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Abstract
Let Fq be a finite field with q elements, where q = pm, and R = Fq +

uFq denotes the ring Fq [u]
〈u2〉 . For positive integers α and β, a nonempty

subset C of Fαq × Rβ is called an FqFq[u]-additive code if C is an R-
submodule of Fαq ×Rβ . In this paper, we obtain the generator matrix of
these codes and the structure of their dual codes are given. we introduce
Lee weight and homogenous weight over these codes. Also, we give
some bounds on the minimum distance of these codes with respect to
homogenous and Lee weights. At the end, we study one-weight codes
and obtain [q2+q, 2, q2] and [2(q+1), 2, 2q] one-weight optimal codes
over Fq .

1. Introduction

A subgroup of Zα2×Z
β
4 , whereα and β are positive in-

tegers, is called a Z2Z4-additive code [5]. The studies on
Z2Z4-additive codes and their algebraic structures have
attracted many researchers; see [1, 3, 4, 5, 12]. In [12],
Dougherty et al. described one weight Z2Z4-additive
codes. They described the structure and possible weights
for all one weight Z2Z4-additive codes.

Later, these codes were generalized to Z2Z2[u]-
additive codes [2]. These codes have been studied with
respect to Lee weight [6]. In particular, one-Lee weight
Z2Z2[u]-additive codes have been studied in [19]. Also,
cyclic Z2Z2[u]-additive codes have been studied [25].

Recently, Z2Z2[u]-additive codes were generalized to
ZpZp[u]-additive codes, where p is a prime number [21].
Also, these codes have been studied with respect to Lee
weight. In [21], the linear and cyclic structures of these

codes were given. Among other results, some optimal
codes were obtained from a subclass of these codes [21].

In this paper, we give a comprehensive study on
FqFq[u]-additive codes, where q = pm for some prime
number p and a positive integerm. We study these codes
with respect to Lee and homogenous weights. The struc-
ture of this paper is as follows.

In Section 2, we introduce some notations and basic
facts which will be utilized later in our discussion. In
Section 3, we introduce FqFq[u]-additive codes and ob-
tain the generator matrix of these codes in a case that
q is a power of a prime number. Moreover, the struc-
ture of dual codes are given. In Section 4, we generalize
the Lee weight over FqFq[u]-additive codes. Also, we
introduce another weight function, homogenous weight,
over these codes. We obtain some bounds on mini-
mum distance of these codes with respect to these weight
functions. In Section 5, we study one-weight codes
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with respect to Lee and homogenous weights. In this
section, by the Gray image of these codes, we obtain
[q2 + q, 2, q2] and [2(q + 1), 2, 2q] one-weight optimal
codes over Fq . In Section 6, we introduce constacyclic
codes over FqFq[u]-additive codes and we obtain the
structure of these codes.

2. Preliminaries

We begin with some definitions for codes over rings.
From now on, suppose that R is a finite commutative

ring with identity. The Jacobson radical of R is denoted
by rad(R). For an R-module M, left or right, the so-
cle of M, denoted by soc(M), is the sum of all minimal
nonzero submodules of M .

Definition 2.1. [17] Let R be a artinian ring. If
soc(R) ∼= R/rad(R) as right R-modules and as left R-
modules, then R is called a Frobenius ring.

Definition 2.2. [20] A ringR is called a finite chain ring,
if its ideals are linearly ordered by inclusion.

Lemma 2.3. If R be a chain ring, then R is a local ring.

Proof. The proof is clear by the definition of chain
ring. �

A code is a subset of Rn and a linear code over R
is an R-submodule of Rn. In this case we say that the
code has length n. For a code C, we define the rank of
C, denoted by rank(C), to be the minimum number of
generators of C.

The Hamming distance between two vectors u, v ∈
Rn is the number of coordinates in which u and v dif-
fer from one another and it is denoted by dH(u, v).
The Hamming weight of a vector u ∈ Rn, denoted by
wH(u), is the number of non-zero coordinates of u. The
minimum Hamming distance of a code C is denoted
by dH(C) and is given as: dH(C) = min{dH(u, v) :
u, v ∈ C, u 6= v}. The minimum Hamming weight of
a code C, denoted by wH(C), is the minimum value of
wH(u) for u ∈ C \ {0}.

We define the inner product of vectors u and v ∈ Rn
as follows:

u.v =

n∑
i=1

uivi.

Let C be a linear code over R. The dual code of C, de-
noted by C⊥, is defined as follows:

C⊥ = {v ∈ Rn| u.v = 0, for all u ∈ C}.

Lemma 2.4. [26, Theorem 3] Let C be a code of length
n over a finite Frobenius ring. Thus, |C||C⊥| = |Rn|.

The Gray maps, which are defined in each case, have
been used as tools to linked codes over rings and codes
over finite fields. Gray maps from Zn4 to Z2n

2 were effec-
tively used by Sloane, Calderbank, et al. in their work
[14], as a tool to obtain the binary nonlinear Kerdock,
Preparata, and Goethals codes as the Gray images of lin-
ear codes over Z4. Carlet, in [6], extended this map to
Z2k with the homogeneous weight and used this to ob-
tain the generalized Kerdock codes that were non-linear
binary codes with large minimum distances. Several
other authors, like Ling generalized the notion of Gray
maps to more general rings with certain homogeneous
weights defined on them in [18]. In this paper, we use
the Gray map used in paper [16], which is defined for
chain rings.

3. FqFq[u]-additive codes

Throughout this paper, Fq denotes a finite field with q
elements, where q = pm is a power of a prime number p.
The ring Fq+uFq consists of all polynomials of degrees
0 and 1 in an indeterminate u over Fq , and it is closed un-
der polynomial addition and multiplication modulo u2.
Thus Fq + uFq =

Fq [u]
〈u2〉 = {δ + θu : δ, θ ∈ Fq}. It is

easy to see that Fq+uFq is a chain ring with the maximal
ideal m = 〈u〉.

