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Abstract.  Data envelopment analysis (DEA) provides performance evaluation for a set of 

homogeneous decision making units (DMUs) in the sense that all DMUs evaluated with the same 

criteria setting. In some settings, however, the assumption of having a common input and output 

bundle may not hold. Such can occur in universities, for example, since they may have different 

departments, or in hospitals where have different wards. This motivates to the issue of how to 

fairly evaluate efficiency when inputs and outputs configurations are different. This paper proposes 

a three-process methodology that aims at evaluating of a set of DMUs when the requirement of 

homogeneity among inputs and outputs is relaxed. In the first step, based on the duality theory a 

multiplier directional distance function (DDF) model is developed to determine an appropriate 

split of inputs and output. In step 2, the efficiency of a DMU is evaluated in terms of each scaled 

down inputs and outputs. Finally, the overall efficiency score of a DMU is viewed as a weighted 

combination of a set of product lines efficiencies. To demonstrate the validity and practicability of 

the proposed method, we apply it to evaluate the performance of a hypothetical data set. The results 

show that the methodology has the ability to discriminate performance for data with 

nonhomogeneous inputs and outputs. 
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1. Introduction 

Data envelopment analysis (DEA), originally introduced by Charnes et al. [7], is a 

nonparametric linear programming (LP) methodology which measures the relative 

efficiencies of a set of decision making units (DMUs). Last four decades has witnessed the 

great theoretical developments and practical applications in DEA literature. The 

enthusiastic reader is referred to some useful surveys includes Cook and Seiford [8], 

Emrouznejad et al. [11] and Seiford [15]. In the conventional DEA models it is assumed 

that in a multiple-input multiple-output setting, all outputs are affected by all inputs. 

Moreover, these models are based on the assumption that all DMUs use the same set of 

inputs and produce the same set of outputs, making the set of DMUs homogeneous. 

In some situations, regarding using the same technology, the assumption of 

homogeneity among DMUs may be violated. As an example, consider the case of a set of 

food manufacturing companies where certain foods do not need nutrition labeling or 
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packaging.  In such setting, if one of the inputs is labeling or packaging resources, the 

mentioned certain foods will not influenced by the labeling or packaging resources.      

Imanirad et al. [12] referred to this as partial input to output impacts and extends the 

conventional DEA methodology to address the problem of measuring the technical 

efficiency in such situations. Cook et al. [9, 10] proposed DEA-based models to 

demonstrate the problem of non-homogeneity of DMUs on the output side. They 

considered a set of steel fabrication plants for evaluating the relative efficiencies of a set 

of DMUs where the input set is common across all DMUs but some plants choose not to 

manufacture certain products. Li et al. [13] investigated the problem of lack of 

homogeneity on the input side and extended the earlier researches of Cook et al. [9, 10] to 

cover the case where different input configurations across a set of DMUs. They developed 

a DEA-based methodology to deal with this situation and applied it to a set of 31 provinces 

in China in which one of the inputs is the quantity of natural resources available to the 

region and not all regions have the same natural resources. Barat et al. [1] developed a 

three-step procedure to assess cost efficiency of nonhomogeneous DMUs with different 

output configuration. A network DEA methodology is proposed by Barat et al. [2] to 

address the problem of nonhomogeneity in settings where subunits operate in the mixed 

network structure. To deal with the problem of evaluating the relative efficiencies of a set 

of DMUs whose internal structures are nonhomogeneous Barat et al. [3] suggested a DEA 

methodology and applied it to a set of 40 branches of the largest private bank in a country 

in the Middle East.   

There are other situations in which lack of homogeneity on both input and output sides 

prevails.  As an example, comparing a set of universities where not all institutions have 

the same departments and hence violated the assumption of homogeneity among both 

inputs and outputs captures the idea. In another setting, consider a set of hospitals acting 

as the DMUs. Those without ICU ward cannot be directly compared to those that do have 

such ward. A related problem that has been widely investigated in the literature and might 

conceivably be used to treat this problem is the missing data problem (see e.g., Thompson 

et al. [16]). In the current setting, however, the issue is not that the data for some inputs 

and outputs is missing for some DMUs, but rather that the DMU does not have those inputs 

or those certain outputs are not produced. In the case of hospitals considering as DMUs, 

those without ophthalmology ward cannot fairly be directly compared to those that have 

such ward. On the other hand, in the case where a DMU for any reason cannot produce a 

certain products (even decides not to produce that output) or does not have a certain input, 

it would be leaded distorted results if artificially substituting a zero value or some average 

value for the missing measure.  

To handle the problem of DMUs with nonhomogeneous inputs and outputs, one might 

potentially propose dividing the set of DMUs into multiple groups in which all of the 

members of a group using the same inputs and producing the same outputs, and then 

applying a separate DEA evaluation on each group. By using this approach, a DMU is 

evaluated in comparison to those DMUs whose inputs and outputs profiles are identical to 

its own, specifically only true peers. Cook et al. [10] claimed that at least two problems 

may arise with this approach. The first problem is that in some situations to reflect true 

peers the set of DMUs may be required to be split into multiple small subsets. This would 

cause difficulty to assess meaningful evaluation. The other problem is that excluding 

considerations of partial peers, whose inputs and outputs profiles overlap with but not 

identical to, those of under evaluation DMU may cause failure in identifying true best 

practices. This gives rise to the issue of how to include all DMUs in the comparison set to 

fairly compare a DMU to the others. In this paper we extend the previous researches of 

Cook et al. [10], and Li et al [13] to encompass the general case which is non-homogeneity 

on both input and output sides. Generally, this is brought about by viewing the process of 

inputs generating outputs and the process of outputs producing by inputs as being divided 
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into some separate processes. We develop a DEA type methodology based on directional 

distance function approach to evaluate these processes.   

The rest of the paper is organized as follows. Section 2 is devoted to the development 

of DEA-based model for dealing with the general case of non-homogeneity on both input 

and output sides. Section 3 applies the new methodology to a data set of 25 hypothetical 

DMUs. Conclusions and recommendations appear in section 4.  

