mathbf{w} \perp \mathbf{k}$ and $\mathbf{k} \perp \mathbf{w}$;

Then $(\Xi, G, H, *, \Delta)$ is an IFBMS.

Example 3.2. Let $\Xi = R$ and define $\sigma * \theta = \sigma \theta$, $\sigma \Delta \theta = \min \{ \sigma, \theta \}$ and \bot by w \bot k iff w + k ≥ 0 . Let

$$G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 1 & \text{if } \mathbf{w} = \mathbf{k}, \\ \frac{\tau}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}} & \text{otherwise.} \end{cases}$$
 (1)

and

$$H(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 0 \text{ if } \mathbf{w} = \mathbf{k}, \\ \frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}} \text{ otherwise.} \end{cases}$$
 (2)

for all $w, k \in \Xi, \tau > 0$ with α belong to odd natural numbers.

Proof. $(B_{\perp}1) - (B_{\perp}3)$, $(B_{\perp}5) - (B_{\perp}9)$ and $(B_{\perp}11)$ are obvious. Here, we prove $(B_{\perp}4)$ and $(B_{\perp}10)$. $(B_{\perp}4)$: for a random number $\theta \geq 1$, one writes

$$\max\{\mathbf{w}, e\}^{\alpha} < \theta[\max\{\mathbf{w}, \mathbf{k}\}^{\alpha} + \max\{\mathbf{k}, e\}^{\alpha}]$$

Thus,

$$\tau\pi\max\{\mathbf{w},e\}^{\alpha} \leq \theta(\tau+\pi)\pi\max\{\mathbf{w},\mathbf{k}\}^{\alpha} + \theta(\tau+\pi)\tau\max\{\mathbf{k},e\}^{\alpha}.$$

Consequently,

$$\tau\pi\max\{\mathbf{w},e\}^{\alpha}\leq\theta(\tau+\pi)\pi\max\{\mathbf{w},\mathbf{k}\}^{\alpha}+\theta(\tau+\pi)\tau\max\{\mathbf{k},e\}^{\alpha}+\theta(\tau+\pi)\max\{\mathbf{k},e\}^{\alpha}.$$

Thus,

$$\tau\pi\max\{\mathbf{w},e\}^{\alpha} \leq \theta(\tau+\pi)[\pi\max\{\mathbf{w},\mathbf{k}\}^{\alpha} + \tau\max\{\mathbf{k},e\}^{\alpha} + \max\{\mathbf{w},\mathbf{k}\}^{\alpha}\max\{\mathbf{k},e\}^{\alpha}].$$

one write

$$\theta(\tau + \pi)\tau\pi + \tau\pi \max\{\mathbf{w}, e\}^{\alpha} \leq \theta(\tau + \pi)\tau\pi + \theta(\tau + \pi)[\pi \max\{\mathbf{w}, \mathbf{k}\}^{\alpha} + \tau \max\{\mathbf{k}, e\}^{\alpha} + \max\{\mathbf{k}, e\}^{\alpha}].$$

Therefore,

$$\theta(\tau + \pi)\tau\pi + \tau\pi \max\{\mathbf{w}, e\}^{\alpha} \le \theta(\tau + \pi)[\tau\pi + \pi \max\{\mathbf{w}, \mathbf{k}\}^{\alpha} + \tau \max\{\mathbf{k}, e\}^{\alpha} + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha} \max\{\mathbf{k}, e\}^{\alpha}].$$

That is,

$$\tau\pi[\theta(\tau+\pi)+\max\{\mathbf{w},e\}^{\alpha}]\leq \theta(\tau+\pi)[\tau+\max\{\mathbf{w},\mathbf{k}\}^{\alpha}][\pi+\max\{\mathbf{k},e\}^{\alpha}]$$

Hence,

$$\begin{split} \frac{\theta(\tau+\pi)}{\theta(\tau+\pi) + \max\{\mathbf{w},e\}^{\alpha}} &\geq \frac{\tau\pi}{[\tau+\max\{\mathbf{w},\mathbf{k}\}^{\alpha}][\pi+\max\{\mathbf{k},e\}^{\alpha}]}.\\ \frac{\theta(\tau+\pi)}{\theta(\tau+\pi) + \max\{\mathbf{w},e\}^{\alpha}} &\geq \frac{\tau}{\tau+\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}. \end{split}$$

That is,

$$G(\mathbf{w}, e, \theta(\tau + \pi)) \ge G(\mathbf{w}, \mathbf{k}\tau) * G(\mathbf{k}, e, \pi).$$

 $(B_{\perp}10)$: One writes

$$\max\{\mathbf{w},e\}^{\alpha} = \max\{\mathbf{w},e\}^{\alpha} \max\left\{\frac{\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}, \frac{\max\{\mathbf{k},e\}^{\alpha}}{\max\{\mathbf{k},e\}^{\alpha}}\right\}.$$

Then

$$\max\{\mathbf{w},e\}^{\alpha} \leq [\theta(\tau+\pi) + \max\{\mathbf{w},e\}^{\alpha}] \max\left\{\frac{\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}, \frac{\max\{\mathbf{k},e\}^{\alpha}}{\max\{\mathbf{k},e\}^{\alpha}}\right\}.$$

That is,

$$\frac{\max\{\mathbf{w}, e\}^{\alpha}}{\theta(\tau + \pi) + \max\{\mathbf{w}, e\}^{\alpha}} \le \max\left\{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}, \frac{\max\{\mathbf{k}, e\}^{\alpha}}{\pi + \max\{\mathbf{k}, e\}^{\alpha}}\right\}.$$

Hence,

$$H(\mathbf{w}, e, \theta(\tau + \pi)) \le H(\mathbf{w}, \mathbf{k}, \tau) \Delta H(\mathbf{k}, e, \pi).$$

Now, we show it's not an IFBM. Indeed, for $\pi=\tau=1,$ w=-1, $k=-\frac{1}{2}$ and $\alpha=3,$ (B4) and (B10) fail. \Box

Example 3.3. Let $\Xi = \mathbb{R}$ and define $\sigma * \theta = \sigma \theta$, $\sigma \Delta \theta = \min \{ \sigma, \theta \}$ and \bot by w \bot k iff w + k ≥ 0 . Let

$$G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 1 & \text{if } \mathbf{w} = \mathbf{k}, \\ \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}} \right]^{-1} & \text{otherwise.} \end{cases}$$
 (3)

and

$$H(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 0 \text{ if } \mathbf{w} = \mathbf{k}, \\ 1 - \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}} \right]^{-1} \text{ otherwise.} \end{cases}$$
(4)

for all $w, k \in \Xi, \tau > 0$ with α belong to odd natural numbers.

Proof. $(B_{\perp}1) - (B_{\perp}3)$, $(B_{\perp}5) - (B_{\perp}9)$ and $(B_{\perp}11)$ are obvious. Here, we prove $(B_{\perp}4)$ and $(B_{\perp}10)$. $(B_{\perp}4)$: for a random number $\theta \geq 1$, one writes

$$\max\{\mathbf{w}, e\}^{\alpha} \le \theta \left[\max\{\mathbf{w}, \mathbf{k}\}^{\alpha} + \max\{\mathbf{k}, e\}^{\alpha} \right].$$

Therefore,

$$\max\{\mathbf{w}, e\}^{\alpha} \le \theta \left[\frac{\tau + \pi}{\tau} \max\{\mathbf{w}, \mathbf{k}\}^{\alpha} + \frac{\tau + \pi}{\pi} \max\{\mathbf{k}, e\}^{\alpha} \right]$$

Then

$$\frac{\max\{\mathbf{w}, e\}^{\alpha}}{\theta(\tau + \pi)} \le \frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau} + \frac{\max\{\mathbf{k}, e\}^{\alpha}}{\pi}$$

Since, e^{w} is an increasing function, one gets

$$e^{\frac{\max\{\mathbf{w},e\}^{\alpha}}{\theta(\tau+\pi)}} \leq e^{\frac{\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\tau}} \cdot e^{\frac{\max\{\mathbf{k},e\}^{\alpha}}{\pi}}.$$

That is

$$\left[e^{\frac{\max\{\mathbf{w},e\}^{\alpha}}{\theta(\tau+\pi)}}\right]^{-1} \geq \left[e^{\frac{\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\tau}}\right]^{-1} \cdot \left[e^{\frac{\max\{\mathbf{k},e\}^{\alpha}}{\pi}}\right]^{-1}.$$

Hence,

$$G(\mathbf{w}, e, \theta(\tau + \pi)) \ge G(\mathbf{w}, \mathbf{k}\tau) * G(\mathbf{k}, e, \pi).$$

 $(B_{\perp}10)$: For a random $\theta \geq 1$, we write

$$\frac{\max\{\mathbf{w},e\}^{\alpha}}{\theta(\tau+\pi)} \leq \max\left\{\frac{\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\tau},\frac{\max\{\mathbf{k},e\}^{\alpha}}{\pi}\right\}.$$

That is,

$$e^{\frac{\max\{\mathbf{w},e\}^{\alpha}}{\theta(\tau+\pi)}} \leq \max\left\{e^{\frac{\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\tau}},e^{\frac{\max\{\mathbf{k},e\}^{\alpha}}{\pi}}\right\}.$$

Then,

$$\left[e^{\frac{\max\{\mathbf{w},e\}^{\alpha}}{\theta(\tau+\pi)}}\right]^{-1} \geq \max\left\{\left[e^{\frac{\max\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\tau}}\right]^{-1}, \left[e^{\frac{\max\{\mathbf{k},e\}^{\alpha}}{\pi}}\right]^{-1}\right\}.$$

That is,

$$1 - \left[e^{\frac{\max\{\mathbf{w},e\}^{\alpha}}{\theta(\tau + \pi)}}\right]^{-1} \le \max\left\{1 - \left[e^{\frac{\max\{\mathbf{w},k\}^{\alpha}}{\tau}}\right]^{-1}, 1 - \left[e^{\frac{\max\{\mathbf{k},e\}^{\alpha}}{\pi}}\right]^{-1}\right\}.$$

Hence,

$$H(\mathbf{w}, e, \theta(\tau + \pi)) \leq H(\mathbf{w}, \mathbf{k}, \tau) \Delta H(\mathbf{k}, e, \pi). \forall \mathbf{w}, \mathbf{k}, e \in \Xi, \forall \tau, \pi > 0.$$

Now, we show it's not an IFBM. Indeed, for $\pi = \tau = 1$, w = -1, $k = -\frac{1}{2}$, e = -2 and $\alpha = 3$, (B4) and (B10) is not satisfy. \square

Example 3.4. Let $\Xi = \mathbb{R}$ and define $\sigma * \theta = \sigma\theta, \sigma\Delta\theta = \max\{\sigma, \theta\}$ and \bot by w \bot k iff w + k ≥ 0 . Suppose

$$G(\mathbf{w}, \mathbf{k}, \tau) = \frac{\tau + \min\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}$$
 (5)

and

$$H(\mathbf{w}, \mathbf{k}, \tau) = 1 - \frac{\tau + \min\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}$$

$$(6)$$

for all w, k $\in \Xi$, $\tau > 0$ with α belong to odd natural numbers. Here, $(\Xi, G, H, *, \Delta, \bot)$ is an OIFBMS. It is not an IFBMS. Indeed, if it is the case, from (B4),

$$\frac{\theta(\tau+\pi) + \min\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\theta(\tau+\pi) + \max\{\mathbf{w},\mathbf{k}\}^{\alpha}} \geq \frac{\tau + \min\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w},\mathbf{k}\}^{\alpha}} \cdot \frac{\pi + \min\{\mathbf{w},\mathbf{k}\}^{\alpha}}{\pi + \max\{\mathbf{w},\mathbf{k}\}^{\alpha}}$$

and from case (B10)

$$1 - \frac{\theta(\tau + \pi) + \min\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\theta(\tau + \pi) + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}} \leq \max\left[1 - \frac{\tau + \min\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}} \cdot 1 - \frac{\pi + \min\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\pi + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}\right].$$

Then by taking w = k, e = -2 and $\alpha = \frac{1}{2}$, the above inequalities are not satisfied.

