Journal of Linear and Topological Algebra Vol. 13*, No.* 02*,* 2024*,* 101*-* 112 *DOR: DOI: 10.71483/JLTA.2024.1115528*

Star graphs for torsion elements in multiplication modules

Z. Abdollah^a, P. Malakooti Rad^{a,∗}, Sh. Ghalandarzadeh^b, Sh. Shahriari^b

^a*Department of Mathematics, Qazvin Branch, Islamic Azad University, Qazvin, Iran.* ^b*Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran.* ^c*Department of Mathematics & Statistics, Pomona College, Claremont, CA 91711, USA.*

Received 29 April 2024; Revised 27 August 2024; Accepted 3 September 2024. Communicated by Amin Mahmoodi

Abstract. Let *R* be a commutative ring with identity, *M* a multiplication *R*-module, and $T(M)$ ^{*} the set of non-zero torsion elements of *M*. We consider two graphs, the torsion graph and the annihilator graph of *M* that have $T(M)^*$ as their set of vertices, and investigate the cases when these graphs are stars. The graph theoretic properties are reflected in the ring theoretic properties and vice versa. If a ring is considered as a module on itself, then the module is a multiplication module. Hence, our results directly generalize results about rings.

Keywords: Annihilator graphs, zero-divisor graphs, star graphs, torsion elements, annihilators, modules, multiplication modules, reduced modules.

2010 AMS Subject Classification: 13C70,05C25.

1. Introduction

For a commutative ring with identity *R*, and an *R*-module *M*, we define two related graphs. The torsion graph Γ(*M*) was introduced by Ghalandarzadeh and Malakooti Rad [10], and the annihilator graph AG(*M*) was introduced by Abdollah et al. [1]. For both graphs, the set of vertices is the set $T(M)^*$ —consisting of non-zero torsion elements of M. (An element *x* of *M* is a torsion element if there exists a non-zero $r \in R$ with $rx = 0_M$.) Two vertices x and y are adjacent in $\Gamma(M)$ if and only if $[Rx : M][Ry : M]M = \{0_M\}$. [In c](#page-11-0)ontrast, two vertices *x* and *y* are adjacent in AG(*M*) if and only if

 $\text{Ann}_R([Rx:M]y) \neq \text{Ann}_R(x) \cup \text{Ann}_R(y), \text{ or } \text{Ann}_R([Ry:M]x) \neq \text{Ann}_R(x) \cup \text{Ann}_R(y).$

*∗*Corresponding author.

Print ISSN: 2252-0201 © 2024 IAUCTB.

http://jlta.ctb.iau.ir

E-mail address: Zahra.Abdollah22@gmail.com (Z. Abdollah); pmalakoti@gmail.com (P. Malakooti Rad); ghalandarzadeh@kntu.ac.ir (Sh. Ghalandarzadeh); sshahriari@pomona.edu (Sh. Shahriari).

(For *N* a submodule of *M*, $[N : M] = \{r \in R \mid rM \subseteq N\}$, and $Ann_R(N) = \{0\}$: *N*].) It can be shown ([1, Proposition 3]) that Γ(*M*) is a subgraph of AG(*M*) (but not necessarily vice versa). In the special case when $M = R$ is considered as an *R*-module, then the vertices of the graphs are the non-zero zero-divisors of *R*. Two vertices *x* and *y* are adjacent in $\Gamma(R)$ if $xy = 0$, while they are adjacent in AG(*R*) if Ann_{*R*}(*xy*) \neq Ann*R*(*x*) *∪* Ann*R*(*y*). T[he](#page-11-1)se special cases were first introduced by Beck [7] and Anderson and Livingston [4] for $\Gamma(R)$ and by Badawi [5] for AG(*R*). The zero-divisor graph of a ring and its generalizations and variants have been the object of intense recent study. For a survey, we refer the reader to Anderson et al. [3], or the recent monograph by Anderson, Asir, Badawi, and Chelvam [2]. For the more general torsio[n a](#page-11-2)nd annihilator graphs of a mod[ul](#page-11-3)e over a commutative ring, [s](#page-11-4)ee Abdollah et al.'s paper [1].

An *R*-module *M* is called a multiplication module, first introduced by Mehdi [14] but also see Barnard [6] and El Bast and Smith [9], if *N* = [*[N](#page-11-5)* : *M*]*M* for all submodules *N* of *M*. Every cyclic *R*-module is a multipli[ca](#page-11-6)tion module, and so, if *R*, a commutative ring with identity, is considered as a module over itself, then it is a multiplic[at](#page-11-1)ion module. Hence, results on multiplication modules directly generalize the corresponding re[sult](#page-11-7)s on rings.

We are interested in understanding multiplication *R*-modules *M* for which Γ(*M*) or AG(*M*) are a star. Recall that a star is a graph where one vertex, called the central vertex, is adjacent to all the other vertices, and all the other vertices have degree 1.

Recall that $T(M)$ is the set of torsion elements of an *R*-module M, and $T(M)^* =$ $T(M)\setminus\{0_M\}$. A proper submodule P of M is called a prime submodule (see Lu [13]) if whenever $ax \in P$, for some $a \in R$, $x \in M$, then either $x \in P$ or $a \in [P : M]$. Establishing a connection between ring theoretic properties and graph theoretic properties, we prove **Theorem A.** (Theorem 3.6) Let *M* be a multiplication *R*-module. Assume Γ(*M*) is a star with *x* as its central vertex. Then $T(M) = Rx \cup \text{Ann}_R(x)M$, Ann $_R(x)M$ is a [pr](#page-11-8)ime submodule of M, $Ann_R(x)$ is a prime ideal of R, and exactly one of the following must be true:

- a $T(M) = Rx = Ann_R(x)M = \{0_M, x, 2x\}$ $T(M) = Rx = Ann_R(x)M = \{0_M, x, 2x\}$ $T(M) = Rx = Ann_R(x)M = \{0_M, x, 2x\}$, and $\Gamma(M)$ has two vertices and a single edge.
- \mathbf{b} $Rx = \{0_M, x\}, x \in \text{Ann}_R(x)M, \text{ and } T(M) = \text{Ann}_R(x)M.$
- c $Rx = \{0_M, x\}$, $\text{Ann}_R(x)M = \{0_M\}$, $M = T(M) = Rx$, and $\Gamma(M)$ is a single vertex.
- d $Rx = \{0_M, x\}$, $x \notin \text{Ann}_R(x)M$, $M = Rx \oplus \text{Ann}_R(x)M$, and $T(M)$ is not a submodule of *M*.

In Theorem 3.2, we extend parts of the above to the case when $\Gamma(M)$ is not necessarily a star, but continues to have a vertex *x* adjacent to all other vertices. Turning to sufficient conditions for $\Gamma(M)$ being a star, we show that it is uncommon for $\Gamma(M)$ to be a tree and yet not a star. In particular, we prove

Theorem B. [\(Th](#page-4-0)eorem 4.2) Let *M* be a multiplication *R*-module. Assume Γ(*M*) has no isolated vertices, and no cycles, and yet has a path of length 3. Then there exists $x \in T(M)^*$ such that $Rx = \{0_M, x\}$, and $M = Rx \oplus \text{Ann}_R(x)M$. Furthermore, $\text{Ann}_{R}(x)M\setminus\{0_M\}\subseteq T(M)^*$, and the subgraph of $\Gamma(M)$ induced by these vertices has no edges.