 

2. DEA model for DMUs with different input and output configurations 

2.1 Background 

Consider a set J consists of n DMUs, with input levels, 𝑥𝑖𝑗 , 𝑖 = 1, … 𝑚, output levels 

𝑦𝑟𝑗 , 𝑟 = 1, … 𝑠. In particular, an under evaluation unit is denoted by 𝑜 ∈ 𝐽. Suppose that 

the constant returns to scale (CRS) technology is deemed and 𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛 are the 

intensity variables. The production possibility set (PPS) is then defined as: 

    

                                                                                       

By introducing a directional function 𝐝 = (𝐝𝑥 , 𝐝𝑦) = (𝑑1𝑥 , … , 𝑑𝑚𝑥, 𝑑1𝑦, … , 𝑑𝑠𝑦) ≠ 𝟎 

Chambers et al. [4, 5] defined the directional distance function on PPS and proposed the 

generic directional distance model as follows:   

 𝑚𝑎𝑥     𝛽𝑜   

  𝑠. 𝑡.    ∑ 𝜆𝑗 𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑥𝑖𝑜 − 𝛽𝑜𝑑𝑖𝑜 ,     𝑖 = 1, … , 𝑚, 

       ∑ 𝜆𝑗 𝑦𝑟𝑗
𝑛
𝑗=1 ≥ 𝑦𝑟𝑜 + 𝛽𝑜𝑑𝑟𝑜,     𝑟 = 1, … , 𝑠, 

       𝜆𝑗 ≥ 0,     𝑗 = 1, … , 𝑛,  

       𝑑𝑖𝑥, 𝑑𝑟𝑦 ≥ 0,     𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠. 

(2) 

   Model (2) is known as combined-oriented CCR model and (𝐝𝑥, 𝐝𝑦)  shows the 

moving direction in which leads DMUo to lie down on efficient frontier. Input-oriented 

and output-oriented models can easily be derived from model (2) by considering 𝐝𝑦 = 𝟎 

and 𝐝𝑥 = 𝟎, respectively.  

   In the combined-oriented CCR model (2), 0 ≤ 𝛽𝑜 < 1, and 1 − 𝛽𝑜 is the efficiency 

score of DMUo. If 0 < 𝛽𝑜 < 1, DMUo is inefficient, moreover, 𝛽𝑜𝑥𝑖𝑜  shows the amount 

in which DMUo should apply to decrease input i, and 𝛽𝑜𝑦𝑟𝑜  indicates the amount of 

extension that has to be applied to output r, to make DMUo efficient. 

   It is worth mentioning that when input and output measures are positive, the observed 

inputs and outputs are the usual choice for the directional vectors (𝐝𝑥 , 𝐝𝑦) (Portela et al. 

[14]). The specific value of number 𝛽𝑜 is the inefficiency value obtained as the optimal 

solution of the next linear problem:                                                                                                             

 𝑚𝑎𝑥     𝛽𝑜   

  𝑠. 𝑡.    ∑ 𝜆𝑗 𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑥𝑖𝑜 − 𝛽𝑜𝑥𝑖𝑜 ,     𝑖 = 1, … , 𝑚, 

       ∑ 𝜆𝑗 𝑦𝑟𝑗
𝑛
𝑗=1 ≥ 𝑦𝑟𝑜 + 𝛽𝑜𝑦𝑟𝑜 ,     𝑟 = 1, … , 𝑠, 

(3) 

𝑃𝑃𝑆 = {(𝑥1 , … , 𝑥𝑚, 𝑦1 , … , 𝑦𝑠 ) : ∑ 𝜆𝑗 𝑥𝑖𝑗 ≤ 𝑥𝑖

𝑛

𝑗=1

, 𝑖 = 1, … , 𝑚, ∑ 𝜆𝑗 𝑦𝑟𝑗 ≤ 𝑦𝑟

𝑛

𝑗=1

,

𝑟 = 1, … , 𝑠, 𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛} 

(1) 
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       𝜆𝑗 ≥ 0,     𝑗 = 1, … , 𝑛. 

   Model (3) is the envelopment form of the combined-oriented CCR model. Based on 

the duality theory, the fractional multiplier form of the combined-oriented model is as 

follows:                                                                                                                                                

 𝑚𝑎𝑥      𝑧𝑜 =
−𝒖𝒚𝑜+𝒗𝒙𝑜

𝒖𝒚𝑜+𝒗𝒙𝑜
, 

   𝑠. 𝑡.     
𝒖𝒚𝑗

𝒗𝒙𝒋
≤ 1,     𝑗 = 1, … , 𝑛, 

       𝒖 ≥ 1𝜀, 𝒗 ≥ 1𝜀, 

(4) 

where the input and output weights are denoted by v and u, respectively. 𝜀 > 0, is a small 

non-Archimedean number used to avoid ignoring any factor in calculating efficiency 

(Charnes and Cooper [6]). In optimality, 𝑧𝑜
∗ gives the inefficiency score of DMUo, and 

1 − 𝑧𝑜
∗ is the efficiency score of DMUo. 

   In models (3) and (4) it is assumed that all the DMUs are homogeneous. Now, consider 

the problem where not all the resources are held by all DMUs and more over not all the 

products are produced by all DMUs. This leads to the case where DMUs have different 

inputs and outputs configurations. We wish to derive the efficiency scores of DMUs in 

such settings; since not all inputs and outputs are common to all DMUs, using the 

conventional model (3) would not seem to be appropriate. In the following subsection we 

proposed a methodology to address this problem. 

2.2 A directional distance function approach 

Now, we wish to examine a general setting, as in a case of hospitals with various wards, 

and evaluate the efficiencies of a set of DMUs in a situation where not all inputs and 

outputs are common to all DMUs. Assume that DMUs with similar inputs and outputs 

have been fall into P mutually exclusive groups which is denoted by 𝑁𝑝, 𝑝 = 1, … , 𝑃. 

Suppose that 𝐼𝑁𝑝
 is the subset of inputs that is held by DMUs in 𝑁𝑝 and 𝑅𝑁𝑝

 denotes 

the subset of outputs that is produced by all DMUs in 𝑁𝑝. To illustrate, consider a simple 

example where five DMUs have the following profiles (Table 1): 

Table 1. DMU Profiles. 

 Inputs Outputs 

DMU no. I1 I2 I3 I4 Y1 Y2 Y3 

1   -    - 

2 -     -  

3   -     

4 -     -  

5       - 

these five DMUs are organized into three subgroups 𝑁1, 𝑁2 and 𝑁3, with those in 𝑁1 

consume three inputs 𝑖1 , 𝑖2 , 𝑖4 to produce two outputs 𝑦1 , 𝑦2, whereas those in 𝑁2 use 

𝑖2 , 𝑖3, 𝑖4  to produce 𝑦1 , 𝑦3 , and DMUs in 𝑁3  have all four resources and two outputs 

𝑦1 , 𝑦2. 