Remark 3.5. Every IFBMS is an OIFBMS, but the converse is not true. The above examples confirm this reverse statement.

Definition 3.6. An O-sequence $\{w_n\}$ is an OIFBMS $(\Xi, G, H, *, \Delta, \bot)$ is called an orthogonal convergent (O-convergent) to $w \in \Xi$, if

$$\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = 1, \forall \tau > 0,$$

and

$$\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = 0, \forall \tau > 0,$$

Definition 3.7. An O-sequence $\{w_n\}$ is an OIFBMS $(\Xi, G, H, *, \Delta, \bot)$ is known to be an orthogonal Cauchy (O-Cauchy) if

$$\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = 1,$$

and

$$\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = 0,$$

for all $\tau > 0, p \ge 1$.

Definition 3.8. Let $\xi : \Xi \to \Xi$ is \bot -continuous at $w \in \Xi$ is an OIFBMS $(\Xi, G, H, *, \Delta, \bot)$, whenever for each O-sequence w_n for all $n \in \mathbb{N}$ in Ξ if $\lim_{n \to \infty} G(w_n, w, \tau) = 1$ and $\lim_{n \to \infty} H(w_n, w, \tau) = 0$ for all $\tau > 0$, then $\lim_{n \to \infty} G(\xi w_n, \xi w, \tau) = 1$ and $\lim_{n \to \infty} H(\xi w_n, \xi w, \tau) = 0$ for all $\tau > 0$. Furthermore, ξ is \bot -continuous on Ξ if ξ \bot -continuous at each $w \in \Xi$. Also, ξ is \bot - preserving if $\xi w \perp \xi k$, whence $w \perp k$.

Definition 3.9. An OIFBMS $(\Xi, G, H, *, \Delta, \bot)$ is known to be orthogonally complete (O-complete) if every O-Cauchy O-sequence is O- convergent.

Remark 3.10. It is necessary that the limit of an O-convergent O-sequence is unique in an OIFBMS.

Remark 3.11. It is necessary that the limit of an O-convergent O-sequence is O-Cauchy in an OIFBMS.

Lemma 3.12. If for some $v \in (0,1)$ and $w, k \in \Xi$,

$$G(\mathbf{w}, \mathbf{k}, \tau) \ge G\left(\mathbf{w}, \mathbf{k}, \frac{\tau}{v}\right), \tau > 0,$$

and

$$H(\mathbf{w}, \mathbf{k}, \tau) \le H\left(\mathbf{w}, \mathbf{k}, \frac{\tau}{v}\right), \tau > 0,$$

then w = k.

Proof. The proof is follows from [8]. \square

Definition 3.13. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be an OIFBMS. A mapping $\xi : \Xi \to \Xi$ is an orthogonal contraction (\bot -contraction) if there exists $\varrho \in (0,1)$ such that for every $\tau > 0$ and $w, k \in \Xi$ with $w \bot k$, we have

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \ge G(\mathbf{w}, \mathbf{k}, \tau),$$
 (7)

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \le H(\mathbf{w}, \mathbf{k}, \tau).$$
 (8)

Theorem 3.14. Let $(\Xi, G, H, *, \Delta, \bot)$ be an O-complete IFBMS such that

$$\lim_{\tau \to \infty} G(\mathbf{w}, \mathbf{k}, \tau) = 1,$$

and

$$\lim_{\tau \to \infty} H(\mathbf{w}, \mathbf{k}, \tau) = 0.$$

for all $w, k \in \Xi$. Suppose $\xi : \Xi \to \Xi$ be an \bot -continuous and \bot -preserving mapping. Thus, ξ has a unique FP, say $w_* \in \Xi$. Furthermore,

$$\lim_{\tau \to \infty} G(\xi^n \mathbf{w}, \mathbf{k}, \tau) = 1,$$

and

$$\lim_{\tau \to \infty} H(\xi^n \mathbf{w}, \mathbf{k}, \tau) = 0.$$

for all $w, k \in \Xi$.

Proof. Let $(\Xi, G, H, *, \Delta, \bot)$ be an O-complete IFBMS, there exists $w_0 \in \Xi$ such that $w_0 \bot k$ for all $k \in \Xi$, that is, $w_0 \bot \xi w_0$. Take $w_n = \xi^n w_0 = \xi w_{n-1}$ for all $n \in \mathbb{N}$. Since ξ is \bot -preserving, $\{w_n\}$ is an O-sequence. From assumption that ξ is an \bot -contraction, we have

$$G(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) = G(\xi \mathbf{w}_n, \xi \mathbf{w}_{n-1}, \varrho \tau) \ge G(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)$$

for all $n \in \mathbb{N}$ and $\tau > 0$. Note that G is non-decreasing on $(0, \infty)$. By utilizing above inequality, we have

$$G(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \ge G(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) = G(\xi \mathbf{w}_{n+1}, \xi \mathbf{w}_n, \varrho \tau) \ge G(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)$$

$$= G(\xi \mathbf{w}_{n-1}, \xi \mathbf{w}_{n-2}, \tau) \ge G\left(\mathbf{w}_{n-1}, \mathbf{w}_{n-2}, \frac{\tau}{\varrho}\right) \ge \dots \ge G\left(\mathbf{w}_{1}, \mathbf{w}_{0}, \frac{\tau}{\varrho^{n}}\right)$$
(9)

for all $n \in \mathbb{N}$ and $\tau > 0$. Thus, from (9) and (B4), we deduce

$$G(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \ge G\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta}\right)$$

$$\geq G\left(\mathbf{w}_{n}, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^{2}}\right) * G\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+3}, \frac{\tau}{\theta^{3}}\right) * \cdots * G\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{n+m}}\right)$$

$$\geq G\left(\mathbf{w}_{1}, \mathbf{w}_{0}, \frac{\tau}{\theta \varrho^{n}}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^{2} \varrho^{n}}\right) * G\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+3}, \frac{\tau}{\theta^{3} \varrho^{n}}\right) * \cdots * G\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{n+m} \varrho^{n}}\right)$$

$$\tag{10}$$

We know that $\lim_{\tau\to\infty} G(\mathbf{w},\mathbf{k},\tau) = 1$, for all $\mathbf{w},\mathbf{k}\in\Xi$ and $\tau>0$. So, from (10), we have

$$\lim_{\tau \to \infty} G(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \ge 1 * 1 * \dots * 1 = 1.$$
(11)

Similarly,

$$H(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) = H(\xi \mathbf{w}_n, \xi \mathbf{w}_{n-1}, \varrho \tau) \le H(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)$$

for all $n \in \mathbb{N}$ and $\tau > 0$. By utilizing above inequality, we have

$$H(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \le H(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) = H(\xi \mathbf{w}_{n+1}, \xi \mathbf{w}_n, \varrho \tau) \le H(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)$$

$$= H(\xi \mathbf{w}_{n-1}, \xi \mathbf{w}_{n-2}, \tau) \le H\left(\mathbf{w}_{n-1}, \mathbf{w}_{n-2}, \frac{\tau}{\varrho}\right) \le \dots \le H\left(\mathbf{w}_{1}, \mathbf{w}_{0}, \frac{\tau}{\varrho^{n}}\right)$$
(12)

for all $n \in \mathbb{N}$ and $\tau > 0$. Thus, from (12) and (B10), we deduce

$$H(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \leq H\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta}\right)$$

$$\leq H\left(\mathbf{w}_{n}, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^{2}}\right) \Delta H\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+3}, \frac{\tau}{\theta^{3}}\right) \Delta \cdots \Delta H\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{n+m}}\right)$$

$$\leq H\left(\mathbf{w}_{1}, \mathbf{w}_{0}, \frac{\tau}{\theta \varrho^{n}}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^{2} \varrho^{n}}\right) \Delta H\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+3}, \frac{\tau}{\theta^{3} \varrho^{n}}\right) \Delta \cdots \Delta H\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{n+m} \varrho^{n}}\right)$$

$$\tag{13}$$

We know that $\lim_{\tau\to\infty} H(\mathbf{w},\mathbf{k},\tau) = 0$, for all $\mathbf{w},\mathbf{k}\in\Xi$ and $\tau>0$. So, from (13), we have

$$\lim_{\tau \to \infty} H(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \le 0\Delta 0\Delta \cdots \Delta 0 = 0.$$
(14)

So, $\{\mathbf{w}_n\}$ is an O-sequence. The O-sequence. The O-completeness of the IFBMS $(\Xi, \mathbf{w}, \mathbf{k}, *, \Delta, \bot)$ ensure that there exists $\mathbf{w}_* \in \Xi$ such that $G(\mathbf{w}_n, \mathbf{w}_*, \tau) \to 1$, and $H(\mathbf{w}_n, \mathbf{w}_*, \tau) \to 0$, as $n \to +\infty$ for all $\tau > 0$. Now, since ξ is an \bot -continuous mapping, $G(\mathbf{w}_{n+1}, \xi \mathbf{w}_*, \tau) = G(\xi \mathbf{w}_{n+1}, \xi \mathbf{w}_*, \tau) \to 1$ and $H(\mathbf{w}_{n+1}, \xi \mathbf{w}_*, \tau) = H(\xi \mathbf{w}_{n+1}, \xi \mathbf{w}_*, \tau) \to 0$ as $n \to +\infty$. Now, we have

$$G(\mathbf{w}_*, \xi \mathbf{w}_*, \tau) \ge G\left(\mathbf{w}_*, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) * G\left(\mathbf{w}_{n+1}, \xi \mathbf{w}_*, \frac{\tau}{2\theta}\right),$$

$$H(\mathbf{w}_*, \xi \mathbf{w}_*, \tau) \le H\left(\mathbf{w}_*, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \xi \mathbf{w}_*, \frac{\tau}{2\theta}\right).$$