Also, we have the following ring homomorphism:

τ : Fq + uFq −→ Fq, δ + θu 7−→ δ.

Hence Fq is an (Fq + uFq)-module, where for δ + θu ∈
Fq +uFq and c ∈ Fq , the scalar multiplication is defined
as (δ + θu).c = δc ∈ Fq . From now on, we denote
Fq + uFq by R.

In this section, we introduce and study basic facts of
FqFq[u]-additive codes. In particular, the structure of
these codes and their dual codes are given.

Definition 3.1. Let α and β be two positive inte-
gers. A nonempty subset C of Fαq × Rβ is called
an FqFq[u]-additive code if C is an R-submodule
of Fαq × Rβ with the following scalar multiplication,
where for r = δ + θu ∈ R and (aα, bβ) =
(a0, a1, ..., aα−1, b0, b1, ..., bβ−1) ∈ C,

r.(aα, bβ) = (δaα, rbβ) =
(δa0, δa1, ..., δaα−1, rb0, rb1, ..., rbβ−1).
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By the same argument as [21, Theorem 1], the fol-
lowing theorem gives the generator matrix of FqFq[u]-
additive codes.

Theorem 3.2. Let C ⊆ Fαq ×Rβ be an FqFq[u]-additive
code. Then C is permutation equivalent to an FqFq[u]-
additive code with the standard form matrix

G =

 Ik0 A1 0 0 uB
0 A2 Ik1 D1 D2 + uD3

0 0 0 uIk2 uD4

 , (3.1)

where Ik0 , Ik1 and Ik2 denote the k0 × k0, k1 × k1
and k2 × k2 identity matrices. respectively, A1, A2, B,
D1, D2, D3 and D4 are matrices over Fq . Moreover,
|C| = qk0+2k1+k2 .

An FqFq[u]-additive code C ⊆ Fαq × Rβ with the
generator matrix given in Equation 3.1 is said to be of
type (α, β, k0, k1, k2), where k = k0 + k1 + k2 is called
the rank of C and denoted by rank(C).

The inner product for two elements x, y ∈ Fαq × Rβ
is defined as follows:

x.y := u(

α−1∑
i=0

xiyi) +

α+β−1∑
i=α

xiyi.

For an FqFq[u]-additive code C, C⊥ is the dual of C
with respect to the above inner product.

Proposition 3.3. Let C ⊆ Fαq × Rβ be an FqFq[u]-
additive code. Then

(1) |C||C⊥| = |Fαq ×Rβ |.
(2) (C⊥)⊥ = C.

Proof. (1) Define ϕ : Fαq × Rβ −→ Rα × Rβ by
(x, y) 7−→ (xu, y). It is easy to see that ϕ is an injective
R-module homomorphism. Hence, ϕ(C) is a linear code
over R of length α + β, where |ϕ(C)| = |C|. Now, let
ϕ(C)⊥ be the dual of ϕ(C) with respect to the standard
inner product overR. Then, ϕ(C)⊥ = {(a+bu, c+du) :
(a, c + du) ∈ C⊥}. Since b ∈ Fαq , so |ϕ(C)⊥| =

|C⊥||Fq|α = |C⊥|qα. Since R is a Frobenius ring,
by Lemma 2.4, we have |ϕ(C)⊥||ϕ(C)| = |R|α+β =

q2α+2β . Thus, |C⊥|qα = q2α+2β

|ϕ(C)| = q2α+2β

|C| . This shows

that |C⊥||C| = q2α+2β

qα = qα+2β = |Fαq ×Rβ |.
(2) Clearly C ⊆ (C⊥)⊥. Now, by part (1), |C| =

|Fαq×R
β |

|C⊥| and |C⊥| =
|Fαq×R

β |
|(C⊥)⊥| . Thus |C| = |(C⊥)⊥|,

which completes the proof. �

The following theorem gives the generator matrix of
C⊥.

Theorem 3.4. LetC be an FqFq[u]-additive code of type
(α, β, k0, k1, k2) with the standard form matrix defined
in Equation 3.1. Then the generator matrix for C⊥ is
given by

H =

 −At1 Iα−k0 −uAt2
−Bt 0 −(D2 + uD3)t +Dt

4D
t
1

0 0 −uDt
1

0 0
−Dt

4 Iβ−k1−k2
uIk2 0

 .

Proof. Let C̃ be the FqFq[u]-additive code, which is
generated by H . If G be the generator matrix of C,
it is easy to see that HGt = 0. Hence, C̃ ⊆ C⊥.
From the generator matrices of C and C̃, we have that
|C| = qk0+2k1+k2 and |C̃| = qα−k0+2(β−k1−k2)+k2 =
qα+2β−k0−2k1−k2 . By the proposition 3.3, |C⊥| =
|Fαq×R

β |
|C| = qα+2β

qk0+2k1+k2
= |C̃|. Hence, C̃ = C⊥ and

the proof is completed. �

4. Weight functions over FqFq[u]-additive codes

In this section, we introduce two weight functions,
homogenous weight and Lee weight, over FqFq[u]-
additive codes. First, note that R is a chain ring with the
maximal ideal m = 〈u〉, nilpotency index 2, and residue
field R/m = Fq . A homogenous weight over R is de-
fined as follows:

ωhom(t) =

 q − 1, t ∈ R \m;
q, t ∈ m \ {0};
0, t = 0.