   To handle the problem of evaluating the efficiency of a given DMU in such settings, 

we propose proceeding in a three-step procedure. In step 1, we determine an appropriate 

split of the inputs and outputs and denote the proportions by 𝛼𝑖𝑗𝑟  and 𝛽𝑟𝑗𝑖, respectively. 
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In fact, for DMUj, 𝛼𝑖𝑗𝑟  is the appropriate proportion of input i which is consumed by 

output r. Similarly, 𝛽𝑟𝑗𝑖 is the appropriate proportion of output r which is produced by 

input i. In step 2 the efficiency of a DMU in terms of each of its scaled down input and 

output is evaluated. Step 3 takes a weighted average of the efficiency scores as derived in 

step 2, to get the overall efficiency score of the DMU. In the following, we discuss the 

three steps in detail. 

Step 1. Deriving the split of inputs and outputs 
In the first step, for any given DMU, determining proper allocations of each of its input 

to each of its output is of interest. It is worth mentioning that, according to the rule of 

product there are 𝑚 × 𝑠 ways to match each input to each of the outputs. We refer to 

each of the way as splitting product line. Since DMUs are nonhomogeneous through 

different inputs and outputs, all the splitting product line do not belong to all the DMUs. 

Moreover, DMUs in the same DMU group (𝑁𝑝) have the same product lines. Now, for 

any DMU in each of the DMU groups we have split the production function into the 

number of its splitting product lines. We argue herein that for under evaluation unit, 

DMUo, if dividing up the inputs and outputs is done in a way that results in the best overall 

or aggregate efficiency score across all of its splitting product lines, it may be the best 

reasonable and acceptable technique to allocate the most appropriate values to alpha and 

beta variables. Additionally, we propose to reasonably present the overall efficiency score 

of DMUo as the weighted average (convex combination) of the individual splitting product 

lines efficiencies (across all splitting product lines in which are related to 𝐼𝑁𝑝𝑜  and 𝑅𝑁𝑝𝑜 ). 

We should emphasize that this discussion is on the base of the assumption that a DMU is 

the sum of its parts and there are no economies or dis-economies of scope; in cases where 

such economies or dis-economies exist the idea of considering the aggregate efficiency 

may not be applicable. This situation has a connection to concept of non-homogeneity of 

outputs and non-homogeneity of inputs as discussed in Cook et al. [10] and Li et al. [13], 

respectively. 

   As is mentioned earlier, to derive the aggregate or overall efficiency of DMUo we 

consider representing it as a convex combination of the splitting product line efficiencies. 

Since both inputs and outputs are nonhomogeneous we argue to develop the determination  

of the 𝛼 −split and 𝛽 −split using the fractional multiplier form of the combined-oriented 

model and via the objective of maximizing the overall score. Additionally, the optimal 

objective value of model (4) gives the inefficiency value associated to a specific unit of 

the sample. Hence, in general terms, the following combined-oriented model for DMUo 

captures the idea: 

 𝑒𝑜 = min     ∑ ∑ 𝑤𝑖𝑁𝑃𝑜 𝑟𝑟𝑖 ×
−𝑢𝑟𝛽𝑟𝑁

𝑃𝑜𝑖𝑦𝑟𝑜 +𝑣𝑖𝛼𝑖𝑁
𝑃𝑜 𝑟𝑥𝑖𝑜

𝑢𝑟𝛽𝑟𝑁𝑃𝑜 𝑖𝑦𝑟𝑜+𝑣𝑖𝛼𝑖𝑁𝑃𝑜𝑟𝑥𝑖𝑜
, 

      𝑠. 𝑡.       ∑ ∑
𝑢𝑟𝛽𝑟𝑁𝑝𝑖𝑦𝑟𝑗

𝑣𝑖𝛼𝑖𝑁𝑝𝑟𝑥𝑖𝑗
≤ 1, 𝑗 ∈ 𝑁𝑝 , 𝑝 = 1, … , 𝑃, 𝑖 ∈ 𝐼𝑁𝑝

, 𝑟 ∈𝑟𝑖

𝑅𝑁𝑝
, 

             ∑ 𝛽𝑟𝑁𝑝𝑖𝑖 = 1,     𝑝 = 1, … , 𝑃, 𝑟 ∈ 𝑅𝑁𝑝
, 

             ∑ 𝛼𝑖𝑁𝑝𝑟𝑟 = 1,     𝑝 = 1, … , 𝑃, 𝑖 ∈ 𝐼𝑁𝑝
, 

             ∑ ∑ 𝑤𝑖𝑁𝑃𝑜𝑟𝑟𝑖 = 1,      𝑖 ∈ 𝐼𝑁𝑝𝑜 , 𝑟 ∈ 𝑅𝑁𝑝𝑜  

             𝑢𝑟 , 𝑣𝑖, 𝛽𝑟𝑁𝑝𝑖, 𝛼𝑖𝑁𝑝𝑟 ≥ 𝜀,      𝑝 = 1, … , 𝑃, 𝑖 ∈ 𝐼𝑁𝑝
, 𝑟 ∈ 𝑅𝑁𝑝

, 

(5) 

where, 𝛽𝑟𝑁𝑝𝑖 denotes the proportion of output r for a 𝐷𝑀𝑈𝑗 , 𝑗 ∈ 𝑁𝑝 which is produced 
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by input i, and 𝛼𝑖𝑁𝑝𝑟 is the proportion of input i which is used by output r.  

   In deriving the inefficiency score for any 𝐷𝑀𝑈𝑗 , 𝑗 ∈ 𝑁𝑝 by the proposed model (5), 

we suggest that the multipliers be chosen such that the weighted ratio of outputs to inputs 

for each of the splitting product lines to be at or under unity. By doing this, while our 

model captures the overall inefficiency of the DMU, it derives the inefficiency of the 

splitting product lines for those DMUs, simultaneously. In model (5), we impose 

constraints on the separated splitting product lines. At the same time we connect the 

product lines through the splitting variables 𝛼  and 𝛽 , specifically by imposing the 

convex constraints. As mentioned earlier, weights 𝑤𝑖𝑁𝑝𝑜𝑟 should be designated in a way 

that reflects the relative importance or contribution of the respective production line 

(splitting production line that uses input i to produce output r). One reasonable choice of 

weights would be to choose them according to the contribution of respective production 

line make to overall production. As we adopt combined-oriented model herein, an 

appropriate and logical choice for the weights from an accounting points of view, would 

be the proportion of sum up the total outputs generated and the aggregate inputs consumed 

by the products line. Hence, we define the weights 𝑤𝑖𝑁𝑝𝑜 𝑟 to be assigned to any products 

line as, 

𝑤𝑖𝑁𝑝𝑜 𝑟 =
𝑢𝑟𝛽𝑟𝑁𝑝𝑜 𝑖𝑦𝑟𝑜 + 𝑣𝑖𝛼𝑖𝑁𝑝𝑜 𝑟𝑥𝑖𝑜

∑ ∑ (𝑟𝑖 𝑢𝑟𝛽𝑟𝑁𝑝𝑜𝑖𝑦𝑟𝑜 + 𝑣𝑖𝛼𝑖𝑁𝑝𝑜 𝑟𝑥𝑖𝑜)
,     𝑖 ∈ 𝐼𝑁𝑝𝑜 , 𝑟 ∈ 𝑅𝑁𝑝𝑜 . (6) 

   It is worth noting that model (5) provides different set of alpha and beta splitting 

variables for each 𝐷𝑀𝑈𝑗 in comparison with those of the other sets. 