Finally, we turn to the graph AG(*M*), and show that, most often, if either Γ(*M*) or AG(*M*) is a star, then the two graphs are identical. We prove

Theorem C. (Theorem 5.1) Let *M* be a multiplication *R*-module.

a If $AG(M)$ is a star, then $\Gamma(M) = AG(M)$ is a star as well. In particular, the

conclusions of Theorem A remain valid.

b If $\Gamma(M)$ is a star, then, except for Case (b) of Theorem A, $AG(M) = \Gamma(M)$ is a star as well.

For the particular case of rings (equivalent to considering a ring as a module over itself), star torsion and annihilator graphs were already [st](#page-1-0)udied, respectively, by Anderson and Livingston [4] and Badawi [5]. As explained in what follows, some of our results can be seen as partial generalizations of their results to the more general setting of modules.

2. Preli[m](#page-11-3)inaries

For convenience, we state a few oft used implications for multiplication modules.

Lemma 2.1 Let *M* be a multiplication *R*-module. Then

- a if *N* and *L* are submodules of *M*, then $[N : M]L = [L : M]N$,
- **b** if $x, y \in M$, then $[Rx : M]y = [Ry : M]x$,
- c if $x \in M \setminus \{0_M\}$, then $[Rx : M]M = Rx$ and $[Rx : M] ≠ \{0_R\}$,
- d if $x \in M \setminus \{0_M\}$, then $\text{Ann}_R(x)M$ is a proper submodule of M,
- e if *x* ∈ *M*, then $\text{Ann}_R(x)M = \{y \in M \mid [Rx : M]y = \{0_M\}\},$
- f if $x \in T(M)^*$, then $\text{Ann}_R(x)M \setminus \{0_M, x\}$ is exactly the set of neighbors of *x* in Γ(*M*),
- g in $\Gamma(M)$, if $x \in T(M)^*$, and if *y* is a neighbor of *x*, then every element of $Ry\{\{0_M\}$ is adjacent to every element of $Rx\{\{0_M\},\}$
- h if $x, y \in T(M)^*$, then *x* and *y* are adjacent vertices of AG(*M*) if and only if Ann_{*R*}(*x*) ∪ Ann_{*R*}(*y*) is a proper subset of Ann_{*R*}([*Rx* : *M*]*y*).

Proof. Some of this is adapted from Lemmas 5 & 6 of Abdollah et al. [1]. We include the proofs for completeness.

- a By definition of a multiplication module, we have $[N : M]L = [N : M][L :$ $M|M = [L : M]N$.
- b A special case of Part (a), since $[Rx : M]y = [Rx : M]Ry$.
- c By definition of a multiplication module, $Rx = [Rx : M]M$, and so since $0_M \neq$ $x \in Rx$, $[Rx : M] \neq \{0_R\}.$
- d Ann_{*R*}(*x*) is an ideal of *R* and so Ann_{*R*}(*x*)*M* is a submodule of *M*, and we have $\{0_M\} \neq Rx = [Rx : M]M$ $\{0_M\} \neq Rx = [Rx : M]M$ $\{0_M\} \neq Rx = [Rx : M]M$. However, if $\text{Ann}_R(x)M = M$, then $[Rx : M]M =$ Ann_{*R*}(*x*)[*Rx* : *M*] $M \subseteq \text{Ann}_{R}(x)Rx = \{0_M\}$. The contradiction implies that $\text{Ann}_R(x)M$ is a proper submodule of M.
- e If y ∈ Ann_{*R*}(*x*)*M*, then $[Rx : M]$ *y* ⊆ $[Rx : M]$ Ann_{*R*}(*x*)*M* ⊆ *Rx* Ann_{*R*}(*x*) = ${0_M}$. For the reverse inclusion, if $y \in M$ and $[Rx : M]y = {0_M}$, then, by part (b), $[Ry : M]x = [Rx : M]y = \{0_M\}$ and $[Ry : M] \subseteq \text{Ann}_R(x)$. Hence, by part (c) , $Ry = [Ry : M]M \subseteq \text{Ann}_R(x)M$.
- f If *y* is adjacent to *x* in Γ(*M*), then *y* is non-zero and not equal to *x*. Moreover, by part (c) and definition of adjacency in $\Gamma(M)$, we have $\left[Rx : M\right]y = \left[Rx : X\right]$ $M[[Ry : M]M = \{0_M\}$ $M[[Ry : M]M = \{0_M\}$, and so $y \in \text{Ann}_R(x)M$ by part (e). Conversely, if $y \in$ $\text{Ann}_R(x)M \setminus \{0_M, x\}$ $\text{Ann}_R(x)M \setminus \{0_M, x\}$ $\text{Ann}_R(x)M \setminus \{0_M, x\}$, then, by part (e), $[Rx : M]y = \{0_M\}$. So, using Part (c), ${0 \in \{0_R\} \neq [Rx : M] \subseteq \text{Ann}_R(y)$, and *y* is a non-zero torsion element of *M*. In addition, $[Rx : M][Ry : M]M = [Rx : M]y = \{0_M\}$ $[Rx : M][Ry : M]M = [Rx : M]y = \{0_M\}$ $[Rx : M][Ry : M]M = [Rx : M]y = \{0_M\}$, and so *y* and *x* are adjacent vertices in $\Gamma(M)$.
- g This follows from parts (e) and (f) [di](#page-2-3)rectly. If *y* is adjacent to *x* in Γ(*M*), t[he](#page-2-2)n $[Ry : M]Rx = \{0_M\}$, which in turn implies that every element of $Ry\backslash\{0_M\}$ is

adjacent to every element of $R_y\backslash\{0_M\}$.

h Follows from the definition of AG(*M*), since, $Ann_R(y) \subseteq Ann_R([Rx : M]y])$, $\text{Ann}_R(x) \subseteq \text{Ann}_R([Ry : M]x])$, and by Part (a), $[Ry : M]Rx = [Rx : M]Ry$.

■

The following is immediate (also see El Bast and Smith [9, Corollary 2.11]):

L[e](#page-2-0)mma 2.2 Let *M* be an *R*-module, and *P* a prime submodule of *M*. Then $[P: M]$ is a prime ideal of *R*.

Proof. Since $P \lt M$, $[P: M]$ is a proper ideal of R. By [wa](#page-11-9)y of contradiction, assume that there exists $a, b \in R$, with $ab \in [P : M]$, and neither *a* nor *b* in $[P : M]$. Since $P \lt M$, there exists $m_0 \in M \backslash P$. Now, since $ab \in [P : M]$, $a(bm_0) = (ab)m_0 \in P$. Since *P* is a prime submodule and $a \notin [P : M]$, we must have $bm_0 \in P$. The latter implies that either $m_0 \in P$ or $b \in [P : M]$, and both possibilities contradict our assumptions.

In [1], Abdollah et al. investigated the relationship between the two graphs Γ(*M*) and $AG(M)$. We will need a few of those results, and restate them here for the record.