Now, the weight function ω over Fαq × Rβ is defined
as ω(x, y) = ωH(x) + ωhom(y), where (x, y) ∈
Fαq × Rβ and ωH denotes the Hamming weight. Also,
the distance between any two codewords is the weight
of their difference; for (x, y), (x′, y′) ∈ Fαq × Rβ ,
dω((x, y), (x′, y′)) = ω(x − x′, y − y′). In partiqular,
for an FqFq[u]-additive code C ⊆ Fαq × Rβ , the non-
zero minimum distance between the codewords in C is
denoted by dhom(C). By [16, Proposition 3.1], there ex-
ists a Gray map from (Rβ , dhom) to (Fqβq , dH), where
dH denotes the Hamming distance on Fqβq . Let ϕhom :
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Rβ −→ Fqβq be the defined Gray map in [16]. Then the
map (id, ϕhom) : Fαq × Rα −→ Fα+qβq is an isometry
which transforms the homogenous distance in Fαq × Rβ
to the Hamming distance in Fα+qβq . In this paper, we
denote (id, ϕhom) by Φhom.

Example 4.1. LetC be an F5F5[u]-additive code of type
(6, 31, 1, 1, 0) with the following standard form matrix

G =

(
1 0 2 3 4 1 0 0 u B B B
0 1 4 3 2 4 1 D 0 1 2 3

B B B
4 u 1 + u

)
,

where B = (u 2u 3u 4u) and D = (2 3 4 u 1+u).
By Theorem 3.2, |C| = 5k0+2k1+k2 = 53. Also, we can
see that Φhom(C) is a [161, 3, 125] linear code over F5

with respect to Hamming weight.

Now, we introduce another weight function over these
codes. In [21], the Lee weight over FqFq[u]-additive
codes, in the case that q is a prime number, is defined.
We give this weight function on FqFq[u]-additive codes
in general.

The Gray map defined on R can be expressed as fol-
lows:

φ′ : R −→ F2
q, φ

′(a+ bu) = (b, a+ b).

The Lee weight is ωL(a + bu) = ωH(b, a + b). The
map φ′ and the Lee weight ωL generalize over Rβ nat-
urally; for all c := (a1 + b1u, · · · , aβ + bβu) ∈ Rβ ,
we have φ′(c) = (b1, · · · , bβ , a1 + b1, · · · , aβ + bβ) and
ωL(c) = ωH(φ(c)).

A weight function ω′ over Fαq × Rβ is defined as
ω′(x, y) = ωH(x) + ωL(y), where (x, y) ∈ Fαq × Rβ .
Also, the distance between any two codewords is defined
by the argument as homogenous weight. Now, the fol-
lowing map is an isometry which transforms the Lee dis-
tance in Fαq ×Rβ to the Hamming distance in Fα+2β

q .

ΦLee : Fαq ×Rβ −→ Fα+2β
q , (x, y) 7−→ (x, φ′(y)).

From now on, we call this weight function, Lee weight
[21]. In addition, If C ⊆ Fαq × Rβ is an FqFq[u]-
additive code, we denote the non-zero minimum distance
between the codewords in C by dL(C).

Example 4.2. LetC be an F3F3[u]-additive code of type
(4, 2, 1, 1, 0) with the following standard form matrix

G =

(
1 0 1 1 0 u
0 1 1 2 1 0

)
.

By Theorem 3.2, |C| = 3k0+2k1+k2 = 33. Also, one can
see that ΦLee(C) is a [8, 3, 2] linear code over F3 with
respect to Hamming weight.

Lemma 4.3. [24, Theorem 1] Let C be a q-ary code of
parameters (n,M, dH), where M is the size of C. Then,
the Singleton bound is as follows:

dH(C) ≤ n− logq |M |+ 1.

The following theorem gives some bounds on
FqFq[u]-additive codes with respect to homogenous and
Lee weights.

Theorem 4.4. LetC be an FqFq[u]-additive code of type
(α, β, k0, k1, k2). Then

(1) dhom(C)−1
q ≤ α

q + β − k0+2k1+k2
q ;

(2) bdhom(C)−1
q c ≤ α+ β − (k0 + k1 + k2);

(3) dL(C)−1
2 ≤ α

2 + β − k0+2k1+k2
2 ;

(4) bdL(C)−1
2 c ≤ α+ β − (k0 + k1 + k2),

where bxc refers to the greatest integer less than or
equal to x.

Proof. (1) Consider the Gray map Φhom : Fαq ×Rβ −→
Fα+qβq . Since Φhom(C) ⊆ Fα+qβq , thus Φhom(C) is
a code over Fq of length α + qβ. Now by the Sin-
gleton bound, we have dH(Φhom(C)) ≤ α + qβ −
logq |Φhom(C)| + 1. But dH(Φhom(C)) = dhom(C)

and |Φhom(C)| = |C| = qk0+2k1+k2 . This completes
the proof.

(2) Define the map ρ : Fq −→ R by a 7−→ au.
It is easy to see that ρ is well defined and injective.
Now for b + cu ∈ R, ρ((b + cu).a) = ρ(ba) =
bau = (b + cu).au = (b + cu).ρ(a). Hence ρ is
an R-module homomorphism. Also, denote the nat-
ural generalization of ρ on Fαq by ρ. Thus the map
(ρ, id) : Fαq × Rβ −→ Rα+β is an injective R-module
homomorphism. Now ωH(a) = 1 ≤ q = ωhom(au)
for all a ∈ Fq . Therefore (ρ, id)(C) is a linear code
with dhom(C) ≤ dhom((ρ, id)(C)). If A is the max-
imum weight of elements in R, then by [22, Theorem
3.7], bdhom(C)−1

A c ≤ bdhom((ρ,id)(C))−1
A c ≤ α + β −

rank((ρ, id)(C)) = α+ β − rank(C) = α+ β − (k0 +
k1 + k2). But A = q which completes the proof.