   Model (5) is nonlinear in the present form. Along the lines of the Charnes and Cooper 

[6], transformation model (5) is equivalently converted into a linear problem. First, we 

should note that by the definition of the weights 𝑤𝑖𝑁𝑝𝑜 𝑟 as given by (6), the objective 

function of model (5) mathematically becomes: 

 𝑒𝑜 = 𝑚𝑖𝑛 ∑ ∑
−𝑢𝑟𝛽𝑟𝑁𝑝𝑖𝑦𝑟𝑜+𝑣𝑖𝛼𝑖𝑁𝑝𝑟𝑥𝑖𝑜

∑ ∑ (𝑢𝑟𝛽𝑟𝑁𝑝𝑖𝑦𝑟𝑜+𝑣𝑖𝛼𝑖𝑁𝑝𝑟𝑥𝑖𝑜)𝑟𝑖
𝑟𝑖 . (7) 

   Then, make the change of variables 𝑧𝑖𝑁𝑝𝑟 = 𝑣𝑖𝛼𝑖𝑁𝑝𝑟 and 𝜙𝑟𝑁𝑝𝑖 = 𝑢𝑟𝛽𝑟𝑁𝑝𝑖 , and note 

that 

 ∑ 𝛼𝑖𝑁𝑝𝑟 = 1 ⇒ 𝑖 𝑣𝑖 ∑ 𝛼𝑖𝑁𝑝𝑟𝑟 = 𝑣𝑖  ⇒ ∑ 𝑧𝑖𝑁𝑝𝑟𝑟 = 𝑣𝑖, 

 ∑ 𝛽𝑟𝑁𝑝𝑖 = 1 ⇒ 𝑟 𝑢𝑟 ∑ 𝛽𝑟𝑁𝑝𝑖𝑟 = 𝑢𝑟  ⇒ ∑ 𝜙𝑟𝑁𝑝𝑖𝑖 = 𝑢𝑟 . 

   Now, under the usual transformation, 𝑡 = 1 [∑ ∑ (𝑢𝑟𝛽𝑟𝑁𝑝𝑖𝑦𝑟𝑜 + 𝑣𝑖𝛼𝑖𝑁𝑝𝑟𝑥𝑖𝑜)]𝑟𝑖⁄  and 

defining 𝜈𝑖 = 𝑡𝑣𝑖 , 𝜇𝑟 = 𝑡𝑢𝑟 , 𝛾𝑖𝑁𝑝𝑟 = 𝑡𝑧𝑖𝑁𝑝𝑟 , and 𝛿𝑟𝑁𝑝𝑖 = 𝑡𝜙𝑟𝑁𝑝𝑖 , problem (5) 

becomes: 

 𝑒𝑜 = min    − ∑ 𝜇𝑟 𝑦𝑟𝑜 +𝑟∈𝑅𝑁𝑝𝑜
∑ 𝜈𝑖𝑥𝑖𝑜 ,𝑖∈𝐼𝑁𝑝𝑜

 

      𝑠. 𝑡.    ∑ 𝜇𝑟𝑦𝑟𝑜 +𝑟∈𝑅𝑁𝑝𝑜
∑ 𝜈𝑖𝑥𝑖𝑜𝑖∈𝐼𝑁𝑝𝑜

= 1, 

           𝛿𝑟𝑁𝑝𝑖𝑦𝑟𝑗 − 𝛾𝑖𝑁𝑝𝑟𝑥𝑖𝑗 ≤ 0, 𝑗 ∈ 𝑁𝑝, 𝑝 = 1, … , 𝑃, 𝑖 ∈ 𝐼𝑁𝑝
, 𝑟 ∈ 𝑅𝑁𝑝

, 

           ∑ 𝛿𝑟𝑁𝑝𝑖𝑖 = 𝜇𝑟 ,   , 𝑝 = 1, … , 𝑃, 𝑟 ∈ 𝑅𝑁𝑝
, 

           ∑ 𝛾𝑖𝑁𝑝𝑟𝑖 = 𝜈𝑖,   , 𝑝 = 1, … , 𝑃, 𝑖 ∈ 𝐼𝑁𝑝
, 

           𝜇𝑟 , 𝜈𝑖 , 𝛿𝑟𝑁𝑝𝑖 , 𝛾𝑖𝑁𝑝𝑟 ≥ 𝜀,     𝑝 = 1, … , 𝑃, 𝑖 ∈ 𝐼𝑁𝑝
, 𝑟 ∈ 𝑅𝑁𝑝

. 

(8) 

   It is worth noting that the solution of model (8), gives a set of optimal variables 

𝜇𝑟
∗ , 𝜈𝑖

∗, 𝛾𝑖𝑁𝑝𝑟
∗ , 𝛿𝑟𝑁𝑝𝑖

∗  which are specific to under evaluation DMU. The optimal proportion 
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of inputs and outputs are derived from the foregoing variable transformations, which are 

given by, 𝛼𝑖𝑁𝑝𝑟
∗ =

𝛾𝑖𝑁𝑝𝑟
∗

𝜈𝑖
∗  and 𝛽𝑟𝑁𝑝𝑖

∗ =
𝛿𝑟𝑁𝑝𝑖

∗

𝜇𝑟
∗ . Using these variables the scaled down inputs 

and outputs can then be allocated to the respective splitting product line, namely 𝑥𝑖𝑗𝑟 =

𝛼𝑖𝑁𝑝𝑟
∗ 𝑥𝑖𝑗 and 𝑦𝑟𝑗𝑖 = 𝛽𝑟𝑁𝑝𝑖

∗ 𝑦𝑟𝑗 , 𝑗 ∈ 𝑁𝑝. 

Step 2. Deriving the splitting product line efficiency scores 

The purpose of the first step is to determine an appropriate set of scaled down inputs and 

outputs of each product lines for an under evaluation DMU. In step 2, the conventional 

combined-oriented CCR model can be applied to each of the splitting product lines. 