Proposition 2.3 Let *M* be an *R*-module. Then

- [a](#page-11-1) (Proposition 3 of [1]) $\Gamma(M)$ is a subgraph of AG(*M*).
- b (Theorem 25 of [1]) If *M* is a multiplication module (or a reduced module or if $Nil(M) = \{0_M\}$ Then
	- i) A non-zero torsion element is an isolated vertex of $\Gamma(M)$ if and only if it is an isolated ve[rt](#page-11-1)ex of AG(*M*), and
	- ii) AG(*M*) con[si](#page-11-1)sts of a number (possibly zero) of isolated vertices and at most one connected component of diameter at most 2.
- c (Corollary 22 of [1]) Assume that Γ(*M*) has no isolated vertices. Then AG(*M*) is connected, and has diameter at most 2.

3. Necessary condi[tio](#page-11-1)n for Γ(*M***) to be a star**

Our first result already connects graph theoretic properties with ring theoretic properties. In Theorem 3.2, we show that, for a multiplication *R*-module *M*, if Γ(*M*) has a vertex *x* adjacent to all other vertices (something that happens in a star), then $\text{Ann}_{R}(x)M$ is a prime submodule of M , and $Ann_R(x)$ is a prime ideal of R . This result, and the more detailed description of Theorem 3.6, for the more special case when $\Gamma(M)$ is a star, give partial generaliz[atio](#page-4-0)ns, to multiplication modules, of the result of Anderson and Livingston [4, Theorem 2.5] that states that for a commutative ring *R*, Γ(*R*) is a star if and only if either $R = \mathbb{Z}/2\mathbb{Z} \oplus D$ where D is an integral domain or the set of zero divisors of *R* is an annihilator ideal (and he[nce](#page-5-0) a prime ideal) of *R*. Our Theorems 3.2 and 3.6 also refine a result of Ghalandarzadeh and Malakooti Rad [11, Theorem 2.9]. They prove, for a multip[li](#page-11-3)cation *R*-module *M*, that $\Gamma(M)$ has a vertex *x* adjacent to all other vertices if and only if one of two possibilities occurs. Either $M = Rx \oplus \text{Ann}_R(x)M$ is a faithful module, $|Rx| = 2$, $\text{Ann}_R(x)M$ $\text{Ann}_R(x)M$ $\text{Ann}_R(x)M$ $\text{Ann}_R(x)M$ is finitely generated, and $T(M) = Rx \cup \text{Ann}_R(x)M$, or $T(M) = \text{Ann}_R(x)M$.

Lemma 3.1 Assume that *M* is a multiplication *R*-module, and that Γ(*M*) has a vertex *x* adjacent to every other vertex. Further assume that $[Rx : M]x = \{0_M\}$, and $\alpha \in R$ with $\alpha x \neq 0_M$. Then $\text{Ann}_R(\alpha x)M = \text{Ann}_R(x)M$.

Proof. Clearly Ann_{*R*}(*x*)*M* \subseteq Ann_{*R*}(αx)*M*. To show the reverse inclusion, let *y* \in

Ann_{*R*}(αx)*M*. To show that $y \in \text{Ann}_{R}(x)M$, we can assume $y \neq 0_M$. Since $x \in T(M)^*$, and $\alpha x \neq 0_M$, we have $\alpha x \in T(M)^*$. By Lemma 2.1(f), $y = \alpha x$ or *y* is a neighbor of *αx*. In either case, $y \in T(M)^*$. Since *x* is adjacent to every vertex, either $y = x$ or *y* is adjacent to x . In the former case, we are done by Lemma $2.1(e)$. In the latter case, $y \in \text{Ann}_{R}(x) \setminus \{0_M, x\}$ by Lemma 2.1(f).

Theorem 3.2 Assume that *M* is a multiplication *R*-module, and that Γ(*M*) has a vertex *x* adjacent to every other vertex. Then $T(M) = Rx \cup \text{Ann}_R(x)M$ $T(M) = Rx \cup \text{Ann}_R(x)M$ $T(M) = Rx \cup \text{Ann}_R(x)M$, [A](#page-2-3)nn $_R(x)M$ is a prime submodule of M, and $Ann_R(x)$ is [a p](#page-2-4)[r](#page-2-5)ime ideal of R.

Proof. By assumption, all elements of $T(M) \setminus \{0_M, x\}$ are adjacent to *x* in $\Gamma(M)$. Hence, by Lemma 2.1(f), $T(M) = Rx \cup \text{Ann}_R(x)$. To prove that $\text{Ann}_R(x)M$ is a prime submodule, first note that by Lemma 2.1(d), $\text{Ann}_R(x)M$ is proper submodule of M. Now, let $\alpha \in R$ and $y \in M$ be arbitrary, and assume that $\alpha y \in \text{Ann}_{R}(x)M$. By definition, $\text{Ann}_{R}(x)M$ is a prime submodule of M, if we show that either $\alpha \in [\text{Ann}_R(x)M : M]$ or $y \in \text{Ann}_R(x)M$. If $\alpha x = 0_M$ [, t](#page-2-4)[he](#page-2-5)n $\alpha \in \text{Ann}_R(x) \subseteq [\text{Ann}_R(x)M : M]$, and we would be done. Assuming $\alpha x \neq 0_M$, if $\alpha y = 0_M$, th[en e](#page-2-4)[it](#page-2-6)her $y = 0_M \in \text{Ann}_R(x)M$ or $y \in T(M)^* \setminus \{x\}$ is adjacent to *x*. The latter would mean, by Lemma 2.1(f), that $y \in Ann_R(x)M$ as desired. So wlog assume $\alpha x \neq 0$ and $\alpha y \neq 0_M$.

We claim that $[R\alpha y : M][Rx : M|M = \{0_M\}$. Since $\alpha y \in \text{Ann}_R(x)M\setminus\{0_M\}$, either $\alpha y = x$ or, by Lemma 2.1(f), αy is adjacent to *x* in $\Gamma(M)$. In the latter case, the claim follows from the definition of adjacency in $\Gamma(M)$ $\Gamma(M)$ $\Gamma(M)$. In the former case, $x = \alpha y \in \text{Ann}_R(x)M$ and so, by Lemma 2.1(e), $[Rx : M]x = \{0_M\}$. As a result, $[R\alpha y : M][Rx : M]M = [Rx :$ $M|Rx = \{0_M\}$, and the claim is proved.

In a multiplication m[odu](#page-2-4)[le](#page-2-5), since $[R\alpha y : M|M = R\alpha y$, we have $\{0_M\} = [R\alpha y : M]|Rx$ $M|M = \alpha[Rx : M]y = \alpha[Ry : M]x$. Hence, $[Ry : M] \subseteq \text{Ann}_{R}(\alpha x)$. Now, applying Lemma 3.1, we ha[ve](#page-2-4) $Ry = [Ry : M]M \subseteq \text{Ann}_R(\alpha x)M = \text{Ann}_R(x)M$ $Ry = [Ry : M]M \subseteq \text{Ann}_R(\alpha x)M = \text{Ann}_R(x)M$ completing the proof that $\text{Ann}_R(x)M$ is a prime submodule of M.