(3) Consider the Gray map ΦLee : Fαq × Rα −→
Fα+2β
q instead of the Gray map Φhom in part (1). By the

same argument as part (1), the result is followed.
(4) Consider the map (ρ, id) : Fαq ×Rβ −→ Rα+β in

part (2). Then ωH(a) = 1 ≤ 2 = ωH(a, a) = ωL(au)

11
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for all a ∈ Fq . Also, the maximum Lee weight of ele-
ments in R is equal to A = 2. Now, by the same argu-
ment as part (2), the result is obtained. �

5. One-weight FqFq[u]-additive codes

An FqFq[u]-additive code is said to have one-Lee (or
homogenous) weight if every non-zero codeword has
the same Lee (or homogenous) weight. In this sec-
tion, we study the properties of one-Lee weight and one-
homogenous weight FqFq[u]-additive codes. We give
the exact structure of some large classes of one-weight
codes. In particular, we introduce two classes of one-
weight codes that their Gray images are [q2 + q, 2, q2]
and [2(q + 1), 2, 2q] one-weight optimal codes over Fq .

One-homogenous weight codes
Now, we study one-homogenous weight FqFq[u]-

additive codes.

Lemma 5.1. Let C ⊆ Fαq × Rβ be an FqFq[u]-additive
code. Then∑

c∈C ω(c) = |C|(q−1)
q (α+ qβ).

Proof. We write the codewords of C as rows of a matrix
G. Consider the column j of G, where α + 1 ≤ j ≤
α+ β. Let J be the ideal of R generated by all elements
of the column j. Since R is a chain ring and m is the
maximal ideal of R, so J = m or J = R. Now, we
consider the following two cases:

Case 1 (J = m = 〈u〉). Since C is an R-submodule,
any element of J is an element of the column j. Now we
show that any two elements of J have the same repetition
number in the column j. Let au and bu be two elements
of J with the repetition numbers na and nb, respectively.
Then au = ab−1(bu) and hence na ≥ nb. By the same
argument, nb ≥ na. So na = nb. Therefore, the sum of
the weights of all elements of the column j is equal to

|C|
|J |

(
∑
s∈J

ωhom(s)) =
|C|
|J |

(q|J \ {0}|) =

|C|
q

(q(q − 1)) = |C|(q − 1).

Case 2 (J = R). In this case, there exists an invert-
ible element cj in the column j. If c′j is an element of
J , then c′j = (c′jc

−1
j )cj . Thus any element of J = R

is an element of the column j. Now, let c1 = a1 + b1u
and c2 = a2 + b2u be two elements of J . We show
that c1 and c2 have the same repetition number in the

column j. If a1 and a2 are non-zero elements, then
c1 and c2 are invertible. Hence c1 = (c1c

−1
2 )c2 and

c2 = (c2c
−1
1 )c1. This shows that c1 and c2 have the

same repetition number. If a1 = a2 = 0, then by the
same argument as case 1, nc1 = nc2 . Now, let a1 be
a non-zero element and a2 = 0. Then c1 is invertible.
We have that c2 = (c2c

−1
1 )c1 which proves nc2 ≥ nc1 .

Also, c1 = (a1c
−1
j )cj + (b1b

−1
2 )c2 which shows that

nc1 ≥ nc2 . Thus, the elements of J have the same repe-
tition number |C||J| = |C|

q2 .
Therefore, the sum of the weights of all elements of

the column j is equal to

|C|
q2

(
∑

s∈R\m

ωhom(s) +
∑

s∈m\{0}

ωhom(s)) =

|C|
q2

((q2 − q)(q − 1) + (q − 1)q) = |C|(q − 1).

If 1 ≤ j ≤ α, then the ideal J of R generated by all
elements of the column j is equal to Fq . Since all ele-
ments of Fq are invertible, they have the same repetition
number. Hence, the sum of the weights of all elements
of the column j is equal to

|C|
|Fq|

(
∑
s∈Fq

ωH(s)) =
|C|
q

(q − 1).

Therefore, ∑
c∈C ω(c) = |C|(q−1)

q (α+ qβ).

�

Theorem 5.2. Let C ⊆ Fαq ×Rβ be a one-homogenous
weight FqFq[u]-additive code with weightm. Then there
exists a unique positive integer λ such that m = λ |C|q
and α+ qβ = λ( |C|−1q−1 ).

Proof. By the lemma 5.1, we have∑
c∈C

ω(c) =
|C|(q − 1)

q
(α+ qβ).

On the other hand, the sum of the weights of all code-
words is (|C|−1)m. Hence, |C|(q−1)q (α+qβ) = (|C|−
1)m. Since |C| = qk0+2k1+k2 , gcd( |C|q , (|C| − 1)) = 1.
Therefore, there exists a positive integer λ such that
m = λ |C|q , and hence (q−1)(α+qβ) = λ(|C|−1). �

The following theorem, determines a class of one-
homogenous weight codes.

12
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Theorem 5.3. Let C ⊆ Fαq ×Rβ be a one-homogenous
weight FqFq[u]-additive code with weight m. If m is
odd, and q = 2s for some positive integer s, then
C = {(θ, ..., θ︸ ︷︷ ︸

α

, θu, ..., θu︸ ︷︷ ︸
β

) : θ ∈ Fq}.

Proof. Clearly, C = {(θ, ..., θ, θu, ..., θu) : θ ∈ Fq}
is a one-homogenous weight code of weight α + qβ.
Now, we show that any one-homogenous weight code
has this form. By the Theorem 5.2, m = λ |C|q . Since
m is odd and q = 2s, λ should be an odd integer and
|C|
q = 1. Hence, m = λ = α + qβ. Let (a, b) =

(a1, ..., aα, b1, ..., bβ) be a codeword in C. If ai = 0 for
some i, or bj /∈ m, then ω(a, b) < α + qβ; a contra-
diction. Hence, ai is a non-zero element of Fq for all
1 ≤ i ≤ α, and bj = θju where θj is a non-zero element
of Fq for 1 ≤ j ≤ β. Clearly, (δa, δb) ∈ C for any
δ ∈ Fq . Thus, if ai 6= θj for some i 6= j, |C| > q; is a
contradiction. Hence, C = {(θ, ..., θ︸ ︷︷ ︸

α

, θu, ..., θu︸ ︷︷ ︸
β

) : θ ∈

Fq}. �

Now, we introduce a class of optimal one-
homogenous weight codes. The following lemma gives
the well-known Griesmer bound for linear codes.