Specifically, we form mutually exclusive splitting line subgroup 𝑃𝑘 , 𝑘 = 1, … , 𝐾, where 

𝑃𝑘  denotes the subset of splitting product lines with the property that  all of its members 

appear as the measures of exactly the same set of DMUs. Then, let 𝑃𝑘
𝑖  and 𝑃𝑘

𝑟 denote 

inputs and outputs of the splitting product line set 𝑃𝑘 , respectively. Moreover, define 

𝐿𝑁𝑝
contains those 𝑃𝑘  forming the full splitting product line set for any DMU in 𝑁𝑝, and 

𝑇𝑃𝑘
 is the set of all DMU groups that have 𝑃𝑘  as a member, specifically 

𝑇𝑃𝑘
= {𝑁𝑝|𝑃𝑘 ∈ 𝐿𝑁𝑝

}. (9) 

   Now, for each DMUo, and each 𝑃𝑘 ∈ 𝐿𝑁𝑝𝑜 , solve the following combined-oriented 

DEA model: 

 𝑧𝑃𝑘𝑜 = min    ∑ 𝑢𝑟�̃�𝑟𝑜𝑖𝑟∈𝑃
𝑘𝑜
𝑟 + ∑ 𝑣𝑖𝑥𝑖𝑜𝑟,𝑖∈𝑃

𝑘𝑜
𝑖  

        𝑠. 𝑡.   ∑ 𝑢𝑟𝑦𝑟𝑜𝑖𝑟∈𝑃
𝑘𝑜
𝑟 + ∑ 𝑣𝑖𝑥𝑖𝑜𝑟𝑖∈𝑃

𝑘𝑜
𝑖 = 1,  

            ∑ 𝑢𝑟�̃�𝑟𝑗𝑖𝑟∈𝑃
𝑘𝑜
𝑟 + ∑ 𝑣𝑖�̃�𝑖𝑗𝑟𝑖∈𝑃

𝑘𝑜
𝑖 ,     𝑗 ∈ 𝑁𝑝 , 𝑁𝑝 ∈ 𝑇𝑃𝑘𝑜 , 

            𝑢𝑟 , 𝑣𝑖 ≥ 𝜀,     𝑟 ∈ 𝑃𝑘𝑜
𝑟 , 𝑖 ∈ 𝑃𝑘𝑜

𝑖 . 

(10) 

The subgroup efficiency score of DMUo, is derived by 𝑒𝑃𝑘𝑜 = 1 − 𝑧𝑃𝑘𝑜 .  

Step 3. Deriving the aggregate efficiency scores 

In the final step the overall efficiency score of DMUo is obtained by taking a weighted 

average of the splitting product lines scores derived from step 2 using the weights defined 

in (6). It should be noted that in computing 𝑤𝑖𝑁𝑝𝑜 𝑟, a proper set of 
r

u and 
i

v should be 

used. These values are calculated by solving model (8). Moreover, the total value of all 

resources and the total value of all products which are respectively consumed and 

produced by DMUo is given by ∑ 𝜇𝑟 𝑦𝑟𝑜𝑟∈𝑅𝑁𝑝𝑜
+ ∑ 𝜈𝑖𝑥𝑖𝑜𝑖∈𝐼𝑁𝑝𝑜

 which is scaled to 

𝑤𝑖𝑁𝑝𝑜 𝑟 = 𝛿𝑟𝑁𝑝𝑜 𝑖𝑦𝑟𝑜 + 𝛾𝑖𝑁𝑝𝑜 𝑟𝑥𝑖𝑜 unity as per the first constraint of model (8). Therefore, 

the reduced weights can be considered as an appropriate set of weights. Specifically, 

𝑤𝑝𝑘𝑜 = ∑ ∑ 𝑤𝑖𝑁𝑝𝑜 𝑟𝑟∈𝑃
𝑘𝑜
𝑟

𝑖∈𝑃
𝑘𝑜
𝑖 . 

Theorem 2.1  A DMU can be efficient if and only if all of its splitting product line sets 

are efficient as well. 

Proof. On the contrary, assume that a DMU is efficient and at least one of its splitting 

product line is not efficient (specifically,  𝑒𝑃𝑘𝑜 < 1 ). According to the proposed 

methodology,𝑒𝑜 = ∑ 𝑤𝑝𝑘𝑜 𝑒𝑃𝑘𝑜
𝐾
𝑘=1 , ∑ 𝑤𝑝𝑘𝑜

𝐾
𝑘=1 = 1, and 𝑒𝑃

𝑘𝑜
𝑖

𝑜 < 1. Since 𝑒𝑃𝑘𝑜 < 1, then 

𝑒𝑜 < 1, which violates the assumption of being efficient of DMUo
, hence all of the 

splitting product lines of under-evaluating DMU are efficient. On the other hand, suppose 
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that all of the splitting product lines of DMUo are efficient. The efficiency of DMUo is the 

weighted average of these efficient product lines, hence the overall efficiency score of 

DMU is one, and the DMU is efficient. This completes the proof.   □  

3. Numerical example 

This section includes a numerical illustration of the use of the methodology proposed in 

the foregoing section. We apply the proposed methodology to a set of hypothetical data set 

involving 25 DMUs with three inputs and three outputs but with different inputs and 

outputs configurations; both on the input side and output side the commonality of inputs 

and outputs among DMUs is missing. In other words, some DMUs choose not to 

manufacture certain products, and input configuration existing in DMUs might be different 

from the configuration in other DMUs. The DMUs fall into 3 groups as shown in Appendix 

Table A1. Seven of the DMUs have inputs I1, I2, and outputs O1 and O2, consisting group 

N2. DMU group N3, contains inputs I1, I3, and outputs O1 and O3. The ten member of 

group N1 have all three resources and all three products. There are nine splitting product 

lines involved in generating outputs for each DMU in N1 group, namely product line 1 

which uses input I1 and produce output O1, product line 2 which uses input I2 to produce 

output O1 and so on. DMUs in groups N2 and N3, involves four product lines. Appendix 

Table A2 displays data on 25 hypothetical DMUs. 

Now, we use the methodology proposed in the foregoing section and calculate the 

efficiency scores of DMUs. Recall that the purpose of step 1 (model (8)) is to determine 

the 𝛼 −split and 𝛽 −split for each splitting product lines of a DMU such that results in the 

best overall efficiency score (minimum overall inefficiency score) across all of its product 

lines. Applying model (8), the alpha and beta variables for each DMUo in 𝑁𝑝, 𝑝 = 1,2,3 

have been derived. The results are displayed in Appendix Tables A3 and A4. The alpha 

and beta variables obtained from (8) describe the portions of each input and each output in 

a DMU group that are paired up with each other. Appendix Tables A5 and A6 contain the 

scaled data for the three DMU groups as described in step 1.  