Taking limit as $n \to \infty$, we get $G(w_*, \xi w_*, \tau) = 1 * 1 = 1$ and $H(w_*, \xi w_*, \tau) = 0\Delta 0 = 0$ and hence $\xi w_* = w_*$. Uniqueness:

Let w_* and k_* be two FPs of ξ such that $w_* \neq k_*$. We have $w_0 \perp w_*$ and $w_0 \perp k_*$. Since T is \perp -preserving, we have $\xi w_0 \perp \xi^n w_*$ and $\xi^n w_0 \perp k_*$ for all $n \in \mathbb{N}$. So from (7), we can drive

$$G(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \tau) \ge G(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \varrho \tau) \ge G\left(\mathbf{w}_0, \mathbf{w}_*, \frac{\tau}{\varrho^n}\right)$$

and

$$G(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \tau) \ge G(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \varrho \tau) \ge G\left(\mathbf{w}_0, \mathbf{k}_*, \frac{\tau}{\varrho^n}\right)$$

Therefore,

$$\begin{split} G(\mathbf{w}_*, \mathbf{k}_*, \tau) &= G(\xi^n \mathbf{w}_*, \xi^n \mathbf{k}_*, \tau) \geq G\left(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \frac{\tau}{2\theta}\right) * G\left(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \frac{\tau}{2\theta}\right) \\ &\geq G\left(\mathbf{w}_0, \mathbf{w}_*, \frac{\tau}{2\theta\varrho^n}\right) * G\left(\mathbf{w}_0, \mathbf{k}_*, \frac{\tau}{2\theta\varrho^n}\right) \rightarrow 1 \end{split}$$

as $n \to \infty$ So from (8), we can derive

$$H(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \tau) \le H(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \varrho \tau) \le H\left(\mathbf{w}_0, \mathbf{w}_*, \frac{\tau}{\varrho^n}\right)$$

and

$$H(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \tau) \le H(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \varrho \tau) \le H\left(\mathbf{w}_0, \mathbf{k}_*, \frac{\tau}{\varrho^n}\right)$$

Therefore,

$$H(\mathbf{w}_*, \mathbf{k}_*, \tau) = H(\xi^n \mathbf{w}_*, \xi^n \mathbf{k}_*, \tau) \le H\left(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \frac{\tau}{2\theta}\right) * H\left(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \frac{\tau}{2\theta}\right)$$

$$\le H\left(\mathbf{w}_0, \mathbf{w}_*, \frac{\tau}{2\theta\varrho^n}\right) \Delta H\left(\mathbf{w}_0, \mathbf{k}_*, \frac{\tau}{2\theta\varrho^n}\right) \to 0$$

as $n \to \infty$ So, $w_* = k_*$, hence w_* is the unique FP. \square

Corollary 3.15. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be an O-complete IFBMS. Assume $\xi : \Xi \to \Xi$ be \bot -contraction and \bot -preserving. Assume that if $\{w\}$ is an O-sequence with $w_n \to w \in \Xi$, Then $w \bot w_n$ for all $n \in \mathbb{N}$. Then ξ has a unique FP, say $w_* \in \Xi$, Moreover, $\lim_{n \to \infty} G(\xi^n w, w_*, \tau) = 1$ and $\lim_{n \to \infty} H(\xi^n, w, w_*, \tau) = 0$, for all $w \in \Xi$ and $\tau > 0$.

Proof. Follows from Theorem 2.1 that w_n is a O-Cauchy O-sequence and so it O-converges to $w_* \in \Xi$. Hence $w_* \perp w_n$ for all $n \in \mathbb{N}$ from (7), we have

$$G(\xi \mathbf{w}_*, \mathbf{w}_{n+1}, \tau) = G(\xi \mathbf{w}_*, \xi \mathbf{w}_n, \tau) \ge G(\xi \mathbf{w}_*, \xi \mathbf{w}_n, \tau \varrho) \ge G(\mathbf{w}_*, \mathbf{w}_n, \tau)$$

and

$$\lim_{n \to \infty} G(\xi \mathbf{w}_*, \mathbf{w}_{n+1}, \tau) = 1.$$

Then, we can write

$$G(\mathbf{w}_*, \xi \mathbf{w}_*, \tau) \ge G\left(\mathbf{w}_*, \xi \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) * G\left(\mathbf{w}_{n+1}, \xi \mathbf{w}_*, \frac{\tau}{2\theta}\right)$$

Taking limit as $n \to +\infty$, We get $G(w_*, \xi w_*, \tau) = 1 * 1 = 1$ and from (8)

$$H(\xi w_*, w_{n+1}, \tau) = H(\xi w_*, \xi w_n, \tau) \le H(\xi w_*, \xi w_n, \tau \varrho) \le H(w_*, w_n, \tau)$$

and

$$\lim_{n \to \infty} H(\xi \mathbf{w}_*, \mathbf{w}_{n+1}, \tau) = 0.$$

Then, we can write

$$H(\mathbf{w}_*, \xi \mathbf{w}_*, \tau) \le H\left(\mathbf{w}_*, \xi \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \xi \mathbf{w}_*, \frac{\tau}{2\theta}\right)$$

Taking limit as $n \to +\infty$, We get $H(w_*, \xi w_*, \tau) = 0 \Delta 0 = 0$, So $\xi w_* = w_*$. Next follows from Theorem 3.13.

Example 3.16. Let $\Xi = [-2, 2]$. We define \bot by

$$w \perp k \Leftrightarrow w + k \in \{ \mid w \mid, \mid k \mid$$
 (15)

$$G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 1 \text{ if } \mathbf{w} = \mathbf{k}, \\ \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}}\right]^{-1} \text{ otherwise.} \end{cases}$$
 (16)

and

$$H(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 0 \text{ if } \mathbf{w} = \mathbf{k}, \\ 1 - \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}} \right]^{-1} \text{ otherwise.} \end{cases}$$
 (17)

for all w, $k \in \Xi$, $\tau > 0$ with $\sigma \times \theta = \sigma \cdot \theta$ and $\sigma \Delta \theta = \max\{\sigma, \theta\}$. Then $(\Xi, G, *, \Delta, \bot)$ is an O-complete IFBMS. Define $\xi : \Xi \to \Xi$ by

$$\xi(\mathbf{w}) = \begin{cases} \frac{\mathbf{w}}{4}, & \text{if } \mathbf{w} \in [-2, 0] \\ 0, & \text{if } \mathbf{w} \in (0, 2]. \end{cases}$$
 (18)

Then the below cases fulfilled:

- 1. if $w \in [-2, 0]$ and $k \in (0, 2]$, then $\xi(w) = \frac{w}{4}$ and $\xi(k) = 0$,
- 2. if $w, k \in [-2, 0]$, then $\xi(w) = \frac{w}{4}$ and $\xi(k) = \frac{k}{4}$,
- 3. if w, k \in (0, 2], then ξ (w) = 0 and ξ (k) = 0,
- 4. if $w \in (0, 2]$ and $k \in [-2, 0]$, then $\xi(w) = 0$ and $\xi(k) = \frac{k}{4}$,

This is easy to see that $\xi((w)) + \xi(k) \in \{ | \xi(w) |, | \xi(k) | \}$. Hence, ξ is \bot -preserving. Let $\{w_n\}$ be an arbitrary O-sequence in Ξ that $\{w_n\}$ O-converges to $w \in \Xi$. That is

$$\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = \lim_{n \to \infty} \left[e^{\frac{\max\{\mathbf{w}_n, \mathbf{w}\}^{\alpha}}{\tau}} \right]^{-1} = 1,$$

$$\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = 1 - \lim_{n \to \infty} \left[e^{\frac{\max\{\mathbf{w}_n, \mathbf{w}\}^{\alpha}}{\tau}} \right]^{-1} = 0.$$

We can easily see that if $\lim_{n\to\infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = 1$, then $\lim_{n\to\infty} G(\xi \mathbf{w}_n, \xi \mathbf{w}, \tau) = 1$, and if $\lim_{n\to\infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = 0$, then $\lim_{n\to\infty} H(\xi \mathbf{w}_n, \xi \mathbf{w}, \tau) = 0$, for all $\mathbf{w} \in \Xi$ and $\tau > 0$. That is, ξ is \bot -continuous. if $\mathbf{w} = \mathbf{k}$, then it is obvious. Suppose $\mathbf{w} \neq \mathbf{k}$, then there are following four cases for $\varrho \in [\frac{1}{2}, 1)$:

Case 1) if $w \in [-2, 0]$ and $k \in (0, 2]$, then $\xi w = \frac{w}{4}$ and $\xi k = 0$. Here,

$$G(\xi \mathbf{w}_n, \xi \mathbf{w}, \varrho \tau) = G(\frac{\mathbf{w}}{4}, 0, \varrho \tau) = \left[e^{\frac{\left[\frac{\mathbf{w}}{4}\right]^{\alpha}}{\varrho \tau}} \right]^{-1} \ge \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}} \right]^{-1} = G(\mathbf{w}, \mathbf{k}, \tau),$$

$$H(\xi \mathbf{w}_n, \xi \mathbf{w}, \varrho \tau) = H(\frac{\mathbf{w}}{4}, 0, \varrho \tau) = 1 - \left[e^{\frac{[\frac{\mathbf{w}}{4}]^{\alpha}}{\varrho \tau}} \right]^{-1} \le 1 - \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}} \right]^{-1} = H(\mathbf{w}, \mathbf{k}, \tau),$$