Lemma 5.4. [15, Theorem 2.7.4] Let C be a q-ary code
of parameters [n, k, dH ], where k ≥ 1. Then the Gries-
mer bound is as follows:

n ≥
k−1∑
i=0

ddH
qi
e.

Definition 5.5. If a linear code C over a finite field Fq
meets the Griesmer bound, then C is called optimal.

Suppose that Fq = {0, f1 = 1, f2, ..., fq−1}. The
following theorem gives a class of optimal codes.

Theorem 5.6. LetC be an FqFq[u]-additive code of type
(q, q, 1, 0, 1) with the following standard form matrix:

G =

(
a 0 b
0 u d

)
,

where a = (1, 1, · · · , 1︸ ︷︷ ︸
q times

), b = (u, u, · · · , u︸ ︷︷ ︸
(q−1) times

) and d =

(f1u, f2u, · · · , f(q−1)u). Then C is a one-homogenous
weight code with weight m = q2. Also, Φhom(C) is
an optimal one-Hamming weight code with parameters
[q2 + q, 2, q2].

Proof. Let c be a codeword in C. Then by the defini-
tion of FqFq[u]-additive codes and the structure of G,
c = (δa 0 δb) + (0 δ′u δ′d) = (δa δ′u δb + δ′d)
for some δ, δ′ ∈ Fq . But the weight of c is equal to

ω(c) = ωh(δa) + ωhom(δ′u) + ωhom(δb + δ′d) =

q + q + ωhom(δb + δ′d).

Since Fq is a field, there exists only one element θ ∈ Fq
such that δ + θ = 0. But Fq(δ′) = Fq . Hence, there ex-
ists only one integer 1 ≤ i ≤ q−1 such that δ+fiδ

′ = 0.
This shows that ωhom(δb+ δ′d) = (q− 2)q. Therefore,
ω(c) = q2. It is easy to see that Φhom(C) is a one-
Hamming weight code with parameters [q2 + q, 2, q2].
Now, q2 + q = d q

2

1 e+ d q
2

q e. �

Example 5.7. LetC be an F5F5[u]-additive code of type
(5, 5, 1, 0, 1) with the following standard form matrix:

G =

(
1 1 1 1 1 0 u u u u
0 0 0 0 0 u u 2u 3u 4u

)
.

Then C is a one-homogenous weight code with weight
m = 25. Also, |C| = 5k0+2k1+k2 = 52, and hence
λ = 5. Moreover, Φhom(C) is a one-Hamming weight
[30, 2, 25] code over F5 which is an optimal code.

One-Lee weight codes
Now, we study one-Lee weight FqFq[u]-additive

codes.

Lemma 5.8. Let C ⊆ Fαq × Rβ be an FqFq[u]-additive
code. Then∑

c∈C ω
′(c) = |C|(q−1)

q (α+ 2β).

Proof. By the same argument as Lemma 5.1, write the
codewords of C as rows of a matrix G. Consider the
column j of G, where α + 1 ≤ j ≤ α + β. Let J be
the ideal of R generated by all elements of the column j.
Then J = m or J = R. Hence, we have the following
two cases: Case 1 (J = m = 〈u〉). Clearly, any element
of the column j is of the form bu for some b ∈ Fq \ {0}.
By case 1 of Lemma 5.1, any element of J is an element
of the column j. Also, any two elements of J have the
same repetition number in the column j. Hence, the sum
of the weights of all elements of the column j is equal to

|C|
|J |

(
∑
s∈J

ωL(s)) =
|C|
|J |

(2|J \ {0}|) =

|C|
q

(2(q − 1)) =
2|C|
q

(q − 1).

13
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Case 2 (J = R). By case 2 of Lemma 5.1, any ele-
ment of J = R is an element of the column j and all ele-
ments have the same repetition number. Now, let a+ bu
be an element of the column j. Then, we have the fol-
lowing cases:

(1) a = 0, b 6= 0;
(2) a 6= 0, b = 0;
(3) a, b 6= 0 and a = −b;
(4) a, b 6= 0 and a 6= −b.

Hence, the sum of the weights of all elements of the
column j is equal to

|C|
q2

(2(q − 1) + q − 1 + q − 1 + 2(q − 1)(q − 2)) =

|C|(q − 1)

q2
(4 + 2(q − 2)) =

2|C|
q

(q − 1).

If 1 ≤ j ≤ α, then by the same argument as Lemma
5.1, the sum of the weights of all elements of the column
j is equal to

|C|
|Fq|

(
∑
s∈Fq

ωH(s)) =
|C|
q

(q − 1).

Therefore,∑
c∈C ω

′(c) = |C|(q−1)
q (α+ 2β).

�

Theorem 5.9. Let C ⊆ Fαq × Rβ be a one-Lee weight
FqFq[u]-additive code with weight m. Then, there ex-
ists a unique positive integer λ such that m = λ |C|q and

α+ 2β = λ( |C|−1q−1 ).

Proof. It is proved by the same argument as Theorem
5.2. �

Now, we determine the structure of one-Lee weight
codes in the case that m is odd.

Theorem 5.10. Let C be a one-Lee weight FqFq[u]-
additive code of type (α, β, k0, k1, k2) with weight m,
wherem is odd. Then, k1 = 0 and according to Theorem
3.2, the generator matrix of C is given by the following

G =

(
Ik0 A1 0 0 uB
0 0 0 uIk2 uD4

)
.