It can be shown that for the DMU profiles in Appendix Table A1 the splitting product 

line sets and the respective inputs and output sets 𝑃𝑘
𝑖  and 𝑃𝑘

𝑟 are 

𝑃1 = {(𝐼1 , 𝑂1)},   𝑃2 = {(𝐼1, 𝑂2), (𝐼2 , 𝑂1), (𝐼2, 𝑂2)},  

𝑃3 = {(𝐼1 , 𝑂3), (𝐼3 , 𝑂1), (𝐼3, 𝑂3)},   𝑃4 = {(𝐼2 , 𝑂3), (𝐼3, 𝑂2)}, 
𝑃1

𝑖 = {1},    𝑃2
𝑖 = {1,2},    𝑃3

𝑖 = {1,3},    𝑃4
𝑖 = {2,3},    

𝑃1
𝑟 = {1},   𝑃2

𝑟 = {1,2},    𝑃3
𝑟 = {1,3},    𝑃4

𝑟 = {2,3}.   

Note that in the hypothetical example described above, 

𝐿𝑁1
= {𝑃1 , 𝑃2, 𝑃3, 𝑃4},   𝐿𝑁2

= {𝑃1 , 𝑃2},   𝐿𝑁3
= {𝑃1, 𝑃3 } 

𝑇𝑃1
= {𝑁1, 𝑁2, 𝑁3},   𝑇𝑃2

= {𝑁1 , 𝑁2}, 𝑇𝑃3
= {𝑁1, 𝑁3}, 𝑇𝑃4

= {𝑁1}. 

 Then using the appropriately adjusted data, model (10) is applied to each splitting 

product line subgroups related to under evaluation DMU. The resulting aggregate 

efficiency scores are demonstrated along with their relevant subgroup scores in Appendix 

Table A8. Data which are displayed in Appendix Table A7 are the product line weights 

arising from the solution of (8) and are used to derive the aggregate efficiency scores. 

Appendix Table A8 demonstrates that DMU 14 has the lowest efficiency score, 0.44, and 

DMU 19 with score 1 has the highest efficiency among all DMUs. It is worth mentioning 

that a DMU is efficient if and only if all of its subgroups are efficient as well. Moreover, 

within each subgroup 𝑇𝑃𝑘
at least one of the DMUs is efficient. We note that 9 out of 25 

DMUs show a mix of efficient and inefficient subgroup efficiencies. 

To complete the analysis of this section, we compare the efficiency results obtained by 

the proposed methodology with what the conventional DEA analysis had been rendered 

by simply inserting zero data for any missing inputs and outputs. The results are displayed 
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in the last column of Table A8. It is worth noting that having replaced all blank spaces with 

zeros, a major number of DMUs are yielded technically efficient. 10 out of 25 DMUs are 

reported as efficient in evaluating by the conventional combined-oriented DEA model (4) 

and DMU 15 has the lowest efficiency score, 0.70. The results from the conventional DEA 

analysis and the proposed method are not the same to each other. However, there still exist 

some consistencies, for example, if the results from our method identify one DMU is 

inefficient then the other method provide similar conclusions on that DMU. Another 

interesting phenomenon is that, except for the three DMUs, all the efficiency scores by the 

proposed method are less than the efficiency scores by the conventional DEA model. For 

these three DMUs the efficiency scores of both methods are approximately the same. 

 

4. Conclusions and further directions 

In this paper the usual assumption of examining the efficiency of a set of DMUs, 

requirement of homogeneity among DMUs, is relaxed. This motivates us to measure the 

relative efficiency in the presence of different inputs and different outputs configurations 

across a set of DMUs. This environment is related to the problem of missing data which 

has been extensively addressed in the literature, however in the context that the missing 

value exists but is not available to the DMU or the DMU intended to produce it but for a 

reason none was actually created. Herein, we argue that the input/output bundle can differ 

from one DMU to another and the assumption of homogeneity is violated. To address this 

non-conventional situation in DEA literature we develop a DEA-based methodology 

which considers a DMU as a set of splitting production lines. The overall efficiency of a 

DMU is derived by proceeding in three steps which allows the overall efficiency to be 

viewed as the weighted average of the efficiency scores for the subgroups that make up the 

DMU. To show the practical aspect of the proposed methodology we applied our proposed 

model to a hypothetical data set. The results obtained from the proposed approach shown 

that a DMU will be evaluated efficient if (and only if) it is efficient in all of its splitting 

product line sets. 

The methodology developed in this paper is based on the assumption that no economies 

or diseconomies of scope exists. More explicitly, in this paper it is assumed that subgroups 

efficiencies can be aggregated via a weighted average to provide the overall efficiency 

score of a DMU. Further research is needed to cover the cases where scope consideration 

is necessary. 

Another suggestion for the extension of research is to accommodate special variables 

such as dual-role factors, undesirable outputs, ordinal data, and bounded data into the 

models. 

Availability of data The proposed methodology are applied to a set of hypothetical data 

that is inserted in the manuscript. 

 

 

 

Appendix. Tables 

 
Table A1. DMU profiles. 

 Inputs Outputs 

DMU 

Group 
I1 I2 I3 O1 O2 O3 

N1       

N2   -   - 

N3  -   -  
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Table A2. Data. 

DMUs  I1 I2 I3 O1 O2 O3 

DMU1 70 123 44 10 3 20 

DMU2 89 162 20 14 9 20 

DMU3 62 137 39 20 5 20 

DMU4 69 136 40 15 4 24 

DMU5 51 147 22 18 8 20 

DMU6 55 132 24 18 5 20 

DMU7 43 140 50 16 7 20 

DMU8 39 170 30 11 8 24 

DMU9 61 145 33 18 6 22 

DMU10 62 147 50 18 4 25 

DMU11 81 146 - 7 9 - 

DMU12 84 117 - 5 8 - 

DMU13 44 161 - 11 7 - 

DMU14 78 135 - 6 3 - 

DMU15 91 167 - 5 5 - 

DMU16 52 162 - 9 7 - 

DMU17 87 149 - 10 7 - 

DMU18 42 - 45 9 - 22 

DMU19 42 - 28 14 - 21 

DMU20 88 - 36 10 - 23 

DMU21 82 - 48 13 - 22 

DMU22 75 - 30 14 - 22 

DMU23 58 - 33 9 - 24 

DMU24 92 - 45 16 - 22 

DMU25 37 - 45 11 - 25 

 

 

Table A3. Alpha values. 