Case 2) If $w, k \in [-2, 0)$, then $\xi w = \frac{w}{4}$ and $\xi k = \frac{k}{4}$. We have

$$G(\xi \mathbf{w}_n, \xi \mathbf{w}, \varrho \tau) = G(\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}, \varrho \tau) = \left[e^{\frac{\max\left\{\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}\right\}^{\alpha}}{\varrho \tau}} \right]^{-1} \ge \left[e^{\frac{\max\left\{\mathbf{w}, \mathbf{k}\right\}^{\alpha}}{\tau}} \right]^{-1} = G(\mathbf{w}, \mathbf{k}, \tau),$$

$$H(\xi \mathbf{w}_n, \xi \mathbf{w}, \varrho \tau) = H(\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}, \varrho \tau) = 1 - \left[e^{\frac{\max\left\{\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}\right\}^{\alpha}}{\varrho \tau}} \right]^{-1} \le 1 - \left[e^{\frac{\max\left\{\mathbf{w}, \mathbf{k}\right\}^{\alpha}}{\tau}} \right]^{-1} = H(\mathbf{w}, \mathbf{k}, \tau),$$

Case 3) If $w, k \in (0, 2]$, then $\xi w = 0$ and $\xi k = 0$. Here,

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = G(0, 0, \varrho \tau) = e^0 \ge \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}} \right]^{-1} = G(\mathbf{w}, \mathbf{k}, \tau),$$

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = H(0, 0, \varrho \tau) = 1 - e^{0} \le 1 - \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}} \right]^{-1} = H(\mathbf{w}, \mathbf{k}, \tau),$$

Case 4) If $w \in (0,2]$ and $k \in [-2,0]$, then $\xi w = 0$ and $\xi k = \frac{k}{4}$. We have

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = G(0, \frac{\mathbf{k}}{4}, \varrho \tau) = \left[e^{\frac{\max\left\{0, \frac{\mathbf{k}}{4}\right\}^{\alpha}}{\varrho \tau}} \right]^{-1} \ge \left[e^{\frac{\max\left\{\mathbf{w}, \mathbf{k}\right\}^{\alpha}}{\tau}} \right]^{-1} = G(\mathbf{w}, \mathbf{k}, \tau),$$

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = H(0, \frac{\mathbf{k}}{4}, \varrho \tau) = 1 - \left[e^{\frac{\max\left\{0, \frac{\mathbf{k}}{4}\right\}^{\alpha}}{\varrho \tau}} \right]^{-1} \le 1 - \left[e^{\frac{\max\left\{\mathbf{w}, \mathbf{k}\right\}^{\alpha}}{\tau}} \right]^{-1} = H(\mathbf{w}, \mathbf{k}, \tau),$$

From all the above cases, We obtain that

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \rho \tau) \ge G(\mathbf{w}, \mathbf{k}, \tau),$$
 (19)

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \ge G(\mathbf{w}, \mathbf{k}, \tau),$$
 (20)

Hence, ξ is an orthogonal contraction. But, ξ is not a contraction. In fact, let w = -1 and k = -2 and $\alpha = 3$, then

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = \left[e^{\frac{\max\left\{\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}\right\}^{\alpha}}{\varrho \tau}} \right]^{-1} \ge 1,$$

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = 1 - \left[e^{\frac{\max\left\{\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}\right\}^{\alpha}}{\varrho \tau}} \right]^{-1} \le 0.$$

Which is not true. Hence, all assumptions of Theorem 3.13 are fulfilled and 0 is the unique FP of ξ . Also,

$$G(\mathbf{w}, \mathbf{w}, \tau) = G(0, 0, \tau) = e^0 = 1, \forall \tau > 0$$
 (21)

and

$$H(\mathbf{w}, \mathbf{w}, \tau) = H(0, 0, \tau) = 1 - e^0 = 0. \forall \tau > 0$$
 (22)

Theorem 3.17. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be an O-complete IFBMS such that $\lim_{t\to\infty} G(\mathbf{w}, \mathbf{k}, \tau) = 1$, and $\lim_{t\to\infty} H(\mathbf{w}, \mathbf{k}, \tau) = 0, \forall \mathbf{w}, \mathbf{k} \in \Xi \text{ and } \tau > 0$. Suppose $\xi : \Xi \to \Xi$ be \bot -continuous, \bot -contraction, and \bot -preserving. Suppose $\varrho \in (0, \frac{1}{\theta})$ and $\tau > 0$, such that

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \ge \min\{G(\xi \mathbf{w}, \mathbf{w}, \tau), G(\xi \mathbf{k}, \mathbf{k}, \tau)\}$$
(23)

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \le \min\{H(\xi \mathbf{w}, \mathbf{w}, \tau), H(\xi \mathbf{k}, \mathbf{k}, \tau)\}$$
(24)

for all $w, k \in \Xi, \tau > 0$. Then ξ has a unique FP, say $w_* \in \Xi$. Moreover, $\lim_{n \to \infty} G(\xi^n w, w_*, \tau) = 1$ and $\lim_{n \to \infty} H(\xi^n w, w_*, \tau) = 0$ for all $w \in \Xi$ and $\tau > 0$.

Proof. Let $(\Xi, G, H, *, \Delta, \bot)$ be an O-complete IFBMS, There exists $w_0 \in \Xi$ such that

$$\mathbf{w}_0 \perp \mathbf{k} \forall \mathbf{k} \in \Xi$$
 (25)

Therefore, ξ is \perp -preserving, and $\{w_n\}$ is an O-sequence. We have

$$G(\mathbf{w}_{n+1}, \mathbf{n}, \tau) \ge G(\mathbf{w}_{n+1}, \mathbf{n}, \varrho \tau) = G(\xi \mathbf{w}_n, \xi \mathbf{w}_{n-1}, \varrho \tau) \ge \min\{G(\xi \mathbf{w}_n, \mathbf{n}, \tau), G(\xi \mathbf{w}_{n-1}, \mathbf{w}_{n-1}, \tau)\}$$

$$H(\mathbf{w}_{n+1}, \mathbf{n}, \tau) \le H(\mathbf{w}_{n+1}, \mathbf{n}, \varrho \tau) = H(\xi \mathbf{w}_n, \xi \mathbf{w}_{n-1}, \varrho \tau) \le \min\{H(\xi \mathbf{w}_n, \mathbf{n}, \tau), H(\xi \mathbf{w}_{n-1}, \mathbf{w}_{n-1}, \tau)\}$$

Two cases arise.

Case 1: If $G(\mathbf{w}_{n+1}, \mathbf{n}, \tau) \geq G(\xi \mathbf{w}_n, \mathbf{w}_n, \tau)$, then

$$G(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \ge G(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) \ge G(\xi \mathbf{w}_n, \mathbf{w}_n, \tau) = G(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau)$$

and

$$H(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \le H(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) \le H(\xi \mathbf{w}_n, \mathbf{w}_n, \tau) = H(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau)$$

Then, by Lemma 3.12, $w_n = w_{n+1}$ for all $n \in \mathbb{N}$

Case 2): If $G(\mathbf{w}_{n+1}, \mathbf{n}, \tau) \geq G(\xi \mathbf{w}_{n-1}, \mathbf{w}_{n-1}, \tau)$, then

$$G(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \ge G(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) \ge G(\xi \mathbf{w}_{n-1}, \mathbf{w}_{n-1}, \tau) \ge G(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)$$

and $H(w_{n+1}, n, \tau) \leq H(\xi w_{n-1}, w_{n-1}, \tau)$, then

$$H(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \le H(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) \le H(\xi \mathbf{w}_{n-1}, \mathbf{w}_{n-1}, \tau) \le H(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)$$

for all $n \in \mathbb{N}$ and $\tau > 0$. By utilizing Theorem 3.13, we have an O-Cauchy sequence. Since $(\Xi, G, H, *, \Delta, \bot)$ is complete, there exists $w_* \in \Xi$, such that

$$\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}_*, \tau) = 1, \tag{26}$$

and

$$\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}_*, \tau) = 0, \tag{27}$$

for all $\tau > 0$. Science, ξ is an \perp -continuous, We have

$$\lim_{n \to \infty} G(\mathbf{w}_{n+1}, \mathbf{w}_*, \tau) = G(\xi \mathbf{w}_n, \xi \mathbf{w}_*, \tau) = 1,$$

and

$$\lim_{n \to \infty} H(\mathbf{w}_{n+1}, \mathbf{w}_*, \tau) = H(\xi \mathbf{w}_n, \xi \mathbf{w}_*, \tau) = 0,$$

Next, we examine that w_* is a FP of ξ . Let $\tau_1 \in (\varrho\theta, 1)$ and $\tau_2 = 1 - \tau_1$. then

$$\begin{split} G(\xi \mathbf{w}_*, \mathbf{w}_*, \tau) &\geq G\left(\xi \mathbf{w}_*, \mathbf{w}_{n+1}, \frac{\tau\tau_1}{\theta}\right) * G\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_*, \frac{\tau\tau_2}{\theta}\right), \\ &= G\left(\xi \mathbf{w}_*, \xi \mathbf{w}_n, \frac{\tau\tau_1}{\theta}\right) * G\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_*, \frac{\tau\tau_2}{\theta}\right), \\ &\geq \min\left\{G\left(\xi \mathbf{w}_*, \mathbf{w}_*, \frac{\tau\tau_1}{\varrho\theta}\right) * G\left(\xi \mathbf{w}_n, \mathbf{w}_n, \frac{\tau\tau_2}{\varrho\theta}\right)\right\} * G\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_*, \frac{\tau\tau_2}{\theta}\right) \\ &= \min\left\{G\left(\xi \mathbf{w}_*, \mathbf{w}_*, \frac{\tau\tau_1}{\varrho\theta}\right) * G\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_n, \frac{\tau\tau_2}{\varrho\theta}\right)\right\} * G\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_*, \frac{\tau\tau_2}{\theta}\right) \end{split}$$

Taking $n \to \infty$, We get

$$G(\xi \mathbf{w}_*, \mathbf{w}_*, \tau) \ge \min \left\{ G\left(\xi \mathbf{w}_*, \mathbf{w}_*, \frac{\tau \tau_1}{\varrho \theta}\right), 1 \right\} * 1,$$

$$G(\xi w_*, w_*, \tau) \ge G\left(\xi w_*, w_*, \frac{\tau}{\nu}\right) \tau > 0,$$

and

$$\begin{split} H(\xi \mathbf{w}_{*}, \mathbf{w}_{*}, \tau) &\leq H\left(\xi \mathbf{w}_{*}, \mathbf{w}_{n+1}, \frac{\tau\tau_{1}}{\theta}\right) \Delta H\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_{*}, \frac{\tau\tau_{2}}{\theta}\right), \\ &= H\left(\xi \mathbf{w}_{*}, \xi \mathbf{w}_{n}, \frac{\tau\tau_{1}}{\theta}\right) \Delta H\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_{*}, \frac{\tau\tau_{2}}{\theta}\right), \\ &\leq \min\left\{H\left(\xi \mathbf{w}_{*}, \mathbf{w}_{*}, \frac{\tau\tau_{1}}{\varrho\theta}\right) \Delta H\left(\xi \mathbf{w}_{n}, \mathbf{w}_{n}, \frac{\tau\tau_{2}}{\varrho\theta}\right)\right\} \Delta H\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_{*}, \frac{\tau\tau_{2}}{\theta}\right) \\ &= \min\left\{H\left(\xi \mathbf{w}_{*}, \mathbf{w}_{*}, \frac{\tau\tau_{1}}{\varrho\theta}\right) \Delta H\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_{n}, \frac{\tau\tau_{2}}{\varrho\theta}\right)\right\} \Delta H\left(\xi \mathbf{w}_{n+1}, \mathbf{w}_{*}, \frac{\tau\tau_{2}}{\theta}\right) \end{split}$$