Proof. Let k1 6= 0 and c be a vector in
(0 A2 Ik1 D1 D2 +uD3). since C is an R-submodule
of Fαq ×Rβ , by the Definition 3.1 we have:

u.c ∈ u(0 A2 Ik1 D1 D2 + uD3) =

(0 0 uIk1 uD1 uD2).

Thus, C contains a non-zero vector of even weight and
it is a contradiction. �

The following theorem gives the exact structure of
one weight codes with odd distances if q is an even inte-
ger.

Theorem 5.11. Let C ⊆ Fαq × Rβ be a one-Lee weight
FqFq[u]-additive code with weight m. If m is odd,
and q = 2s for some positive integer s, then C =
{(θ, ..., θ︸ ︷︷ ︸

α

, θu, ..., θu︸ ︷︷ ︸
β

) : θ ∈ Fq}.

Proof. Clearly, C = {(θ, ..., θ, θu, ..., θu) : θ ∈ Fq}
is a one-Lee weight code of weight α + 2β. Now, we
show that any one-Lee weight code has this form. By
the above theorem, m = λ |C|q . Since m is odd and

q = 2s, λ should be an odd integer and |C|
q = 1.

Hence, m = λ = α + 2β. Now, let (θ, δ + θu) =
(ε1, ..., εα, δ1 + θ1u, ..., δβ + θβu) be a codeword in C.
Since m = α + 2β, εi 6= 0 for all i and we have the
following two cases:

(1) δi = 0, θi 6= 0;
(2) δi, θi 6= 0 and δi 6= −θi.

But |C| = q. Hence, δi = 0 for all i, and εi = θj for
all 1 ≤ i ≤ α and 1 ≤ j ≤ β. This completes the
proof. �

Now, the following theorem gives a class of one-Lee
weight optimal codes.

Theorem 5.12. Let C be an FqFq[u]-additive code of
type (2, q, 1, 0, 1) with the following standard form ma-
trix

G =

(
a 0 b
0 u d

)
,

where a = (1, 1), b = (u, u, · · · , u︸ ︷︷ ︸
(q−1) times

) and d =

(f1u, f2u, · · · , f(q−1)u). Then C is a one-Lee weight
code with weight m = 2q. Also, ΦLee(C) is an opti-
mal one-Hamming weight code with parameters [2(q +
1), 2, 2q].

14
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Proof. It is proved by the same argument as Theorem
5.6. �

Example 5.13. Let C be an F3F3[u]-additive code of
type (2, 3, 1, 0, 1) with the following standard form ma-
trix

G =

(
1 1 0 u u
0 0 u 2u u

)
.

Then C is a one-Lee weight code with weight m = 6.
Also, |C| = 3k0+2k1+k2 = 32, and hence λ = 2. More-
over, ΦLee(C) is a one-Hamming weight [8, 2, 6] linear
code over F3 which is an optimal code.

6. Constacyclic FqFq[u]-additive codes

Recently, Qian et al.[21] have studied the cyclic codes
over ZpZp[u]-additive codes. In this section, we intro-
duce constacyclic FqFq[u]-additive codes and obtain the
structure of these codes.

Constacyclic codes over R
To obtain the structure of constacyclic additive codes

over Fq × R, we need the structure of linear consta-
cyclic codes over Fq and R. There are many researches
about linear constacyclic codes over Fq and the structure
of these codes for arbitrary length has been given; see
[8, 23]. In this section, we remind some results about
linear constacyclic codes over R.

Since R is a chain ring, all elements of R \ m are
unit. Hence, R has precisely q(q − 1) units, which are
of the form δ + θu, where δ ∈ Fq \ {0} and θ ∈ Fq .
Let λ = δ + θu be a unit of R. Consider the following
correspondence:

pλ : Rn −→ R[x]/〈xn − λ〉,
(a0, a1, ..., an−1) 7−→ a0 + a1x+ ...+

an−1x
n−1 + 〈xn − λ〉.

Clearly pλ is an R-module isomorphism. Also, it is
easy to see that C is a λ-constacyclic code if and only
if pλ(C) is an ideal of R[x]/〈xn − λ〉. We will identify
(R)n withR[x]/〈xn−λ〉 under pλ and for simplicity, we
write the polynomial a0 +a1x+ ...+an−1x

n−1 instead
of the residue class a0+a1x+...+an−1x

n−1+〈xn−λ〉.
By this correspondence, to obtain the structure of λ-
constacyclic codes over R, we determine the ideals of
R[x]/〈xn − λ〉.

In this paper, we denote the residue ring R[x]/〈xn −
λ〉 by Rn,λ. Also, for the non-zero elements δ, θ ∈ Fq ,
the residue rings Fq[x]/〈xn − δ〉 and (Fq)2[x]/〈xn −

(δ, θ)〉 are denoted by (Fq)n,δ and (Fq)2n,(δ,θ) respec-
tively.

The following theorem determines a class of consta-
cyclic codes over R.

Theorem 6.1. [13, Theorem 4.13] Let C be a λ-
constacyclic code over R of length n such that
gcd(n, p) = 1. Then C = 〈g0(x), ug1(x)〉 ⊆ Rn,λ,
where g1(x)|g0(x)|(xn − λ).

There are many studies about linear constacyclic
codes over R of length n which is not coprime to p; see
[7, 9, 10, 11]. We recalled the structure of these codes of
length ps from [9].

Theorem 6.2. [9, Theorem 4.4] Let C be a (δ + θu)-
constacyclic code over R of length ps such that δ, θ ∈
Fq \ {0} and s = am+ r for non-negative integers a, r
with 0 ≤ r ≤ m−1. ThenC = 〈(δ0x−1)i〉 ⊆ Rps,δ+θu
for some i ∈ {0, 1, · · · , 2ps}, where δ0 = δ−p

m−r
.