To show that $\text{Ann}_R(x)$ is a prime ideal of R, by Lemma 2.2, it is enough to show that $\text{Ann}_R(x) = [\text{Ann}_R(x)M : M]$. It is clear that $\text{Ann}_R(x) \subseteq [\text{Ann}_R(x)M : M]$. To show the con[verse](#page-3-0), note that, by Lemma 2.1(e), $Rx : M | Ann_R(x)M = \{0_M\}$, and so, using Lemma $2.1(c)$,

$$
[\text{Ann}_R(x)M:M]Rx = [\text{Ann}_R(x)M:M][Rx:M]M \subseteq \text{Ann}_R(x)M[Rx:M] = \{0_M\}.
$$

Hence, $[Ann_R(x)M : M] \subseteq Ann_R(x)$ as desired.

If the ring $\mathbb{Z}/16\mathbb{Z}$ is considered as a module over itself, then, in $\Gamma(M)$, the vertex 8 is adjacent to all other vertices, and the vertices 4, 8, and 12 form a triangle. (See Figure 1). If we require that $\Gamma(M)$ be a star (and so have no cycles), then we get more restrictions on the module *M*.

Figure 1. $\Gamma(M)$ for $M = R = \mathbb{Z}/16\mathbb{Z}$

Lemma 3.3 Assume *M* is a multiplication *R*-module, and $\Gamma(M)$ is a star with *x* as its central vertex. Then $|Rx| = 2$ or 3.

Proof. Since $x \neq 0_M$, $|Rx| > 1$. Now, if $|Rx| > 3$, then $Rx = \{0_M, x, \alpha x, \beta x\}$ for some $\alpha, \beta \in R$. Since *x* is the central vertex of a star, *x* is adjacent to αx and βx . But by Lemma 2.1(g), αx is also adjacent to βx , and we have a cycle contrary to assumption.

If $\Gamma(M)$ is a star with *x* as its central vertex, Theorem 3.2 applies and we know that, for multiplication modules, $\text{Ann}_R(x)$ is a prime ideal of R and $\text{Ann}_R(x)M$ is a prime submod[ule](#page-2-4) of *M*. However, in the particular case of a star, because of Lemmas 3.3 and 2.1(d), wec[an](#page-2-7) give a more direct proof.

Lemma 3.4 Let *M* be an *R*-module, $x \in M$, and $p \in \mathbb{Z}$ an ordinary prime integer. Assume $|Rx| = p$. Then

- a $Rx = \{0_M, x, 2x, \ldots, (p-1)x\}$ with $px = 0_M$.
- b Ann $_R(x)$ is a prime ideal.
- c Ann $_R(x)M$ is a prime submodule of M as long as it is a proper submodule.

Proof.

- a Rx is a submodule of M and $(Rx, +)$ is an abelian group of order p. As a result, since p is a prime, the additive order of all non-zero elements of $(Rx, +)$ is *p*. So $px = 0_M$. Now, if *m* and *n* are non-negative integers, $m > n$, and $mx = nx$, then $(m - n)x = 0$. This implies that $p \mid m - n$. So, the set $\{0_M, x, 2x, \ldots, (p-1)x\}$ consists of *p* distinct elements of *Rx* and so we must have $Rx = \{0_M, x, 2x, \ldots, (p-1)x\}$ with $px = 0_M$.
- b Ann_{*R*}(*x*) is a proper ideal since otherwise $Rx = \{0_M\}$. If $a, b \in R \setminus \text{Ann}_{R}(x)$, then $ax \in Rx\setminus\{0_M\}$ and so $ax = mx$ for some integer *m* with $1 \leq m \leq p-1$. Likewise, $bx = nx$ for some integer *n* with $1 \leq n \leq p-1$. But then $(ab)x =$ $a(bx) = a(nx) = mnx$. Since *p* does not divide *mn*, $(ab)x \neq 0_M$. We conclude that $\text{Ann}_R(x)$ is a prime ideal of R.
- c El Bast and Smith [9, Corollary 2.11] proves that a proper submodule *N* of an *R*-mdoule *M* is a prime submodule, if $N = PM$ for some prime ideal P of R with Ann_{*R*}(*M*) \subseteq *P*. Our assertion follows by replacing *P* with Ann_{*R*}(*x*) and using the previous part.

■

Lemma 3.5 Let *M* be a multiplication *R*-module. Assume $\Gamma(M)$ is a star with *x* as its central vertex, and with $|Rx| = 3$. Then $T(M) = Rx = Ann_R(x)M = \{0_M, x, 2x\}$ is a submodule, and $\Gamma(M)$ has two vertices and a single edge.

Proof. If $|Rx| = 3$, then $Rx = \{0_M, x, 2x\}$ (by Lemma 3.4(a)). Since *x* is the central vertex and $2x \in T(M)^*$, *x* is adjacent to 2*x*. If $y \in T(M) \backslash Rx$, then *x*, as the central vertex, would be adjacent to *y*. By Lemma 2.1(g), 2x would also be adjacent to *y*, creating a triangle. The contradiction proves that $T(M) = Rx$, and that $\Gamma(M)$ is a single edge (with vertices *[x](#page-5-2)* and 2*x*). Now, by Lemma 2.1(f), $\text{Ann}_R(x)M \setminus \{0_M, x\} = 2x$ $\text{Ann}_R(x)M \setminus \{0_M, x\} = 2x$ $\text{Ann}_R(x)M \setminus \{0_M, x\} = 2x$. Since Ann_{*R*}(*x*)*M* is a submodule, it must include $2(2x) = x$, and so Ann_{*R*}(*x*)*M* = {0*M, x*, 2*x*}. ■

For *N* a submodule of an *R*-module *M*, w[e de](#page-2-4)[fi](#page-2-5)ne $D(N)$, a submodule of *N*, by $D(N) = \{n \in N \mid \exists 0_M \neq n' \in N \text{ with } [Rn : M][Rn' : M]M = \{0_M\}\}.$ Putting together what we have, we now state our main result on modules M for which $\Gamma(M)$ is star.

Theorem 3.6 Let *M* be a multiplication *R*-module. Assume Γ(*M*) is a star with *x* as

its central vertex. Then $T(M) = Rx \cup \text{Ann}_R(x)M$, $\text{Ann}_R(x)M$ is a prime submodule of M , $\text{Ann}_R(x)$ is a prime ideal of R , and exactly one of the following must be true:

- a $T(M) = Rx = Ann_R(x)M = {0_M, x, 2x}$, and $\Gamma(M)$ has two vertices and a single edge.
- **b** $Rx = \{0_M, x\}, x \in \text{Ann}_R(x)M, \text{ and } T(M) = \text{Ann}_R(x)M.$
- c $Rx = \{0_M, x\}$, $\text{Ann}_R(x)M = \{0_M\}$, $M = T(M) = Rx$, and $\Gamma(M)$ is a single vertex.
- d $Rx = \{0_M, x\}, x \notin \text{Ann}_R(x)M, M = Rx \oplus \text{Ann}_R(x)M, T(M)$ is not a submodule of *M*, and $D(\text{Ann}_R(x)M) = \{0_M\}.$

Proof. We already proved in Theorem 3.2 that $T(M) = Rx \cup Ann_R(x)M$, and Ann_{*R*}(*x*)*M* is a prime submodule. By Lemma 3.3, $|Rx| = 2$ or 3. In the latter case, by Lemma 3.5, we are exactly in the case described by option (a). So assume $Rx = \{0_M, x\}$. If $x \in \text{Ann}_R(x)M$, then $T(M) = \text{Ann}_R(x)M$, and we are in the case described by (b).