Taking $n \to \infty$, We get

$$H(\xi \mathbf{w}_*, \mathbf{w}_*, \tau) \le \min \left\{ H\left(\xi \mathbf{w}_*, \mathbf{w}_*, \frac{\tau \tau_1}{\varrho \theta}\right), 0 \right\} * 0,$$
$$H(\xi \mathbf{w}_*, \mathbf{w}_*, \tau) \le H\left(\xi \mathbf{w}_*, \mathbf{w}_*, \frac{\tau}{\nu}\right) \tau > 0,,$$

There is $\nu = \frac{\theta\varrho}{\tau_1} \in (0,1)$, and by utilizing Lemma 3.12, we get $\xi w_* = w_*$. Uniqueness: Suppose $w_* \neq k_*$ are two FPs of ξ . We get $w_0 \perp w_*$ and $w_0 \perp k_*$. Therefore, since ξ is an \perp -preserving, we have $\xi^n w_0 \perp \xi^n w_*$ and $\xi^n w_0 \xi^n \perp k_*$ for all $n \in \mathbb{N}$. we can write

$$G(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \tau) \ge G(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \varrho \tau) \ge \min\{G(\xi^n \mathbf{w}_0, \mathbf{w}_0, \tau), G(\xi^n \mathbf{w}_*, \mathbf{w}_*, \tau)\},$$

and

$$G(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \tau) \ge G(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \varrho \tau) \ge \min\{G(\xi^n \mathbf{w}_0, \mathbf{w}_0, \tau), G(\xi^n \mathbf{k}_*, \mathbf{k}_*, \tau)\},$$

Hence, we write that

$$G(\mathbf{w}_0, \mathbf{k}_*, \tau) = G(\xi^n \mathbf{w}_*, \xi^n \mathbf{k}_*, \tau) \ge \min \left\{ G\left(\xi^n \mathbf{w}_*, \mathbf{w}_*, \frac{\tau}{\varrho}\right), G\left(\xi^n \mathbf{k}_*, \mathbf{k}_*, \frac{\tau}{\varrho}\right) \right\},\,$$

and

$$H(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \tau) \le G(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \varrho \tau) \le \min\{H(\xi^n \mathbf{w}_0, \mathbf{w}_0, \tau), H(\xi^n \mathbf{w}_*, \mathbf{w}_*, \tau)\},$$

and

$$H(\xi^n\mathbf{w}_0,\xi^n\mathbf{k}_*,\tau) \leq H(\xi^n\mathbf{w}_0,\xi^n\mathbf{k}_*,\varrho\tau) \leq \min\{H(\xi^n\mathbf{w}_0,\mathbf{w}_0,\tau),H(\xi^n\mathbf{k}_*,\mathbf{k}_*,\tau)\},$$

Hence, we write that

$$H(\mathbf{w}_0, \mathbf{k}_*, \tau) = H(\xi^n \mathbf{w}_*, \xi^n \mathbf{k}_*, \tau) \leq \min \left\{ H\left(\xi^n \mathbf{w}_*, \mathbf{w}_*, \frac{\tau}{\varrho}\right), H\left(\xi^n \mathbf{k}_*, \mathbf{k}_*, \frac{\tau}{\varrho}\right) \right\},$$

for all $\tau > 0$. Thus, $w_* = k_*$.

Corollary 3.18. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be a complete OIFBMS and $\xi : \Xi \to \Xi$ be an \bot -continuous and \perp -preserving. Let $\varrho \in (0, \frac{1}{\theta})$ for all $\tau > 0$, with

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \ge \min\{G(\xi \mathbf{w}, \mathbf{w}, \tau), G(\xi \mathbf{k}, \mathbf{k}, \tau),$$

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \le \min\{H(\xi \mathbf{w}, \mathbf{w}, \tau), H(\xi \mathbf{k}, \mathbf{k}, \tau).$$

Then, ξ has a unique FP. Furthermore, $\lim_{n\to\infty} G(\xi^n \mathbf{w}, \mathbf{w}_*, \tau) = 1$ and $\lim_{n\to\infty} H(\xi^n \mathbf{w}, \mathbf{w}_*, \tau) = 0$, for all $w \in \Xi \ and \ \tau > 0.$

Proof. It is obvious from Theorem 3.14 and 3.17

Example 3.19. Suppose $\Xi = [-2, 2]$ and by \bot by w \bot k \Leftrightarrow w + k ≥ 0 . Define G and H by

$$G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 1 \text{ if } \mathbf{w} = \mathbf{k}, \\ \frac{\tau}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}} \text{ otherwise} \end{cases}$$
 (28)

$$H(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 0 \text{ if } \mathbf{w} = \mathbf{k}, \\ \frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}} \text{ otherwise} \end{cases}$$
 (29)

for all w, k $\in \Xi$ and $\tau > 0$, with $\sigma * \theta = \sigma \cdot \theta$ and $\sigma \Delta \theta = \max\{\sigma, \theta\}$, Then $(\Xi, G, H, *, \Delta, \bot)$ is an O-complete IFBMS. Note that $\lim_{n\to\infty} G$ w, k, $\tau = 1$ and $\lim_{n\to\infty} H$ w, k, $\tau = 0$. Define $\xi : \Xi \to \Xi$ by

$$\xi(\mathbf{w}) = \begin{cases} \frac{\mathbf{w}}{4}, & \mathbf{w} \in \left[-2, \frac{2}{3}\right], \\ 1 - \mathbf{w}, & \mathbf{w} \in \left(\frac{2}{3}, 1\right], \\ \mathbf{w} - \frac{1}{2}, & \mathbf{w} \in (1, 2]. \end{cases}$$
(30)

There are following four cases:

- 1. If $w, k \in [-2, \frac{2}{3}]$ then $\xi(w) = \frac{w}{4}$ and $\xi(k) = \frac{k}{4}$.
- 2. If $w, k \in (\frac{2}{3}, 1]$ then $\xi(w) = 1 w$ and $\xi(k) = 1 k$.
- 3. If $w, k \in (1, 2]$ then $\xi(w) = w \frac{1}{2}$ and $\xi(k) = k \frac{1}{2}$.
- 4. If $w \in [-2, \frac{2}{3}]$ and $k \in (\frac{2}{3}, 1]$ then $\xi(w) = \frac{w}{4}$ and $\xi(k) = k \frac{1}{2}$.
- 5. If $w, \in \left[-2, \frac{2}{3}\right]$ and $k \in (1, 2]$ then $\xi(w) = \frac{w}{4}$ and $\xi(k) = k \frac{1}{2}$.
- 6. If $w, \in \left(\frac{2}{3}, 1\right]$ and $k \in \left(\frac{2}{3}, 1\right]$ then $\xi(w) = 1 w$ and $\xi(k) = k \frac{1}{2}$.
- 7. If $w \in (1, 2]$ and $k \in (\frac{2}{3}, 1]$ then $\xi(w) = w \frac{1}{2}$ and $\xi(k) = 1 k$.
- 8. If $w \in (1,2]$ and $k \in \left[-2,\frac{2}{3}\right]$ then $\xi(w) = w \frac{1}{2}$ and $\xi(k) = \frac{k}{4}$.
- 9. If $w \in \left(\frac{2}{3}, 1\right]$ and $k \in \left[-2, \frac{2}{3}\right]$ then $\xi(w) = 1 w$ and $\xi(k) = \frac{k}{4}$.

Because $w \perp k \Leftrightarrow w + k \geq 0$, it is clearly implies that $\xi w + k \geq 0$. that is, ξ is \perp -preserving. Suppose $\{w_n\}$ be any O-sequence in Ξ that O-converges to $w \in \Xi$. We get

$$\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = \lim_{n \to \infty} \frac{\tau}{\tau + \max\{\mathbf{w}_n, \mathbf{w}\}^3} = 1,$$
(31)

$$\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = \lim_{n \to \infty} \frac{\max\{\mathbf{w}_n, \mathbf{w}\}^3}{\tau + \max\{\mathbf{w}_n, \mathbf{w}\}^3} = 0,$$
(32)

Note that if $G(\mathbf{w}_n, \mathbf{w}, \tau) = 1$ and $H(\mathbf{w}_n, \mathbf{w}, \tau) = 0$, then $G(\xi \mathbf{w}_n, \xi \mathbf{w}, \tau) = 1$ and $H(\xi \mathbf{w}_n, \xi \mathbf{w}, \tau) = 0$ for all $\tau > 0$. that is, ξ is orthogonal continuous. For $\mathbf{w} = \mathbf{k}$, it is obvious. Assume $\mathbf{w} \neq \mathbf{k}$. We get

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \ge \min\{G(\xi \mathbf{w}, \mathbf{w}, \tau), G(\xi \mathbf{k}, \mathbf{k}, \tau)\}$$

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \le \min\{H(\xi \mathbf{w}, \mathbf{w}, \tau), H(\xi \mathbf{k}, \mathbf{k}, \tau)\}.$$

It fulfilled above all cases. Now, we show that ξ is not a contraction. Suppose

$$\min\{G(\xi \mathbf{w}, \mathbf{w}, \tau), G(\xi \mathbf{k}, \mathbf{k}, \tau)\} = G(\xi \mathbf{w}, \mathbf{w}, \tau)$$

$$\min\{H(\xi \mathbf{w}, \mathbf{w}, \tau), H(\xi \mathbf{k}, \mathbf{k}, \tau)\} = H(\xi \mathbf{w}, \mathbf{k}, \tau).$$

then for w = -1 and k = -2, we have

$$G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = \frac{\varrho \tau}{\varrho \tau + \max\left\{\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}\right\}^3} = \frac{64\varrho \tau}{64\varrho \tau - 1} \ge 1,$$

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = \frac{\max\left\{\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}\right\}^3}{\varrho \tau + \max\left\{\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}\right\}^3} = \frac{-1}{64\varrho \tau - 1} \le 0.$$

Which is not true. That is, all assumptions of Theorem 2.2 are fulfilled, and 0 is a unique FP of ξ .