DMUs 1N1 1N2 1N3 2N1 2N2 2N3 3N1 3N2 3N3 

DMU1 0.03 0.37 0.60 0.82 0.03 0.15 0.94 0.03 0.03 

DMU2 0.04 0.37 0.59 0.81 0.04 0.15 0.93 0.04 0.04 

DMU3 0.03 0.37 0.60 0.81 0.03 0.15 0.94 0.03 0.03 

DMU4 0.03 0.37 0.60 0.81 0.03 0.15 0.93 0.03 0.03 

DMU5 0.03 0.37 0.60 0.81 0.03 0.15 0.94 0.03 0.03 

DMU6 0.03 0.37 0.60 0.82 0.03 0.15 0.94 0.03 0.03 

DMU7 0.03 0.37 0.60 0.81 0.03 0.15 0.94 0.03 0.03 

DMU8 0.03 0.37 0.60 0.81 0.03 0.15 0.94 0.03 0.03 

DMU9 0.03 0.37 0.60 0.81 0.03 0.15 0.93 0.03 0.03 

DMU10 0.03 0.37 0.59 0.81 0.03 0.15 0.93 0.03 0.03 

DMU11 0.97 0.03 - 0.03 0.97 - - - - 

DMU12 0.98 0.02 - 0.02 0.98 - - - - 

DMU13 0.98 0.02 - 0.02 0.98 - - - - 

DMU14 0.98 0.02 - 0.02 0.98 - - - - 

DMU15 0.97 0.03 - 0.03 0.97 - - - - 

DMU16 0.98 0.02 - 0.02 0.98 - - - - 

DMU17 0.97 0.03 - 0.03 0.97 - - - - 

DMU18 0.62 - 0.38 - - - 0.01 - 0.99 

DMU19 0.62 - 0.38 - - - 0.01 - 0.99 

DMU20 0.61 - 0.39 - - - 0.02 - 0.98 

DMU21 0.61 - 0.39 - - - 0.02 - 0.98 

DMU22 0.62 - 0.38 - - - 0.02 - 0.98 

DMU23 0.62 - 0.38 - - - 0.02 - 0.98 

DMU24 0.61 - 0.39 - - - 0.02 - 0.98 

DMU25 0.62 - 0.38 - - - 0.01 - 0.99 
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Table A5. Scaled inputs. 

DMUs 𝑥1𝑗1 𝑥1𝑗2 
𝑥1𝑗3 

𝑥2𝑗1 
𝑥2𝑗2 

𝑥2𝑗3 
𝑥3𝑗1 

𝑥3𝑗2 
𝑥3𝑗3 

DMU1 2.09 26.09 41.81 100.31 3.68 19.01 41.37 1.32 1.32 

DMU2 3.13 32.96 52.92 131.31 5.70 25.01 18.60 0.70 0.70 

DMU3 2.00 23.05 36.96 111.41 4.42 21.16 36.48 1.26 1.26 

DMU4 2.25 25.64 41.12 110.56 4.43 20.99 37.39 1.30 1.30 

DMU5 1.56 19.00 30.45 119.78 4.50 22.74 20.65 0.67 0.67 

DMU6 1.60 20.52 32.88 107.74 3.85 20.41 22.60 0.70 0.70 

DMU7 1.35 16.00 25.66 113.97 4.39 21.65 46.87 1.57 1.57 

DMU8 1.25 14.50 23.25 138.31 5.43 26.25 28.08 0.96 0.96 

DMU9 1.98 22.66 36.35 117.88 4.72 22.41 30.85 1.07 1.07 

DMU10 2.15 22.97 36.87 119.21 5.10 22.71 46.52 1.74 1.74 

DMU11 78.91 2.08 - 3.75 142.23 - - - - 

DMU12 82.10 1.89 - 2.64 114.36 - - - - 

DMU13 42.94 1.05 - 3.84 157.14 - - - - 

DMU14 76.21 1.79 - 3.10 131.91 - - - - 

DMU15 88.48 2.52 - 4.62 162.38 - - - - 

DMU16 50.72 1.27 - 3.95 158.03 - - - - 

DMU17 84.66 2.33 - 3.99 144.99 - - - - 

DMU18 25.92 - 16.08 - - - 0.65 - 44.34 

DMU19 25.95 - 16.05 - - - 0.38 - 27.62 

DMU20 54.04 - 33.95 - - - 0.67 - 35.33 

DMU21 50.30 - 31.71 - - - 0.94 - 47.06 

DMU22 46.13 - 28.87 - - - 0.52 - 29.48 

DMU23 35.77 - 22.24 - - - 0.51 - 32.50 

DMU24 56.35 - 35.66 - - - 0.94 - 44.06 

DMU25 22.83 - 14.18 - - - 0.67 - 44.33 

 

 

Table A6. Scaled outputs. 

DMUs 𝑦1𝑗1  𝑦1𝑗2  𝑦1𝑗3  𝑦2𝑗1  𝑦2𝑗2  𝑦2𝑗3  𝑦3𝑗1  𝑦3𝑗2  𝑦3𝑗3  

DMU1 0.16 9.68 0.16 2.90 0.05 0.05 10.34 9.34 0.32 

DMU2 0.26 13.47 0.26 8.66 0.17 0.17 10.30 9.32 0.37 

DMU3 0.34 19.31 0.34 4.83 0.09 0.09 10.32 9.33 0.34 

Table A4. Beta values. 