The above theorem gives the structure of (δ + θu)-
constacyclic codes of length ps in the case that δ and
θ are non-zero elements in Fq . In the following theo-
rems, we have the structure of these codes in the case
that θ = 0. First let (δ+θu) = 1. Hence, we have cyclic
codes.

Theorem 6.3. [9, Theorem 5.4] Cyclic codes of length
ps over R, i.e., ideals of the ring Rps,1, are

1) Type 1 (trivial ideals): 〈0〉, 〈1〉.
2) Type 2 (principal ideals with non-monic polyno-

mial generators): 〈u(x− 1)i〉, where 0 ≤ i ≤ ps − 1.
3) Type 3 (principal ideals with monic polynomial

generators): 〈(x−1)i+u(x−1)th(x)〉, where 1 ≤ i ≤
ps − 1, 0 ≤ t ≤ i, and either h(x) is 0 or h(x) is a unit,
where it can be represented as h(x) =

∑
j hj(x − 1)j ,

with hj ∈ Fq , and h0 6= 0.
4) Type 4 (nonprincipal ideals): 〈(x − 1)i +

u
∑ω−1
j=0 cj(x− 1)j , u(x− 1)ω〉, where 1 ≤ i ≤ ps − 1,

cj ∈ Fq , and ω < T , where T is the smallest integer
such that u(x− 1)T ∈ 〈(x− 1)i + u

∑i−1
j=0 cj(x− 1)j;

or equivalently, 〈(x− 1)i + u(x− 1)th(x), u(x− 1)ω〉,
with h(x) as in Type 3, and deg(h) ≤ ω − t− 1.

Now, by the structure of cyclic codes in the Theorem
6.3 and the ring isomorphism in the following theorem,
we have the structure of δ-constacyclic codes.

Theorem 6.4. [9, Proposition 6.1] Let δ0 be defined such
as Theorem 6.2. Then the map φ : Rps,1 −→ Rps,δ
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given by f(x) 7−→ f(δ0x) is a ring isomorphism. In
particular, for A ⊆ Rps,1, B ⊆ Rps,δ if φ(A) = B, then
A is an ideal ofRps,1 if and only ifB is an ideal ofRps,δ
. Equivalently, A is a cyclic code of length ps over R if
and only if B is a δ-constacyclic code of length ps over
R.

Constacyclic FqFq[u]-additive codes
Now, by the definition of constacyclic codes in

the above subsection, we define constacyclic FqFq[u]-
additive codes.

Definition 6.5. Let α and β be two positive integers
and (λ1, λ2) ∈ Fq × R. An FqFq[u]-additive code
C ⊆ Fαq × Rβ is called (λ1, λ2)-constacyclic if

(λ1sα−1, s0, ..., sα−2, λ2rβ−1, r0, ..., rβ−2) ∈ C,

whenever (s0, s1, ..., sα−1, r0, r1, ..., rβ−1) ∈ C.

Consider the map π(λ1,λ2) : Fαq × Rβ −→
(Fq)α,λ1 × Rβ,λ2 with the following definition
(s0, s1, ..., sα−1, r0, r1, ..., rβ−1) 7−→ (s0 + s1x+ ...+
sα−1x

α−1 + 〈xα − λ1〉, r0+r1x + ... + rβ−1x
β−1 +

〈xβ − λ2〉). It is easy to see that π(λ1,λ2) is an R-
module isomorphism. We will identify Fαq × Rβ with
(Fq)α,λ1 × Rβ,λ2 under π(λ1,λ2) and for simplicity,
we write (s0 + s1x + ... + sα−1x

α−1, r0+r1x + ... +
rβ−1x

β−1) for above residue class.

Lemma 6.6. A subset C of Fαq × Rβ is a (λ1, λ2)-
constacyclic code if and only if π(λ1,λ2)(C) is an R[x]-
submodule of (Fq)α,λ1 ×Rβ,λ1 .

Proof. Clearly, (Fq)α,λ1
× Rβ,λ2

is an R[x]-module.
Since π(λ1,λ2) is an R-module isomorphism, C is
an R-submodule if and only if π(λ1,λ2)(C) is an
R-submodule. Now, for an element (sα, rβ) =
(s0, s1, ..., sα−1, r0, r1, ..., rβ−1) ∈ C, let σ(sα, rβ) =
(λ1sα−1, s0, ..., sα−2, λ2rβ−1, r0, ..., rβ−2). Thus

σ(sα, rβ) ∈ C ⇔ xπ(λ1,λ2)(sα, rβ) =

π(λ1,λ2)(σ(sα, rβ)) ∈ π(λ1,λ2)(C).

This completes the proof. �

We identify C with π(λ1,λ2)(C). Now, we find the
generator polynomials of C.

Theorem 6.7. A subset C of (Fq)α,λ1
× Rβ,λ2

is
a (λ1, λ2)-constacyclic code if and only if C =
〈(g, 0), (h1, f1), ..., (hr, fr)〉R[x] such that

(1) C1 = 〈g〉 is a λ1-constacyclic code over Fq of
length α,

(2) C2 = 〈f1, ..., fr〉R[x] is a λ2-constacyclic code
over R of length β,

(3) g|xα − λ1 over Fq ,
(4) h1, ..., hr are elements of (Fq)λ1,α,
(5) |C| = |C1||C2|.

