
Machine Learning-driven Group Ranking in Data Envelopment Analysis: Applications 

in the Banking Sector 

Mohammad Sajjad Shahbazifar1, Reza Kazemi Matin2, Mohsen Khounsiavash1* and 

Fereshteh Koushki1  

 

Abstract: 

This paper explores the intersection of Group Ranking in Data Envelopment Analysis (DEA) 

and the potent capabilities of Machine Learning (ML) within the insurance sector, aiming to 

redefine group efficiency assessment. While DEA has been a cornerstone for evaluating 

Decision-Making Units (DMUs), the traditional models fall short in the nuanced insurance 

sector. To address these limitations, ML is integrated into DEA, enabling more effective DMU 

ranking. The study includes an empirical application within the banking industry, emphasizing 

the methodology's relevance and potential to transform the landscape of this industry. 

Specifically, we evaluate the efficiency of 525 branches of Mellat Bank in Iran, divided into 21 

groups, each comprising 25 members. We use the BPNN neural network algorithm to predict 

the group efficiency score of the 21st group and compare the results with those obtained from 

the CCR model. 

Keywords: Group Efficiency, Banking Groups, Machine Learning, Neural Network, Data 

Envelopment Analysis, Ranking 

 

1. Introduction  

Efficiency measurement of Decision-Making Units (DMUs) has been a focal point in 

organizational performance assessment since the pioneering work of Farrell in 1957, who laid 

the groundwork for Data Envelopment Analysis (DEA) [1]. DEA, introduced by Charnes et al. 

in 1978 [2], employs linear programming techniques to evaluate the efficiency of DMUs with 

multiple inputs and outputs, thus offering a comprehensive framework for performance 

evaluation. Over the years, DEA has evolved, with new methodologies and applications 

emerging to address the complexities of diverse organizational settings across sectors such as 
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government, healthcare, finance, and manufacturing. Despite its widespread adoption, 

traditional DEA approaches encounter challenges, particularly when assessing the efficiency 

of new DMUs. The proliferation of DMU datasets, fueled by the advent of big data, compounds 

this challenge. For instance, mainland China has witnessed a rapid increase in the number of 

small and micro-sized companies, surpassing 73 million [3]. Various methods have been 

developed to enhance the discrimination power of basic Data Envelopment Analysis (DEA) 

models and address challenges in evaluating organizational performance. Over the past three 

decades, numerous ranking methods have emerged within the DEA context. Adler et al. [4] and 

Chen [5] have extensively reviewed these ranking methods. Among them, the cross-efficiency 

evaluation, initially proposed by Sexton et al. [6], stands out as the most popular. This method 

utilizes peer evaluation instead of self-evaluation information, overcoming some limitations of 

basic DEA models like CCR and BCC. However, its utility may diminish due to the non-

uniqueness of optimal weights [7]. To mitigate this issue, Doyle and Green [8] introduced 

aggressive and benevolent formulations as secondary goals to select a solution from multiple 

optimal weights. 

Another method proposed for ranking efficient units is super-efficiency, introduced by 

Anderson and Peterson [9]. This method involves eliminating the DMU under assessment from 

the DMU set and computing its distance from the new efficient border. However, this 

elimination can render associated DEA models infeasible [10]. To address this challenge, 

Memariani et al. [11] modified the non-radial model presented by Mehrabian et al. [10], 

ensuring the feasibility of the linear programming model. 

While the mentioned methods primarily focus on individual evaluation of DMUs, many real-

world scenarios involve DMUs as members of distinct groups. For instance, sales units of a 

brand operate independently but under a single management for achieving common targets. In 

such cases, group efficiency evaluation becomes crucial. Ang et al. [12] examined this 

evaluation from two perspectives: group efficiency evaluation based on average performance 

and weakest performance. 

To develop this method, Shahbazifar et al. [13] proposed a novel two-stage network group 

efficiency evaluation method. This method, based on network DEA, offers a broader insight 

and yields more accurate results compared to conventional approaches. Their goal is to 

determine the true ranking of two-stage network production groups, presenting new network 

DEA models for efficiency evaluation based on both average and weakest performance criteria. 



Evaluating the efficiency of each new DMU using conventional DEA methods necessitates 

substantial computational resources in terms of memory and CPU time .In response, there is a 

growing interest in leveraging Machine Learning (ML) algorithms to predict efficiency scores 

without the need for extensive re-analysis. ML algorithms, which learn from data to make 

predictions or decisions, present a promising approach to enhance efficiency assessment. 

Previous studies have explored various ML-DEA methodologies, including neural network 

back-propagation DEA algorithms (NNDEA), genetic algorithms, support vector machines 

(SVM), and integrated support vector machines (ISVM) [14]. While existing literature 

highlights the potential of hybrid ML-DEA methodologies, several limitations persist. Many 

studies predominantly focus on neural networks or back-propagation neural networks for 

prediction tasks, with limited exploration of other ML algorithms. Moreover, there is a scarcity 

of research comparing the performance of integrated ML-DEA models with individual ML 

models[3]. To address these gaps, Emrouznejad et al. [3] aim to bridge traditional DEA 

methods with ML algorithms by proposing a comprehensive ML-DEA framework. 

Specifically, they introduce ML-DEA algorithm: DEA-CCR model combined with back-

propagation neural network (BPNN-DEA). Subsequent to the seminal work by Charnes et al. 