Hence, we can assume $Rx = \{0, x\}$, $x \notin \text{Ann}_R(x)M$ $x \notin \text{Ann}_R(x)M$ $x \notin \text{Ann}_R(x)M$, and, by Lemma 2.1(c), $\lceil Rx \rceil$ $M|x \neq \{0_M\}$. Let $\alpha \in [Rx : M]$ with $\alpha x \neq 0_M$. [Sin](#page-5-3)ce $Rx = \{0_M, x\}$, we have $\alpha x = x$ and $\alpha \in \text{Ann}_R(x)$. Thus $1 \in \text{Ann}_R(x) + [Rx : M]$, and $M \subseteq \text{Ann}_R(x)M + [Rx : M]M$. | {z } *Rx*

Now since $x \notin \text{Ann}_R(x)M$ $x \notin \text{Ann}_R(x)M$ $x \notin \text{Ann}_R(x)M$, $\text{Ann}_R(x)M \cap Rx = \{0_M\}$, and $M = Rx \oplus \text{Ann}_R(x)M$.

If $\text{Ann}_R(x)M = \{0_M\}$, then $M = Rx = T(M)$ and we are in case (c). So it only remains to show that if $|Rx| = 2$, $\text{Ann}_R(x)M \neq \{0_M\}$ and $x \notin \text{Ann}_R(x)M$, then $T(M)$ is not a submodule of *M* and $D(\text{Ann}_R(x)M) = \{0_M\}$, and hence we are in case (d).

Now $T(M) = Rx \cup \text{Ann}_R(x)M$, and Rx and $\text{Ann}_R(x)M$ are both additive subgroups of *M*. The union of two subgroups is a subgroup if and only if one is co[nt](#page-6-1)ained in the other. But this cannot happen if $x \notin \text{Ann}_{R}(x)M$, and $\text{Ann}_{R}(x)M \neq \{0_M\}$.

Finally, by way of contradiction, assume $0_M \neq n \in D(\text{Ann}_R(x)M)$. Then, by defi[ni](#page-6-2)tion, there exists a non-zero element $n' \in \text{Ann}_R(x)M$ with $[Rn : M][Rn' : M]M = \{0_M\}$. Since $x \notin \text{Ann}_{R}(x)M$, by Lemma 2.1(f), non-zero elements of $\text{Ann}_{R}(x)M$ are vertices of $\Gamma(M)$ adjacent to *x*. Therefore both *n* and n' are adjacent to *x* in $\Gamma(M)$. But since, by Lemma 2.1(c), $[Rn' : M]M = Rn'$, we have $[Rn : M]n' = [Rn : M][Rn' : M]M = \{0_M\}$. We conclude that $n = n'$, since otherwise, by Lemma 2.1(e) and 2.1(f), *n* and *n'* would be adjace[n](#page-2-4)t in $\Gamma(M)$, and $x - n - n' - x$ would be a triangle. Thus $n \in \text{Ann}_R(x)M \setminus \{0_M, x\} \subseteq$ *T*(*M*)^{*}, [*Rn* : *M*] $n = \{0_M\}$, and, since *x* and *n* are adjacent, [*Rn* : *M*] $x = \{0_M\}$. But [this](#page-2-4) [m](#page-2-2)eans that $[Rn : M](x + n) = [Rn : M]x + [Rn : M]n = \{0_M\}$, and so, by Lemma 2.1(e), $x + n \in \text{Ann}_{R}(x)M$ $x + n \in \text{Ann}_{R}(x)M$ $x + n \in \text{Ann}_{R}(x)M$. But $\text{Ann}_{R}(x)M$ is a su[bmo](#page-2-4)[d](#page-2-3)ule, a[nd](#page-2-4) i[f](#page-2-5) both *n* and $x + n$ are in this submodule, then so is x , which is a contradiction. The proof is now complete. \blacksquare

Example 3.7 Four examples show that each of the cases of Theorem 3.6 are possible. [Als](#page-2-4)[o,](#page-2-3) see Figure 2.

Let $M = R = \mathbb{Z}/9\mathbb{Z}$, and $x = 3$. Then $T(M) = Rx = \{0, 3, 6\}$, and $\Gamma(M)$ is a single edge.

Let $M = R = \mathbb{Z}/8\mathbb{Z}$ $M = R = \mathbb{Z}/8\mathbb{Z}$, and $x = 4$. Then $Rx = \{0, 4\}$, $T(M) = \text{Ann}_{R}(x)M = \{0, 2, 4, 6\}$, and $\Gamma(M)$ is a p[at](#page-7-0)h of length 2.

Let $R = \mathbb{Z}, M = \mathbb{Z}/2\mathbb{Z}, \text{ and } x = 1. \text{ Then } Rx = \{0, 1\} = M = T(M), \text{ Ann}_{R}(x)M =$ $\{0_M\}$, and $\Gamma(M)$ is a single vertex.

If $M = R = \mathbb{Z}/2\mathbb{Z} \oplus D$ where D is a non-trivial integral domain (finite or infinite), and $x = (1,0)$, then $M = Rx \oplus \text{Ann}_{R}(x)M$, and $\Gamma(M)$ is a star with *x* as its central vertex and all elements of the form $(0, y)$ with $0 \neq y \in D$ as vertices of degree 1.

Remark 1 In Theorem 3.6, note that $T(M)$ is not a submodule of M only for case (d). *Also, by Lemma 2.1*(e), $[Rx : M]x = \{0_M\}$ *only for cases* (a) *and* (b).

$$
\begin{array}{ccc}\n & 6 & 4 \\
3-6 & 2-4-6 & 8-5-2\n\end{array}
$$

Figure 2. $\Gamma(M)$ for $M = R = \mathbb{Z}/9\mathbb{Z}$ (left), $M = R = \mathbb{Z}/8\mathbb{Z}$ (middle), and $M = R = \mathbb{Z}/10\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$ (right).

An *R*-module *M* is called reduced (Lee and Zhou [12]) if, for all $\alpha \in R$ and $x \in M$, we have $Rx \cap \alpha M = \{0_M\}$ whenever $\alpha x = 0$.

Proposition 3.8 Let *M* be a reduced multiplication *R*-module, and assume Γ(*M*) is a star with central vertex *x*. Then $[Rx : M]x \neq \{0_M\}$ $[Rx : M]x \neq \{0_M\}$, and only cases (c) and (d) of Theorem 3.6 are possible.

Proof. Assume $[Rx : M]x = \{0_M\}$. By the definition of a reduced module, $Rx \cap [Rx : N]$ $M|M = \{0_M\}$. But since *M* is [a](#page-6-1) multiplication module $(Rx : M|M = Rx$ and $Rx \cap Rx$ is not $\{0_M\}$ $\{0_M\}$. The contradiction proves that $\{Rx : M|x \neq \{0_M\}$, and the rest follows from Remark 1.