DMUs 1N1 1N2 1N3 2N1 2N2 2N3 3N1 3N2 3N3 

DMU1 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU2 0.02 0.96 0.02 0.96 0.02 0.02 0.51 0.47 0.02 

DMU3 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU4 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU5 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU6 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU7 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU8 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU9 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU10 0.02 0.96 0.02 0.96 0.02 0.02 0.52 0.47 0.02 

DMU11 0.99 0.01 - 0.01 0.99 - - - - 

DMU12 0.99 0.01 - 0.01 0.99 - - - - 

DMU13 0.99 0.01 - 0.01 0.99 - - - - 

DMU14 0.99 0.01 - 0.01 0.99 - - - - 

DMU15 0.99 0.01 - 0.01 0.99 - - - - 

DMU16 0.99 0.01 - 0.01 0.99 - - - - 

DMU17 0.99 0.01 - 0.01 0.99 - - - - 

DMU18 0.98 - 0.02 - - - 0.30 - 0.70 

DMU19 0.99 - 0.01 - - - 0.30 - 0.70 

DMU20 0.98 - 0.02 - - - 0.30 - 0.70 

DMU21 0.98 - 0.02 - - - 0.30 - 0.70 

DMU22 0.98 - 0.02 - - - 0.30 - 0.70 

DMU23 0.98 - 0.02 - - - 0.30 - 0.70 

DMU24 0.98 - 0.02 - - - 0.31 - 0.69 

DMU25 0.98 - 0.02 - - - 0.30 - 0.70 
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DMU4 0.26 14.48 0.26 3.86 0.07 0.07 12.38 11.20 0.42 

DMU5 0.29 17.41 0.29 7.74 0.13 0.13 10.34 9.34 0.33 

DMU6 0.28 17.44 0.28 4.84 0.08 0.08 10.35 9.34 0.31 

DMU7 0.27 15.46 0.27 6.77 0.12 0.12 10.33 9.33 0.33 

DMU8 0.19 10.63 0.19 7.73 0.14 0.14 12.39 11.20 0.41 

DMU9 0.31 17.38 0.31 5.79 0.10 0.10 11.35 10.26 0.38 

DMU10 0.33 17.33 0.33 3.85 0.07 0.07 12.88 11.66 0.46 

DMU11 6.90 0.10 - 0.12 8.88 - - - - 

DMU12 4.94 0.06 - 0.10 7.90 - - - - 

DMU13 10.86 0.14 - 0.09 6.91 - - - - 

DMU14 5.93 0.07 - 0.04 2.96 - - - - 

DMU15 4.93 0.07 - 0.07 4.93 - - - - 

DMU16 8.88 0.12 - 0.09 6.91 - - - - 

DMU17 9.86 0.14 - 0.10 6.90 - - - - 

DMU18 8.86 - 0.14 - - - 6.63 - 15.37 

DMU19 13.80 - 0.20 - - - 6.32 - 14.69 

DMU20 9.80 - 0.20 - - - 6.99 - 16.01 

DMU21 12.73 - 0.27 - - - 6.70 - 15.30 

DMU22 13.74 - 0.26 - - - 6.67 - 15.33 

DMU23 8.85 - 0.15 - - - 7.24 - 16.76 

DMU24 15.65 - 0.35 - - - 6.71 - 15.28 

DMU25 10.83 - 0.18 - - - 7.54 - 17.46 

 

 

Table A7. Weights. 

DMUs w1N1 w1N2 w1N3 w2N1 w2N2 w2N3 w3N1 w3N2 w3N3 

DMU1 0.008 0.107 0.193 0.407 0.014 0.105 0.154 0.005 0.006 

DMU2 0.011 0.133 0.201 0.461 0.019 0.109 0.060 0.003 0.003 

DMU3 0.008 0.099 0.167 0.462 0.016 0.108 0.130 0.005 0.006 

DMU4 0.009 0.102 0.186 0.434 0.016 0.112 0.131 0.005 0.006 

DMU5 0.007 0.101 0.153 0.516 0.017 0.121 0.079 0.003 0.004 

DMU6 0.007 0.100 0.170 0.493 0.015 0.117 0.090 0.003 0.004 

DMU7 0.006 0.082 0.130 0.469 0.016 0.112 0.171 0.006 0.007 

DMU8 0.005 0.079 0.126 0.528 0.020 0.133 0.100 0.004 0.005 

DMU9 0.008 0.100 0.167 0.475 0.017 0.115 0.109 0.004 0.005 

DMU10 0.008 0.088 0.163 0.446 0.017 0.112 0.153 0.006 0.007 

DMU11 0.353 0.009 - 0.016 0.622 - - - - 

DMU12 0.407 0.009 - 0.013 0.571 - - - - 

DMU13 0.241 0.005 - 0.018 0.736 - - - - 

DMU14 0.370 0.008 - 0.014 0.607 - - - - 

DMU15 0.349 0.010 - 0.018 0.624 - - - - 

DMU16 0.259 0.006 - 0.018 0.717 - - - - 

DMU17 0.374 0.010 - 0.016 0.600 - - - - 

DMU18 0.295 - 0.192 - - - 0.007 - 0.506 

DMU19 0.379 - 0.213 - - - 0.006 - 0.403 

DMU20 0.407 - 0.261 - - - 0.006 - 0.327 

DMU21 0.382 - 0.233 - - - 0.007 - 0.378 

DMU22 0.425 - 0.252 - - - 0.005 - 0.318 

DMU23 0.360 - 0.238 - - - 0.005 - 0.397 

DMU24 0.411 - 0.242 - - - 0.007 - 0.339 

DMU25 0.285 - 0.184 - - - 0.007 - 0.524 

 

 

Table A8. Efficiency results. 

DMUs 𝑒𝑝1
𝑜   𝑒𝑝2

𝑜
 𝑒𝑝3

𝑜
 𝑒𝑝4

𝑜
 

Overall 

Efficiency 

Conventional 

Combined-oriented 

Efficiency 

DMU1 0.25 0.74 0.55 0.96 0.69 0.73 

DMU2 0.27 1 1 1 0.99 1 

DMU3 0.49 1 0.94 0.96 0.97 0.96 

DMU4 0.36 0.87 0.76 1 0.84 0.85 

DMU5 0.52 1 1 1 0.99 1 

DMU6 0.49 0.99 0.94 1 0.97 0.98 

DMU7 0.54 1 0.9 1 0.96 1 

DMU8 0.44 0.92 0.84 0.99 0.9 1 
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DMU9 0.46 0.96 0.92 0.99 0.94 0.92 

DMU10 0.45 0.94 0.88 0.98 0.92 0.91 

DMU11 0.28 0.99 - - 0.73 1 

DMU12 0.2 1 - - 0.67 1 

DMU13 0.64 1 - - 0.91 1 

DMU14 0.26 0.55 - - 0.44 0.78 

DMU15 0.19 0.63 - - 0.47 0.7 

DMU16 0.5 0.96 - - 0.84 0.96 

DMU17 0.36 0.84 - - 0.66 1 

DMU18 0.78 - 0.91 - 0.87 0.91 

DMU19 1 - 1 - 1 1 

DMU20 0.51 - 0.92 - 0.75 0.92 

DMU21 0.64 - 0.83 - 0.75 0.76 

DMU22 0.72 - 1 - 0.88 0.99 

DMU23 0.64 - 0.98 - 0.85 0.98 

DMU24 0.69 - 0.94 - 0.83 0.83 

DMU25 0.94 - 1 - 0.98 1 
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