Proof. Let C ⊆ (Fq)α,λ1
× Rβ,λ2

be a (λ1, λ2)-
constacyclic code. Clearly, the projection map φ :
C −→ Rβ,λ2 is an R[x]-homomorphism. Hence,
Im(φ) is an R[x]-submodule of Rβ,λ2 . As 〈xβ −
λ2〉.Im(φ) ⊆ 〈xβ − λ2〉.Rβ,λ2

= 0, Im(φ) is an
ideal of Rβ,λ2 . In other words, Im(φ) is a linear λ2-
constacyclic code over R of length β, say C2. Let
C2 = 〈f1, ..., fr〉R[x] = 〈φ(h1, f1), ..., φ(hr, fr)〉R[x].
Now, kerφ is an R[x]-submodule of C. Let C1 = {g ∈
(Fq)α,λ1 : (g, 0) ∈ kerφ}, then clearly C1 is an R[x]-
submodule of (Fq)α,λ1

. But the map τ : R −→ Fq , in
the R-module structure of Fq , is surjective. Hence, C1 is
an Fq[x]-submodule of (Fq)α,λ1

. Since 〈xα−λ1〉.C1 ⊆
〈xα − λ1〉.(Fq)α,λ1

= 0, C1 is an ideal of (Fq)α,λ1
.

In other words, C1 is a λ1-constacyclic code over Fq
of length α. If C1 = 〈g〉, then kerφ = 〈(g, 0)〉R[x].
Therefore, C = 〈(g, 0), (h1, f1), ..., (hr, fr)〉R[x]. Since
φ is an R[x]-homomorphism, C

kerφ
∼= C2, hence |C| =

| kerφ||C2| = |C1||C2|. �

Proposition 6.8. With the assumptions of Theorem 6.7,
let

C = 〈(g, 0), (h1, f1), ..., (hr, fr)〉R[x]

be a (λ1, λ2)-constacyclic code. Then, we can assume
that deg hi < deg g for all i; 1 ≤ i ≤ r.

Proof. Since the coefficients of g are invertible, we as-
sume that g is monic. Let deg hi ≥ deg g for some
i; deg hi − deg gj = ` ≥ 0. Also, let a ∈ Fq be
the leading coefficient of hi. Then (hi, fi) = (hi −
ax`g, fi) + ax`(g, 0). Thus, 〈(hi, fi), (g, 0)〉 = 〈(hi −
ax`g, fi), (g, 0)〉. Hence, we can use hi − ax`g instead
of hi. By this method we can reduce deg hi. �

Proposition 6.9. Let

C = 〈(g, 0), (h1, f1), ..., (hr, fr)〉R[x]

be a (λ1, λ2)-constacyclic code. Then g | (xβ − λ2)hi,
for all i = 1, 2, ..., r.

Proof. Consider the projection map φ : C −→ Rβ,λ2

in the proof of Theorem 6.7. Then C1 = 〈g〉 = {f ∈
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(Fq)α,λ1
: (f, 0) ∈ kerφ}. Now, (xβ − λ2)(hi, fi) =

((xβ − λ2)hi, 0) ∈ kerφ. Hence, (xβ − λ2)hi ∈ 〈g〉.
This completes the proof. �

Remark 6.10. If (λ1, λ2) = (1, 1) as in Definition 6.5,
then we have cyclic FqFq[u]-additive codes. Hence,
by above results, we can obtain the structure of cyclic
FqFq[u]-additive codes.

Now, we give the exact structure of constacyclic
FqFq[u]-additive codes for some special lengths.

Corollary 6.11. Let C ⊆ (Fq)α,λ1
× Rβ,λ2

be a
(λ1, λ2)-constacyclic code. If α and β are coprime to
p, then C = 〈(g, 0), (h1, f1), (h2, uf2)〉R[x] such that
g|(xα − λ1) and f2 | f1|(xβ − λ2)

Proof. It follows from Theorems 6.1 and 6.7. �

Let b ∈ Fq and s be a positive integer. If s = am+ r
for non-negative integers a, r with 0 ≤ r ≤ m− 1, then
define b0 = a−p

m−r
. The following theorem determines

all constacyclic FqFq[u]-additive codes in the case that
α and β are powers of p.

Theorem 6.12. Let C ⊆ (Fq)α,λ1 × Rβ,λ2 be a
(λ1, λ2)-constacyclic code. Assume that α = ps1 , β =
ps2 , λ1 = γ and λ2 = δ + θu. Then C = 〈((γ0x +
1)i, 0), (h, (δ0x − 1)j)〉 for some i ∈ {0, 1, · · · , ps1}
and j ∈ {0, 1, · · · , 2ps2}.

Proof. By [9, Theorem 3.4], C1 = 〈(γ0x + 1)i〉, for
some i ∈ {0, 1, · · · , ps1}. Also, by Theorem 6.2, C2 =
〈(δ0x − 1)j〉, for some j ∈ {0, 1, · · · , 2ps2}. Now, by
Theorem 6.7, we have the result. �

Theorem 6.13. With the assumptions of the Theorem
6.12, let θ = 0 and C ⊆ (Fq)α,λ1

× Rβ,λ2
be a (γ, δ)-

constacyclic code. Then,

C = 〈(g, 0), (h1, f1), ..., (hr, fr)〉R[x],

such that
(1) C1 = 〈g〉 = 〈(γ0x + 1)i〉 for some i ∈

{0, 1, · · · , ps1},
(2) C2 = 〈f1, ..., fr〉R[x] = φ(I) where φ :

Rps,1 −→ Rps,δ is given by f(x) 7−→ f(δ0x) and I
is an ideal of Rps2 ,1 defined in Theorem 6.3.

Proof. It follows from Theorems 6.3, 6.4 and 6.7. �

7. Conclusion

In this paper, we studied the structure of FqFq[u]-
additive codes. We obtained the generator matrix of
these codes and described their dual codes. We de-
fined Lee weight and homogenous weight over FqFq[u]-
additive codes and studied one-weight codes with re-
spect to these two weight functions. Finally, by the Gray
image of these codes, we obtained [q2 + q, 2, q2] and
[2(q + 1), 2, 2q] one-weight optimal codes over Fq .
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