4. Sufficient conditions for Γ(*M***) to be a star**

If *R* is a commutative ring with identity, and *M* is a faithful *R*-module, then Ghalandarzadeh and Malekooti Rad [11, Theorem 2.6] showed that the torsion graph Γ(*M*) is connected and its diameter is at most 3. Let $R = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, and let $M = R$ considered as an *R*-module. Then *M* is a faithful multiplication module, and Γ(*M*) has no cycles with diameter equal to 3 (See Figure 3). So, in this case, Γ(*M*) is a tree and yet not a star. In this section, we ch[ara](#page-11-11)cterize faithful multiplication modules *M* for which $\Gamma(M)$ has no cycles, and yet is not a star. As an aside, we note that Abdollah et al. $[1,$ Theorem $28(a)$ showed that if a torsion graph (for any module—not necessarily a multiplication module or faithful—over a co[mm](#page-7-1)utative ring with identity) has a cycle, then its girth is either 3 or 4.

$$
(0,3)
$$

1
 $(0,1)$ — $(1,0)$ — $(0,2)$ — $(1,2)$

Figure 3. Let $R = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, and consider $M = R$ as an *R*-module. The torsion graph $\Gamma(M)$ is a tree but not a star.

Our main theorem of this section shows that the example of the multiplication module $R = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ (as an *R*-module) of a torsion graph that is a tree but not a star (see Figure 3) is quite unusual.

Lemma 4.1 Let *M* be a multiplication *R*-module, and assume that $\Gamma(M)$ contains a path $a - x - b$ of length 2 and no cycles. Then $\{0_M, x\} = \text{Ann}_R(b)M \cap \text{Ann}_R(a)M$ is a submo[du](#page-7-1)le of *M*.

Proof. Since *x* is assumed to be distinct from and adjacent to both *a* and *b* in Γ(*M*), by Lemma 2.1f, we have $x \in \text{Ann}_R(a)M \cap \text{Ann}_R(b)M$. Conversely, let $z \in \text{Ann}_R(a)M \cap$ Ann_{*R*}(*b*)*M*, and, by way of contradiction assume $z \notin \{0_M, x\}$. Again by Lemma 2.1f, either $z = a$ or z is a vertex of $\Gamma(M)$ adjacent to *a*. Likewise, either $z = b$ or $z \in T(M)^*$ is adjacent to *b*. Hence, the vertex *z* is either the same as one of *a* or *b* (and adjacent to

the other one), or distinct from both. In the former case, $a - x - b$ is a triangle, and in the latter case, $a - x - b - z - a$ is a four cycle. Both cases contradict the assumption that $\Gamma(M)$ has no cycles, completing the proof.

In the case of a commutative ring *R*, DeMeyer and Schneider [8, Theorem 1.6] showed that if $\Gamma(R)$ is not the empty graph, has no cycles, and yet is not a star, then $R \cong \mathbb{Z}/2\mathbb{Z} \oplus$ $\mathbb{Z}/4\mathbb{Z}$ or $R \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}[t]/\langle t^2 \rangle$. This section's main theorem, Theorem 4.2, is a partial generalization to the more general case of multiplication modules over commutative rings. Recall that for *N* a submodule of an *R*-module *M*, we have de[fin](#page-11-12)ed a submodule of *N*, denoted $D(N)$, by $D(N) = \{n \in N \mid \exists 0_M \neq n' \in N \text{ with } [Rn : M][Rn' : M]M = \emptyset\}$ *{*0*M}}*.

Theorem 4.2 Let *M* be a multiplication *R*-module. Assume Γ(*M*) has no isolated vertices, and no cycles, and yet has a path of length 3. Then there exists $x \in T(M)^*$ such that $Rx = \{0_M, x\}$, and $M = Rx \oplus \text{Ann}_R(x)M$. Furthermore, $\text{Ann}_R(x)M \setminus \{0_M\} \subseteq T(M)^*$, the subgraph of $\Gamma(M)$ induced by these vertices has no edges, and yet $|D(\text{Ann}_R(x)M)|=2$.

Proof. By hypothesis, we have a path $a - x - z - b$ in $\Gamma(M)$ of length 3. By Lemma 2.1(e) and 2.1(f), $Ra : M|x = |Rx : M|a = |Rz : M|b = |Rb : M|z = {0_M}$, and, by Lemma 4.1, both $\{0_M, x\}$ and $\{0_M, z\}$ are submodules of M.

CLAIM: It is not possible for both $[Rx : M]x$ and $[Rz : M]z$ to be equal to $\{0_M\}$.

PROOF OF CLAIM: By way of contradiction, assume $\{Rx : M|x = [Rz : M|z = \{0_M\}]\}$. [Con](#page-2-4)[s](#page-2-3)ider t[he e](#page-2-4)[le](#page-2-5)ment $x + z$. Since *x* and *z* are non-zero, $x + z$ is distinct from *x* and *z*. If $x+z=0_M$, then $z=-x\in Rx$, and, in $\Gamma(M)$, by Lemma 2.1f, *z* is adjacent to all vertices that *x* is adjacent to. As a result, $a - x - z - a$ would be a cycle of length 3 contradicting one of the assumptions. Hence, $x + z \neq 0_M$. Since *x* and *z* are adjacent in $\Gamma(M)$, by Lemma 2.1(e) and 2.1(f), $[Rx : M]z = \{0_M\}$, and we are assuming $[Rx : M]x = \{0_M\}$. $\text{So } 0 \neq |Rx : M| \subseteq \text{Ann}_R(x+z) \text{ since } |Rx : M|(x+z) = |Rx : M|x + |Rx : M|z = \{0_M\}.$ $\text{So } 0 \neq |Rx : M| \subseteq \text{Ann}_R(x+z) \text{ since } |Rx : M|(x+z) = |Rx : M|x + |Rx : M|z = \{0_M\}.$ $\text{So } 0 \neq |Rx : M| \subseteq \text{Ann}_R(x+z) \text{ since } |Rx : M|(x+z) = |Rx : M|x + |Rx : M|z = \{0_M\}.$ Hence, $x + z$ is a vertex in $\Gamma(M)$ adjacent to *x*. Likewise, $x + z$ is adjacent to *z*. This means that $x - (x + z) - z - x$ is a cycle of length 3 which contradicts our hypothesis. The con[trad](#page-2-4)[ic](#page-2-3)tion [com](#page-2-4)[p](#page-2-5)letes the proof of the claim.

Because of the claim, and without loss of generality, assume that $[Rx : M]x \neq \{0_M\}$ in fact, we will prove below that, given this assumption, $\left[Rz: M\right]z$ will have to be equal to $\{0_M\}$. Now, let $\alpha \in [Rx : M]$ with $\alpha x \neq 0_M$. By Lemma 4.1, $Rx = \{0_M, x\}$, and so $\alpha x = x$. In addition, $\alpha \neq 1$, since otherwise $M = Rx = \{0_M, x\}$ will not have enough elements for a path of length 3 in $\Gamma(M)$. From $\alpha x = x$, we get that $1 - \alpha \in \text{Ann}_R(x)$. Thus $1 \in \text{Ann}_R(x) + [Rx : M]$, and as a result, $M \subseteq \text{Ann}_R(x)M + [Rx : M]M$ | {z } *Rx ⊆ M*.