Definition 3.20. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be an OIFBMS. A mapping $\xi : \Xi \to \Xi$ is called a fuzzy $\theta - \bot$ -contraction if their exists $\varrho \in (0, 1)$ such that

$$\frac{1}{G(\xi \mathbf{w}, \xi \mathbf{k}, \tau)} - 1 \le \varrho \left[\frac{1}{G(\mathbf{w}, \mathbf{k}, \tau)} - 1 \right]$$
(33)

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \tau) \le \varrho H(\mathbf{w}, \mathbf{k}, \tau)$$
 (34)

for all w, $k \in \Xi$ and $\tau > 0$. Where ϱ is said to be an IFB- \bot -contractive constant of ξ .

Theorem 3.21. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be an OIFBMS. Such that

$$\lim_{\tau \to \infty} G(\mathbf{w}, \mathbf{k}, \tau) = 1,\tag{35}$$

$$\lim_{\tau \to \infty} H(\mathbf{w}, \mathbf{k}, \tau) = 0, \forall \mathbf{w}, \mathbf{k} \in \Xi.$$
(36)

Assume a mapping $\xi:\Xi\to\Xi$ be a \perp -continuous, IFB- \perp -contraction and \perp -preserving mapping. Thus, ξ has a FP, call $\nu\in\Xi$. Moreover, $G(\nu,\nu,\alpha)=1$ and $H(\nu,\nu,\alpha)=0$ for all $\alpha>0$.

Proof. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be an O-complete IFBMS. For any point $w_0 \in \Xi$, $w_0 \bot k$, for all $k \in \Xi$. That is, $w_0 \bot \xi w_0$. Consider $w_n = \xi^n w_0 = \xi w_{n-1}$ for all $n \in \mathbb{N}$. Therefore, ξ is \bot -preserving and $\{w_n\}$ is an O-sequence. If $w_n = w_{n-1}$ for some $n \in \mathbb{N}$ then w_n is a FP of ξ . We suppose that $w_n \ne w_{n-1}$ for all $n \in \mathbb{N}$. For all $\tau > 0$, $n \in \mathbb{N}$ and utilizing (9), we have

$$\frac{1}{G(\mathbf{w}_n, \mathbf{w}_{n+1}, \tau)} - 1 = \frac{1}{G(\xi \mathbf{w}_{n-1}, \xi \mathbf{w}_n, \tau)} - 1 \le \varrho \left[\frac{1}{G(\mathbf{w}_{n-1}, \mathbf{w}, \tau)} - 1 \right]$$

$$H(\mathbf{w}_n, \mathbf{w}_{n+1}, \tau) = H(\xi \mathbf{w}_{n-1}, \xi \mathbf{w}_n, \tau) \le \varrho H(\mathbf{w}_{n-1}, \mathbf{w}_n, \tau).$$

We have

$$\frac{1}{G(\mathbf{w}_{n}, \mathbf{w}_{n+1}, \tau)} - 1 = \frac{\varrho}{G(\mathbf{w}_{n-1}, \mathbf{w}_{n}, \tau)} + (1 - \varrho), \forall \tau > 0$$

$$\frac{\varrho}{G(\xi \mathbf{w}_{n-2}, \xi \mathbf{w}_{n-1}, \tau)} + (1 - \varrho) \le \frac{\varrho^{2}}{G(\mathbf{w}_{n-2}, \mathbf{w}_{n-1}, \tau)} + \varrho(1 - \varrho) + (1 - \varrho).$$

Continuing in this way, we get

$$\frac{\varrho}{G(\mathbf{w}_n, \mathbf{w}_{n+1}, \tau)} \le \frac{\varrho^n}{G(\mathbf{w}_0, \mathbf{w}_1, \tau)} + \varrho^{n-1}(1 - \varrho) + \varrho^{n-2}(1 - \varrho) + \dots + \varrho(1 - \varrho) + (1 - \varrho).$$

$$\le \frac{\varrho^n}{G(\mathbf{w}_0, \mathbf{w}_1, \tau)} + (\varrho^{n-1} + \varrho^{n-2} + \dots + 1)(1 - \varrho)$$

$$\leq \frac{\varrho^n}{G(\mathbf{w}_0, \mathbf{w}_1, \tau)} + (1 - \varrho^n)$$

We have

$$\frac{1}{\frac{\varrho^n}{G(\mathbf{w}_0, \mathbf{w}_1, \tau)} + (1 - \varrho^n)} \le G(\mathbf{w}_n, \mathbf{w}_{n+1}, \tau), \forall \tau > 0, n \in \mathbb{N}$$
(37)

and

$$H(\mathbf{w}_n, \mathbf{w}_{n+1}, \tau) = H(\xi \mathbf{w}_{n-1}, \xi \mathbf{w}_n, \tau) \le \varrho H(\mathbf{w}_{n-1}, \mathbf{w}_n, \tau) = \varrho H(\xi \mathbf{w}_{n-2}, \xi \mathbf{w}_{n-1}, \tau)$$

$$\leq \varrho^2 H(\mathbf{w}_{n-2}, \mathbf{w}_{n-1}, \tau) \leq \dots \leq \varrho^n H(\mathbf{w}_0, \mathbf{w}_1, \tau) \forall \tau > 0, n \in \mathbb{N}$$
(38)

Now, for $m \geq 1$ and $n \in \mathbb{N}$, we have

$$G(\mathbf{w}_{n}, \mathbf{w}_{n+m}, \tau) \geq G\left(\mathbf{w}_{n}, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta}\right)$$

$$\geq G\left(\mathbf{w}_{n}, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^{2}}\right) * G\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{2}}\right)$$

Again, continuing in this way, we get

$$G(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \ge G\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^2}\right) * \cdots * G\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{m-1}}\right)$$

and

$$\begin{split} &H(\mathbf{w}_{n}, \mathbf{w}_{n+m}, \tau) \leq H\left(\mathbf{w}_{n}, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta}\right) \\ &\leq H\left(\mathbf{w}_{n}, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^{2}}\right) \Delta H\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{2}}\right) \end{split}$$

Continuing in this way, we get

$$H(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \leq H\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^2}\right) \Delta \cdots \Delta H\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{m-1}}\right)$$

By utilizing (37) in the above inequality, we get

$$G(\mathbf{w}_{n}, \mathbf{w}_{n+m}, \tau) \geq \frac{1}{\frac{\varrho^{n}}{G(\mathbf{w}_{0}, \mathbf{w}_{1}, \frac{\tau}{\theta})} + (1 - \varrho^{n})} * \frac{1}{\frac{\varrho^{n+1}}{G(\mathbf{w}_{0}, \mathbf{w}_{1}, \frac{\tau}{\theta^{2}})} + (1 - \varrho^{n})} * \cdots$$

$$* \frac{1}{\frac{\varrho^{n+m-1}}{G(\mathbf{w}_{0}, \mathbf{w}_{1}, \frac{\tau}{\theta^{m-1}})} + (1 - \varrho^{n+m-1})}$$

$$\geq \frac{1}{\frac{\varrho^{n}}{G(\mathbf{w}_{0}, \mathbf{w}_{1}, \frac{\tau}{\theta})} + 1} * \frac{1}{\frac{\varrho^{n+1}}{G(\mathbf{w}_{0}, \mathbf{w}_{1}, \frac{\tau}{\theta^{2}})} + 1} * \cdots * \frac{1}{\frac{\varrho^{n+m-1}}{G(\mathbf{w}_{0}, \mathbf{w}_{1}, \frac{\tau}{\theta^{m-1}})} + 1}$$

Also, using (38), we have

$$H(\mathbf{w}_n, \mathbf{w}_{n+p}, \tau) \le H\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^2}\right) \Delta \cdots \Delta H\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{m-1}}\right)$$

As $\varrho \in (0,1)$, we have $\lim_{n\to\infty} G(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) = 1$ and $\lim_{n\to\infty} H(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) = 0$ for all $\tau > 0$, $m \ge 1$. Therefore, a sequence $\{\mathbf{w}\}$ is an O-Cauchy in $(\Xi, G, H, *, \Delta, \bot)$ is complete, and we have ξ is an \bot -continuous, there exist $\nu \in \Xi$ such that

$$\lim_{n \to \infty} G(\mathbf{w}_{n+1}, \nu, \tau) = \lim_{n \to \infty} G(\xi \mathbf{w}_n, \xi \nu, \tau) = 1, \forall \tau > 0,$$
(39)

$$\lim_{n \to \infty} H(\mathbf{w}_{n+1}, \nu, \tau) = \lim_{n \to \infty} H(\xi \mathbf{w}_n, \xi \nu, \tau) = 0, \forall \tau > 0, \tag{40}$$

Now, we show that ν is a FP of ξ . By utilizing (33), we have

$$\frac{1}{G(\xi \mathbf{w}, \xi \nu, \tau)} - 1 \leq \varrho \left[\frac{1}{G(\mathbf{w}_n, \xi \nu, \tau)} - 1 \right] = \frac{\varrho}{G(\mathbf{w}, \xi \nu, \tau)} - \varrho.$$

That is,

$$\frac{1}{G(\xi \mathbf{w}, \xi \nu, \tau) + 1 - \varrho} \le G(\xi \mathbf{w}_n, \xi \nu, \tau).$$

Using the above inequality, we obtain

$$G(\nu, \xi \nu, \tau) \ge G\left(\nu, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) * G\left(\mathbf{w}_{n+1}, \xi \nu, \frac{\tau}{2\theta}\right)$$

$$= G\left(\nu, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) * G\left(\xi \mathbf{w}_{n}, \xi \nu, \frac{\tau}{2\theta}\right)$$

$$\ge G\left(\nu, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) * \frac{\varrho}{G\left(\mathbf{w}_{n}, \nu, \frac{\tau}{2\theta}\right) + 1 - \varrho}$$

and

$$H(\mathbf{w}, \nu, \tau) = H(\xi \mathbf{w}, \xi \nu, \tau) \le \varrho H(\mathbf{w}, \nu, \tau) < H(\mathbf{w}, \nu, \tau)$$

$$= H\left(\mathbf{w}, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) \Delta H\left(\xi \mathbf{w}_{n}, \xi \mathbf{w}, \frac{\tau}{2\theta}\right)$$

$$\le H\left(\mathbf{w}, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) \Delta \varrho H\left(\mathbf{w}_{n}, \mathbf{w}, \frac{\tau}{2\theta}\right)$$

Taking limit as $n \to \infty$ and using (39) and (40) in the above expression, we get $G(\nu, \xi \nu, \tau) = 1$, that is, $\xi \nu = \nu$. Therefore, ν is a FP of ξ , and $G(\nu, \nu, \tau) = 1$ and $H(\nu, \nu, \tau) = 0$ for all $\tau > 0$.

Corollary 3.22. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be an O-complete IFBMS such that $\lim_{nto\infty} G(\mathbf{w}, \mathbf{k}, \tau) = 1$ and $\lim_{nto\infty} H(\mathbf{w}, \mathbf{k}, \tau) = 0$, for all $\mathbf{w}, k \in \Xi$ and $\xi : \Xi to\Xi$ satisfy

$$\frac{1}{G(\xi^n \mathbf{w}, \xi^n \mathbf{k}, \tau)} - 1 \le \varrho \left[\frac{1}{G(\mathbf{w}, \mathbf{k}, \tau)} - 1 \right] \tag{41}$$

$$H(\xi^n \mathbf{w}, \xi^n \mathbf{k}, \tau) \le \varrho H(\mathbf{w}, \mathbf{k}, \tau)$$
 (42)

for all $n \in \mathbb{N}$, w, $k \in \Xi$, $\tau > 0$, where $0 < \varrho < 1$. Then ξ has a FP, say $\nu \in \Xi$ and $G(\nu, \nu, \tau) = 1$, for all $\tau > 0$. **Proof.** $\nu \in \Xi$ is a unique FP of ξ^n by utilizing Theorem 3.22, and $G(\nu, \nu, \tau) = 1$, for all $\tau > 0$. $\xi \nu$ is also a FP of $\xi^n(\xi \nu) = \xi \nu$ from Theorem 3.22, $\xi \nu = \nu$. Hence, the FP of ξ is also a FP of ξ^n . \square

Example 3.23. Suppose $\Xi = [-1, 2]$ and define \bot by w \bot k \Leftrightarrow w + k ≥ 0 . Define G, H as in Example 3.4 with $\alpha = 3$,

$$G(\mathbf{w}, \mathbf{k}, \tau) = \frac{\tau + \min\{\mathbf{w}, \mathbf{k}\}^3}{\tau + \min\{\mathbf{w}, \mathbf{k}\}^3} \forall \mathbf{w}, \mathbf{k} \in \Xi, \tau > 0,$$
(43)

and

$$H(\mathbf{w}, \mathbf{k}, \tau) = 1 - \frac{\tau + \min\{\mathbf{w}, \mathbf{k}\}^3}{\tau + \min\{\mathbf{w}, \mathbf{k}\}^3} \forall \mathbf{w}, \mathbf{k} \in \Xi, \tau > 0, \tag{44}$$

with $\sigma * \theta = \sigma \cdot \theta$ and $\sigma \Delta \theta = \max\{\sigma, \theta\}$, then $(\Xi, G, H, *, \Delta, \bot)$ is an O-complete IFBMS. see that $\lim_{\tau \to \infty} G(\mathbf{w}, \mathbf{k}, \tau) = 1$ and $\lim_{\tau \to \infty} H(\mathbf{w}, \mathbf{k}, \tau) = 0$ for all $\mathbf{w}, \mathbf{k} \in \Xi$. Define $\xi : \Xi \to \Xi$ by

$$G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 2 - \mathbf{w} \ \mathbf{w} \in [-1, 1), \\ 1 \ \mathbf{w} \in [1, 2), \end{cases}$$
(45)

We have the following four cases:

- 1. if $w, k \in [-1, 1)$ then $\xi w = 2 w$ and $\xi k = 2 k$,
- 2. if w, k \in [1, 2] then ξ w = ξ k = 1,
- 3. if $w \in [-1, 1)$ and $k \in [1, 2]$ then $\xi w = 2 w$ and $\xi k = 1$,
- 3. if $w \in [1, 2]$ and $k \in [-1, 1)$ then $\xi w = 1$ and $\xi k = 2 k$,

Because $w \perp k \Leftrightarrow w + k \geq 0$, it is clearly implies that $\xi(w) + \xi(k) \geq 0$. That is, ξ is \perp -preserving. Suppose $\{w_n\}$ be any O-sequence in Ξ that O-converges to $w \in \Xi$. we get

$$\lim_{n \to \infty} G(\mathbf{w}, \mathbf{k}, \tau) = \lim_{n \to \infty} \frac{\tau + \min\{\mathbf{w}, \mathbf{k}\}^3}{\tau + \min\{\mathbf{w}, \mathbf{k}\}^3} = 1 \forall \mathbf{w}, \mathbf{k} \in \Xi, \tau > 0,$$

and

$$\lim_{n\to\infty} H(\mathbf{w},\mathbf{k},\tau) = 1 - \lim_{n\to\infty} \frac{\tau + \min\{\mathbf{w},\mathbf{k}\}^3}{\tau + \min\{\mathbf{w},\mathbf{k}\}^3} = 0 \forall \mathbf{w},\mathbf{k} \in \Xi, \tau > 0,$$

we can easily see that if $\lim_{n\to\infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = 1$, and $\lim_{n\to\infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = 0$, then $\lim_{n\to\infty} G(\xi \mathbf{w}_n, \xi \mathbf{w}, \tau) = 1$ and $\lim_{n\to\infty} H(\xi \mathbf{w}_n, \xi \mathbf{w}, \tau) = 0$ for all $\tau > 0$. That is, ξ is orthogonal continuous. For $\mathbf{w} = \mathbf{k}$, it is obvious.

$$\frac{1}{G(\xi \mathbf{w}, \xi \mathbf{k}, \tau)} - 1 \le \varrho \left[\frac{1}{G(\mathbf{w}, \mathbf{k}, \tau)} - 1 \right]$$

$$H(\xi \mathbf{w}, \xi \mathbf{k}, \tau) leq \varrho H(\mathbf{w}, \mathbf{k}, \tau).$$

All conditions of Theorem 3.21 are satisfied and 1 is a FP of ξ

4 An Application to an Integeal Equation

Let $\Xi = C([\sigma, \theta], \mathbb{R})$ be the set of all continuous real valued functions defined on $[\sigma, \theta]$. Now, we consider the Fredholm type integral equation of fiest kind:

$$\mathbf{w}(\eta) = \int_{\sigma}^{\theta} F(\eta, j) \mathbf{w}(\eta) \mathbf{k}j, \text{ for } \eta, j \in [\sigma, \theta]$$
(46)

Where, $F \in \Xi$. Define G as in Example 3.2, That is

$$G(\mathbf{w}(\eta), \mathbf{k}(\eta), \tau) = \sup_{\eta \in [\sigma, \theta]} \begin{cases} 1 \text{ if } \mathbf{w} = \mathbf{k}, \\ \left[e^{\frac{\max\{\mathbf{w}(\eta), \mathbf{k}(\eta)\}^{\alpha}}{\tau}}\right]^{-1} \text{ otherwise,} \end{cases}$$
(47)

and

$$H(\mathbf{w}(\eta), \mathbf{k}(\eta), \tau) = \sup_{\eta \in [\sigma, \theta]} \begin{cases} 0 \text{ if } \mathbf{w} = \mathbf{k}, \\ 1 - \left[e^{\frac{\max\{\mathbf{w}(\eta), \mathbf{k}(\eta)\}^{\alpha}}{\tau}} \right]^{-1} \text{ otherwise,} \end{cases}$$
(48)

for all w, k $\in \Xi$ and $\tau > 0$. Then $(\Xi, G, H, *, \Delta, \bot)$ is an O-complete IFBMS.

Theorem 4.1. Assume that $\max\{F(\eta,j)\mathbf{w}(\eta),F(\eta,j)\mathbf{k}(\eta)\}\leq\varrho\max\{\mathbf{w}(\eta),\mathbf{k}(\eta)\}$ for $\mathbf{w},\mathbf{k}\in\Xi,\varrho\in(0,1)$ and $\eta,j\in[\sigma,\theta]$. Also, consider $\int_{\sigma}^{\theta}\mathbf{k}j=1$. Then the Fredholm type integral equation of first kind in equation (46) has a unique solution.

Proof. Define $\xi: \Xi \to \Xi$ by $w(\eta) = \int_{\sigma}^{\theta} F(\eta, j)w(\eta)kj$, for $\eta, j \in [\sigma, \theta]$. Define Orthogonality as: $w(\eta) \perp k(\eta) \Leftrightarrow w(\eta)k(\eta) \in \{|w(\eta)|, |k(\eta)|\}$. We see that $w(\eta)$ and $\xi w(\eta)$ belong to Ξ . So, observe that if $w(\eta) \perp k(\eta)$,

then must be $\xi w(\eta) \perp \xi k(\eta)$. Observe that the existence of a FP of the operator ξ is equivalent to the existence of a solution of the Fredholm type integral equation (46). Now, for $w(\eta) = k(\eta)$, the contraction condition holds. While for $w \neq k$, We have

$$G(\xi w(\eta), \xi k(\eta), \varrho \tau) = \left[e^{\frac{\max\{w(\eta), k(\eta)\}^{\alpha}}{\varrho \tau}} \right]^{-1}$$

$$= \left[e^{\frac{\max\{\int_{\sigma}^{\theta} F(\eta, j) w(\eta) k j, \int_{\sigma}^{\theta} F(\eta, j) k(\eta) k j\}^{\alpha}}{\varrho \tau}} \right]^{-1}$$

$$= \left[e^{\frac{\left(\int_{\sigma}^{\theta} \max\{F(\eta, j) w(\eta) k j, F(\eta, j) k(\eta) k j\}\right)^{\alpha}}{\varrho \tau}} \right]^{-1}$$

$$\geq \left[e^{\frac{\left(\int_{\sigma}^{\theta} \max\{w(\eta) k j, k(\eta) k j\}\right)^{\alpha}}{\varrho \tau}} \right]^{-1}$$

$$\geq \sup_{\eta \in [\sigma, \theta]} \left[e^{\frac{\left(\varrho \max\{w(\eta) k j, k(\eta)\}\right)^{\alpha} \left(\int_{\sigma}^{\theta} k j\right)^{\alpha}}{\varrho \tau}} \right]^{-1}$$

$$= \sup_{\eta \in [\sigma, \theta]} \left[e^{\frac{\left(\max\{w(\eta) k j, k(\eta)\}\right)^{\alpha} \left(\int_{\sigma}^{\theta} k j\right)^{\alpha}}{\varrho \tau}} \right]^{-1}$$