Hence, $M = Rx + \text{Ann}_R(x)M$.

Since $Rx = \{0_M, x\}$, to show that $Rx \cap \text{Ann}_R(x)M = \{0_M\}$, we need to show that x is not an element of $\text{Ann}_R(x)M$. If it were, and recalling that $x = \alpha x$ with $\alpha \in [Rx : M]$, we would have $x = \alpha x \in [Rx : M]$ $\text{Ann}_R(x)M \subseteq \text{Ann}_R(x)Rx = \{0_M\}$, a contradiction. Thus, $M = Rx \oplus \text{Ann}_R(x)M$.

By Lemma 2.1f, every non-zero element of $\text{Ann}_R(x)M$ is a vertex of $\Gamma(M)$ and adjacent to *x*. There cannot be two distinct elements in $\text{Ann}_R(x)M$ that are adjacent in $\Gamma(M)$ since otherwise those two elements and *x* would make a cycle of length 3 contrary to assumption. We conclude that the subgraph of $\Gamma(M)$ induced by the vertices $T(M)^* \cap$ $\text{Ann}_R(x)M$ h[as](#page-2-4) [n](#page-2-5)o edges.

It remains to show that, even though the graph induced by the vertices $T(M)^* \cap$ Ann_{*R*}(*x*)*M* has no edges, $|D(\text{Ann}_R(x)M)| = 2$. By assumption, $a - x - z - b$ is a path of length 3 in $\Gamma(M)$. By Lemma 2.1f, *a* and *z* are both elements of $T(M)^* \cap \text{Ann}_R(x)M$. One consequence is that $0_M \in D(\text{Ann}_R(x)M)$ since $[\{0_M\} : M][Rz : M]M = \{0_M\}.$

Let $0_M \neq y \in \text{Ann}_R(x)M$. Then, since no two non-zero torsion elements of $\text{Ann}_R(x)M$ are adjacent in $\Gamma(M)$, $y \in D(\text{Ann}_R(x)M)$ if and only if $[Ry : M]y = [Ry : M][Ry : M]$ $M|M = \{0_M\}.$

We claim that *z* is the unique non-zero element of $D(\text{Ann}_R(x)M)$. Vertex *b* (from the path $a-x-z-b$) is adjacent to *z*, and is not equal to *x*. As a result, $b \notin Rx \cup \text{Ann}_R(x)M$, and, since $M = Rx \oplus Ann_R(x)M$, we have $b = x + y$ for some $y \in Ann_R(x)M$. Invoking Lemma 2.1f, ${0_M} = [Rz : M]b = [Rz : M]x + [Rz : M]y = [Rz : M]y$. This implies | {z } *{*0*M}*

that either $y = z$ or *y* and *z* are adjacent in $\Gamma(M)$. However, both *y* and *z* are elements of $\text{Ann}_R(x)M$ $\text{Ann}_R(x)M$ and no two elements of $\text{Ann}_R(x)M$ can be adjacent. We conclude that $y = z$ $y = z$ $y = z$, $b = x + z$, and $[Rz : M]z = \{0_M\}$. The latter means that $z \in D(\text{Ann}_R(x)M)$. To complete the proof that $D(\text{Ann}_R(x)M) = \{0_M, z\}$, assume y is yet another element of $D(\text{Ann}_R(x)M)$. This means that $[Ry : M]y = \{0_M\}$. Since y and z are not adjacent vertices, we have $[Ry : M]z \neq \{0_M\}$, and so there exists $\beta \in [Ry : M]$ with $\beta z \neq 0_M$. By definition of *β*, we have $βz ∈ Ry$, and so $β[Ry : M]z ⊆ R[Ry : M]y = {0_M}.$ Since βz and *y* are not adjacent, this means that $y = \beta z$, but that would imply that $[Rz : M]y = [Rz : M]\beta z = \{0_M\}$ contradicting the fact that *y* and *z* are not adjacent.

Example 4.3 Let $R = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, and let $M = R$ considered as an *R*-module. Then *M* is a faithful multiplication module, and $\Gamma(M)$ has no isolated vertices, no cycles, and yet has a path of length 3 (See Figure 3). As a result,Theorem 4.2 and its proof apply. Since $(0, 1) - (1, 0) - (0, 2) - (1, 2)$ is the only path of length 3, the candidates for *x* and *z* (from the proof of Theorem 4.2) are $(1,0)$ and $(0,2)$. Indeed, $x = (1,0)$ and $[Rx : M]x = \{(0,0), (1,0)\},$ while $z = (0,2)$ and $[Rz : M]z = \{(0,0)\}.$ In this example[,](#page-7-1) $\text{Ann}_R(x)M = \{(0,0), (0,1), (0,2), (0,3)\}, M = Rx \oplus \text{Ann}_R(x)M$ $\text{Ann}_R(x)M = \{(0,0), (0,1), (0,2), (0,3)\}, M = Rx \oplus \text{Ann}_R(x)M$ $\text{Ann}_R(x)M = \{(0,0), (0,1), (0,2), (0,3)\}, M = Rx \oplus \text{Ann}_R(x)M$, there are no edges among the nonzero elements of $\text{Ann}_{R}(x)M$, and $D(\text{Ann}_{R}(x)M) = \{(0,0), z\}$, as predicted by the Theorem.

As pointed out earlier in the case of faithful multiplication modules, Ghalandarzadeh and Malakooti Rad [11, Theorem 2.6] showed that the torsion graph $\Gamma(M)$ is connected. Therefore in this case, Theorem 4.2 can be restated to say that if $\Gamma(M)$ has no cycles, then it is either a star or $M \cong M_1 \oplus M_2$ with $|M_1| = |D(M_2)| = 2$.

5. Stars and the Annihil[ator](#page-8-0) graph AG(*M***)**

We now turn to the annihilator graph $AG(M)$. Recall that $T(M)^*$ —the set of non-zero torsion elements of the *R*-module *M*—continues to be the set of vertices, and, by Lemma 2.1(h), in the case of multiplication modules, two vertices x and y are adjacent in $AG(M)$ if and only if

$$
Ann_R([Rx:M]y) \neq Ann_R(x) \cup Ann_R(y).
$$

Consider Z*/*8Z, the integers modulo 8, as a modulo over itself. Then this is a multiplication module, where $\Gamma(M)$ is a star (see Example 3.7 and Figure 4) while AG(M) is a triangle and not equal to $\Gamma(M)$. As the next Proposition shows, for multiplication modules—and this includes the case of any ring considered as a module over itself—this is an anomaly, and, most often, if one of the graphs is a star, then the two graphs are the same.

Figure 4. If $M = \mathbb{Z}/8\mathbb{Z}$ is considered as a module over itself, then $\Gamma(M)$, on the left, is a star, while AG(*M*), on the right, is a triangle.

Theorem 5.1 Let *M* be a multiplication *R*-module.

- a If $AG(M)$ is a star, then $\Gamma(M) = AG(M)$ is a star as well. In particular, the conclusions of Theorem 3.6 remain valid.
- b If $\Gamma(M)$ is a star, then, except for Case (b) of Theorem 3.6, $AG(M) = \Gamma(M)$ is a star as well.

Proof.