$$= G(w(\eta), k(\eta), \tau),$$

and

$$\begin{split} H(\xi \mathbf{w}(\eta), \xi \mathbf{k}(\eta), \varrho \tau) &= 1 - \left[e^{\frac{\max\{\mathbf{w}(\eta), \mathbf{k}(\eta)\}^{\alpha}}{\varrho \tau}} \right]^{-1} \\ &= 1 - \left[e^{\frac{\max\{\int_{\sigma}^{\theta} F(\eta, j) \mathbf{w}(\eta) \mathbf{k}j, \int_{\sigma}^{\theta} F(\eta, j) \mathbf{k}(\eta) \mathbf{k}j\}^{\alpha}}{\varrho \tau}} \right]^{-1} \\ &1 - \left[e^{\frac{\left(\int_{\sigma}^{\theta} \max\{F(\eta, j) \mathbf{w}(\eta) \mathbf{k}j, F(\eta, j) \mathbf{k}(\eta) \mathbf{k}j\}\right)^{\alpha}}{\varrho \tau}} \right]^{-1} \\ &\leq 1 - \left[e^{\frac{\left(\int_{\sigma}^{\theta} \max\{\mathbf{w}(\eta) \mathbf{k}j, \mathbf{k}(\eta) \mathbf{k}j\}\right)^{\alpha}}{\varrho \tau}} \right]^{-1} \\ &\leq 1 - \sup_{\eta \in [\sigma, \theta]} \left[e^{\frac{\left(\varrho \max\{\mathbf{w}(\eta) \mathbf{k}j, \mathbf{k}(\eta)\}\right)^{\alpha} \left(\int_{\sigma}^{\theta} \mathbf{k}j\right)^{\alpha}}{\varrho \tau}} \right]^{-1} \\ &= 1 - \sup_{\eta \in [\sigma, \theta]} \left[e^{\frac{\left(\max\{\mathbf{w}(\eta) \mathbf{k}j, \mathbf{k}(\eta)\}\right)^{\alpha}}{\tau}} \right]^{-1} \\ &= H(\mathbf{w}(\eta), \mathbf{k}(\eta), \tau), \end{split}$$

Hence, ξ is an \perp -contraction. Let $\{\mathbf{w}_n\}$ be an O-sequence in Ξ O-converging to $\mathbf{w} \in \Xi$. Because ξ is an \perp -preserving, then $\{\xi \mathbf{w}_n\}$ is an O-sequence for each $n \in \mathbb{N}$. We have

$$G(\xi \mathbf{w}_n(\eta), \xi \mathbf{w}, \varrho \tau) \ge G(\mathbf{w}_n(\eta), \mathbf{w}(\eta), \tau)$$
 (49)

and

$$H(\xi \mathbf{w}_n(\eta), \xi \mathbf{w}, \varrho \tau) \le H(\mathbf{w}_n(\eta), \mathbf{w}(\eta), \tau)$$
(50)

As $\lim_{n\to\infty} G(\xi \mathbf{w}_n(\eta), \xi \mathbf{w}, \varrho \tau) = 1$ and $\lim_{n\to\infty} H(\xi \mathbf{w}_n(\eta), \xi \mathbf{w}, \varrho \tau) = 0$ for all $\tau > 0$, it is clear that

$$\lim_{n \to \infty} G(\xi \mathbf{w}_n(\eta), \xi \mathbf{w}, \varrho \tau) = 1, \tag{51}$$

$$\lim_{n \to \infty} H(\xi \mathbf{w}_n(\eta), \xi \mathbf{w}, \varrho \tau) = 0, \tag{52}$$

Hence, ξ is \perp -continuous. Therefore, all conditions of Theorem 3.13 are satisfied. Hence, the operator ξ has a unique FP. That is, the Fredholm type integral equation (46) has a unique solution.

5 Conclusion

In this study, we established the concept of an OIFBMS as a generalization of an IFBMS. We established some fixed point theorems and solved some non-trivial examples with an application to Fredholm integral equations. This work is extendable in the structure of orthogonal neutrosophic b-metric spaces, and orthogonal inutionistic fuzzy controlled metric spaces and we can increase self mappings to get new results.

Acknowledgements: We would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript.

Conflict of Interest: The authors declare no conflicts of interest.

References

- [1] Alaca C, Turkoglu D, Yildiz C. Fixed points in intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals. 2006; 29(5): 1073-1078. DOI: https://doi.org/10.1016/j.chaos.2005.08.066
- [2] Bakhtin IA. The contraction mapping principle in quasimetric spaces. Functional analysis. 1989; 30: 26-37. DOI: https://doi.org/10.4236/oalib.1104657
- [3] Baleanu D, Rezapour S, Mohammadi H. Some existence results on nonlinear fractional differential equations. *Philosophical Transaction of the Royal Society A: Mathematical, Physical and Engineering Sciences.* 2013; 371(1990): 1-7. DOI: https://doi.org/10.1098/rsta.2012.0144
- [4] Czerwil S. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis. 1993; 1(1): 5-11. DOI: http://dml.cz/dmlcz/120469
- [5] Deng Z. Fuzzy pseudo-metric spaces. Journal of Mathematical Analysis and Applications. 1982; 86(1): 74-95. DOI: https://doi.org/10.1016/0022-247X(82)90255-4
- [6] Doenovic T, Javaheri A, Sedghi S, Shobe N. Coupled fixed point theorem in b-fuzzy metric spaces. *Novi Sad J. Math.* 2017; 47(1): 77-88. DOI: https://doi.org/10.1515/fascmath-2018-0015
- [7] Eshaghi Gordji Μ, Habibia Η. Fixed point theory generalized orthogonal met-Journal of Linear and Topological Algebra.2017; 6(03): 251-260. DOI: https://dorl.net/dor/20.1001.1.22520201.2017.06.03.7.7
- [8] Eshaghi Gordji M, Ramezani M, De La Sen M, Cho YJ. On orthogonal sets and Banachs fixed point theorem. Fixed Point Theory. 2017; 18(2): 569-578. DOI: https://doi.org/10.24193/fpt-ro.2017.2.45

- [9] George A, Veeramani P. On some results in fuzzy metric spaces. Fuzzy Sets and Systems. 1994; 64(3): 395-399. DOI: https://doi.org/10.1016/0165-0114(94)90162-7
- [10] George A, Veeramani P. On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems. 1997; 90(3): 365-368. DOI: https://doi.org/10.1016/S0165-0114(96)00207-2
- [11] Hezarjaribi M. Fixed point result in orthogonal fuzzy metric space. *Jordan Journal of Mathematics and Statistics*. 2018; 11(4): 295-308.
- [12] Javed K, Uddin F, Aydi H, Arshad M, Ishtiaq U, Alsamir H. On fuzzy b-metric-like spaces. Journal of Function Spaces. 2021; 2021: 1-9. DOI: https://doi.org/10.1155/2021/6615976
- [13] Konwar N. Extension of fixed results in intuitionistic fuzzy b-metric spaces. *Journal of Intelligent & Fuzzy Systems*. 2020; 39(5): 7831-7841. DOI: https://doi.org/10.3233/JIFS-201233
- [14] Kramosil I, Michlek j. Fuzzy metric and statistical metric spaces. *Kybernetika*. 1975; 11(5): 336-344. DOI: http://dml.cz/dmlcz/125556
- [15] Mehmood F, Ali R, Ionescu C, Kamran T. Extended fuzzy b-metric spaces. Journal of Mathematical Analysis. 2017; 8(6): 124-131.
- [16] Mohamad A. Fixed-point theorems in intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals. 2007; 34(5): 1689-1695. DOI: https://doi.org/10.1016/j.chaos.2006.05.024
- [17] Ndban S. Fuzzy b-metric spaces. International Journal of Computers Communications & Control. 2016; 11(2): 273-281. DOI: https://doi.org/10.15837/IJCCC. 2016.2.2443
- [18] Park JH. Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals. 2004; 22(5): 1039-1046. DOI: https://doi.org/10.1016/j.chaos.2004.02.051
- [19] Rafi M, Noorani MSM. Fixed point theorem on intuitionistic fuzzy metric space. *Iranian Journal of Fuzzy Systems*. 2006; 3(1): 23-29. DOI: https://doi.org/10.22111/IJFS.2006.428
- [20] Rakic D, Mukheimer A, Doenovic T, Mitrovic ZD, Radenovic S. On some new fixed point results in fuzzy b-metrics paces. *Journal of Inequalities and Applications*. 2020; 2020:1-14. DOI: https://doi.org/10.1186/s13660-020-02371-3
- [21] Schweizer B, Sklar A. Statistical metric spaces. Pacific Journal of Mathematics. 1960; 10(1): 313-334. DOI: http://dx.doi.org/10.2140/pjm.1960.10.313
- [22] Sedghi S, Shobe N. Common fixed point theorem in b-fuzzy metric space. Nonlinear Functional Analysis and Applications. 2012; 17: 349-359. DOI: https://doi.org/10.1155/2021/6615976
- [23] Senapati T, Dey LK, Damjanovic B, Chanda A. New fixed point results in orthogonal metric Space with an application. *Kragujevac Journal of Mathematics*. 2018; 42(4): 505-516. DOI: https://doi.org/10.5937/KgJMath1804505S
- [24] Shukla S, Abbas M. Fixed point results in fuzzy metric-like spaces. *Iranian Journal of Fuzzy Systems*. 2014; 11(5): 81-92. DOI: https://doi.org/10.22111/ijfs.2014.1724
- [25] Sintunavarat W, Kumam P. Fixed theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy metric spaces. *Thai Journal of Mathematics*. 2012; 10(1): 123-135.

- [26] Sudsutad W, Tariboon J. Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions. *Advances in Difference Equations*. 2012; 2012(93): 1-10. DOI: https://doi.org/10.1186/1687-1847-2012-93
- [27] Uddin F, Park C, Javed K, Arshad M, Lee JR. Orthogonal m-metric spaces and an application to solve integral equations. *Advance in Difference Equations*. 2021; 2021: 1-15. DOI: https://doi.org/10.1186/s13662-021-03323-x
- [28] Zadeh LA. Fuzzy sets. *Information and Control.* 1965; 8(3): 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Fahim Uddin

Abdus Salam School of Mathematical Sciences Government College University Lahore, Pakistan. E-mail: fahamiiu@gmail.com

Muhammad Saeed

Department of Mathematics University of Management and Technology Lahore, Pakistan. E-mail: muhammad.saeed@umt.edu.pk

Khaleel Ahmad

Department of Mathematics University of Management and Technology Lahore, Pakistan. E-mail: khalil7066616@gmail.com

Umar Ishtiaq

Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan. E-mail: umarishtiaq000@gmail.com

Salvatore Sessa

Department of Mathematics University of Naples Federico II Naples, Italy. E-mail: salvatore.sessa2@unina.it

By the Authors. Published by Islamic Azad University, Bandar Abbas Branch. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/