- a By Proposition 2.3(a), $\Gamma(M)$ is a subgr[ap](#page-6-3)h of $AG(M)$, [and](#page-5-0), for multiplication modules, by Proposition 2.3(b) a vertex is an isolated vertex of one if and only if it is an isolated vertex of the other.
- b If Γ(*M*) is a star, then Theorem 3.6 applies, and *M* is in one of the four cases of that theorem. M[oreo](#page-3-1)[v](#page-3-2)er, by Proposition 2.3(a), $\Gamma(M)$ is a subgraph of $AG(M)$, and so we just have to sh[ow t](#page-3-1)[ha](#page-3-3)t $AG(M)$ does not have any extra edges. In Cases (a) and (c), $\Gamma(M)$ is the complete graph on respectively 2 and 1 vertices, and hence $AG(M) = \Gamma(M)$ is a star [as](#page-5-0) well. It remains to show that in Case (d), other than the edges from the central ve[rtex](#page-3-1) *[x](#page-3-2)* to all other vertices, there are no other adjacencies in AG(*M*).

Hence, [w](#page-6-1)e can assume that M is a multiplication module, $\Gamma(M)$ is a star with $x \in M \setminus \text{Ann}_R(x)M$ $x \in M \setminus \text{Ann}_R(x)M$ $x \in M \setminus \text{Ann}_R(x)M$ as its central vertex, $Rx = \{0, x\}, T(M) = Rx \cup \text{Ann}_R(x)M$, and $M = Rx \oplus \text{Ann}_{R}(x)M$. Let *y* and *z* be non-zero elements of $\text{Ann}_{R}(x)M$. The proof will be complete when we show that *y* and *z*, which are not adjacent in $\Gamma(M)$, are also not adjacent in AG (M) . By way of contradiction, assume they are. By Lemma 2.1(h), $\text{Ann}_R(y) \cup \text{Ann}_R(z)$ is a proper subset of $\text{Ann}_R([Ry : M]z)$. Let $\alpha \in \text{Ann}_R([Ry : M]z) \setminus \text{Ann}_R(y) \cup \text{Ann}_R(z)$. Hence, $\alpha[Ry : M]z = \{0_M\}$, and, by Lemma 2.1(e), $[Ry : M]x = \{0_M\}$. Note that since *y* and *z* are not adjacent in $\Gamma(M)$, $[Ry : M] \neq \{0_R\}$ (Lemma 2.1(e) and 2.1(f)), and $[Ry : M](x + \alpha z) =$ $[Ry : M]x + \alpha[Ry : M]z = \{0_M\}$ $[Ry : M]x + \alpha[Ry : M]z = \{0_M\}$ $[Ry : M]x + \alpha[Ry : M]z = \{0_M\}$. Hence, $x + \alpha z \in T(M)$, and, if $x + \alpha z \neq 0_M$, then, in $\Gamma(M)$, *y* is adjacent to $x + \alpha z$. But in $\Gamma(M)$, *y* is adjacent only to *x*. However, s[ince](#page-2-4) $\alpha \notin \text{Ann}_{R}(z), x + \alpha z \neq x$. We conclude that $x + \alpha z = 0_M$. But this means that $x = -\alpha z \in \text{Ann}_R(x)M$ $x = -\alpha z \in \text{Ann}_R(x)M$ [co](#page-2-3)ntrad[icti](#page-2-4)[ng](#page-2-5) one of the assumptions.

Corollary 5.2 Let *M* be a multiplication *R*-module, and assume Γ(*M*) is a star. If *M* is a reduced R-module, or alternatively, $T(M)$ is not a submodule of M, then $AG(M)$ $\Gamma(M)$ is a star as well.

Proof. Follows immediately from Remark 1, Proposition 3.8, and Theorem 5.1. ■

We note that in the special case when a commutative ring *R* is considered as a module over itself, then Badawi [5, Theorem 3.17] has characterized the rings where $AG(R) \neq$ Γ(*R*) and yet Γ(*R*) is a star. In such a c[as](#page-6-4)e, Γ(*R*) mus[t be](#page-7-3) a path of le[ngth](#page-10-0) 2, and $AG(R)$ a triangle. In addition, Badawi [5, Theorem 3.18] gives various characterizations of non-reduced rings R with at least two non-zero zero divisors where $AG(R)$ is a star.

In Section 4, we saw th[at](#page-11-4), while rare, it is possible for $\Gamma(M)$ to be a tree without being

■

a star. A straightforward consequence of our results in Abdollah et al. [1] for AG(*M*) shows that, even without assuming that *M* is a multiplication module, this does not happen for AG(*M*).

Proposition 5.3 Let *M* be an *R*-module. If $AG(M)$ has no isolated v[er](#page-11-1)tices and no cycles, then $AG(M)$ is a star graph.

Proof. By Proposition 2.3(c), if $AG(M)$ has no isolated vertices, then $AG(M)$ is connected and has diameter at most 2. If the diameter is 1, then the graph must be complete, but since we are assuming no cycles, then $AG(M)$ has two vertices and a single edge and is a star graph. If the diameter is 2, then the graph has a path $y - x - z$ of length 2. Since the graph has no cycles, [all](#page-3-1) [th](#page-3-4)e other vertices must be adjacent to x. Hence, $AG(M)$ is a star with x as its central vertex.

References

- [1] Z. Abdollah, P. Malakooti, Sh. Ghalandarzadeh, Sh. Shahriari, On torsion elements and their annihilators, J. Algebra. 610 (2022), 199-222.
- [2] D. F. Anderson, T. Asir, A. Badawi, T. Tamizh Chelvam, Graphs from Rings, Springer, Cham, 2021.
- [3] D. F. Anderson, M. C. Axtell, J. A. Stickles, Zero-divisor graphs in commutative rings, Commutative Algebra-Noetherian and Non-Noetherian Perspectives, Springer, New York, 2011.
- [4] D. F. Anderson, Ph. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra. 217 (2) (1999), 434-447.
- [5] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra. 42 (1) (2014), 108-121.
- [6] A. Barnard, Multiplication modules, J. Algebra. 71 (1) (1981), 174-178.
- [7] I. Beck, Coloring of commutative rings, J. Algebra. 116 (1) (1988), 208-226.
- [8] F. DeMeyer, K, Schneider, Automorphisms and Zero Divisor Graphs of Commutative Rings, Commutative Rings, Nova Sci. Publ. NY, 2002.
- [9] Z. Abd El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra. 16 (4) (1988), 755-779.
- [10] Sh. Ghalandarzadeh, P. Malakooti Rad, Torsion graph over multiplication modules, Extracta Math. 24 (3) (2009), 281-299.
- [11] Sh. Ghalandarzadeh, P. Malakooti Rad, Torsion graph of modules, Extracta Math. 26 (1) (2011), 153-163.
- [12] T. K. Lee, Y. Zhou, Reduced modules, rings, modules, algebras, and abelian groups, Lecture Notes in Pure and Appl. Math. 236 (2004), 365-377.
- [13] Ch. P. Lu, Prime submodules of modules, Rikkyo Daigaku Sugaku Zasshi. 33 (1) (1984), 61-69.
- [14] F. Mehdi, On multiplication modules, Math. Student. 42 (1974), 149-153.