[2], numerous sophisticated applications have emerged, incorporating additional variables and 

complex models to assess the efficiency and productivity changes of Decision-Making Units 

(DMUs). These endeavors aim to enhance organizational performance across various sectors, 

both public and private. Also, Mahamoudi et al. [15]  proposed an incremental weighted cross-

entropy loss function for convolutional neural networks to tackle class imbalance. Their 

method enhances performance by gradually increasing the weight of minority classes during 

training, showing superior results compared to other techniques on various datasets. 

Additionally, due to the intricate nature of DEA calculations, specialized software tools have 

been developed to facilitate analysis. However, in the process of assessing organizational 

performance, the addition of a new Decision-Making Unit (DMU) necessitates the rerunning 

of the DEA model. To circumvent the need for recalculating the efficiency of all DMUs, some 

studies have proposed predicting the DEA efficiency of new DMUs by integrating the DEA 

model with various Machine Learning (ML) algorithms. For instance, Liu et al. [16] utilized 

DEA, a three-stage DEA, and artificial neural network (ANN) to evaluate the technical 

efficiency of 29 semiconductor firms in Taiwan. They observed that employing different 

approaches (DEA vs. NN) within a similar methodological framework yielded divergent 

results. 



In today's era of rapid big data expansion, the growth of datasets has surged exponentially. 

Consequently, conducting Data Envelopment Analysis (DEA) on large datasets containing 

numerous inputs and outputs poses significant challenges due to the immense computational 

resources required, including memory and CPU time. Emrouznejad et al. [17] introduced a 

novel solution to this issue with their proposal of a neural network back-propagation DEA 

algorithm (NNDEA). This innovative algorithm aims to streamline the efficiency assessment 

process by randomly selecting a subset of Decision-Making Units (DMUs) for neural network 

training. Subsequently, the trained model can be leveraged to estimate efficiency scores without 

the need to solve linear programming problems for each individual DMU. Given that NNDEA 

significantly reduces the computational requirements in terms of computer memory and CPU 

time compared to traditional DEA-CCR models, it emerges as a valuable tool for efficiency 

measurement in large datasets. Moreover, researchers have explored various methodologies to 

integrate DEA with other techniques for efficiency assessment in different domains. For 

example, Misiunas et al. [18] combined DEA with Artificial Neural Networks (ANN) to 

develop a healthcare analytics methodology aimed at predicting the functional status of organ 

recipients. Their study focused on thoracic datasets comprising extensive records of lung and 

heart transplants performed in the US, totaling 16,771 records and 442 variables. By addressing 

the challenge of predicting patient outcomes in organ transplant operations, their proposed 

methodology yielded highly promising results, thus validating its efficacy. 

Furthermore, in the realm of financial services, researchers have investigated the integration of 

DEA with machine learning techniques to enhance efficiency assessment in banking 

operations. For instance, Thaker et al. [19] developed a hybrid DEA-Random Forest model to 

evaluate the operational efficiency of commercial banks. By leveraging the capabilities of both 

DEA and Random Forest algorithms, their approach enabled accurate efficiency prediction 

while efficiently handling large-scale banking datasets. 

Additionally, in the context of manufacturing industries, Lee et al. [20] proposed a novel 

approach that combines DEA with Convolutional Neural Networks (CNN) for assessing the 

operational efficiency of production processes. Their methodology, applied to a dataset 

encompassing diverse manufacturing parameters, demonstrated significant improvements in 

efficiency prediction accuracy compared to traditional DEA methods. Barros et al. [21] 

introduced a DEA-BPNN approach for evaluating and forecasting the efficiency ratings of 

insurance firms in Mozambique, while Kwon et al. [22] developed a similar method for 

assessing efficiency in major US banking institutions. Yang et al. proposed [23] a teleoperation 



method for robots based on human-robot interaction using visual information. This method, 

enhanced by an extreme learning machine algorithm, allows a robot to autonomously complete 

tasks by learning from a single human demonstration, achieving satisfactory performance. 

Overall, the integration of DEA with machine learning algorithms offers a promising avenue 

for addressing efficiency assessment challenges across various domains, ranging from 

healthcare and finance to manufacturing and beyond. These innovative methodologies enable 

more accurate and efficient evaluation of organizational performance in the era of big data.  

In this paper, we have evaluated 21 banking groups, each consisting of 25 branches, using the 

Back-Propagation Neural Network (BPNN) method. We predict the group efficiency scores 

using this approach.  

The rest of this paper is organized as follows. Section 2 provides a brief introduction of data 

envelopment analysis and group efficiency evaluation method and BPNN machine learning 

algorithm. The research structure is explained in Section 3. In Section 4, some empirical 

application is presented, and the efficiency scores obtained from the various methods are 

reported and analyzed. The last section includes conclusions and possible future research. 

2. Methodologies 

2.1 DEA and group efficiency evaluation 

DEA, a method for evaluating DMU efficiency, employs linear programming to envelop 

observed input/output vectors tightly. The DEA-CCR model, introduced by Charnes et al. [2], 

focuses on the ratio of multi-outputs to multi-inputs, representing how effectively a DMU 

utilizes its resources to produce valuable outputs. This model sets a condition where these ratios 

must be less than or equal to one for all other DMUs, without the need for predefined weights 

on inputs and outputs. 

Consider a scenario where n Decision Making Units (DMUs) are assessed based on m inputs 

and s outputs. Let 𝑥𝑖𝑗(𝑖 = 1, … , 𝑚) and 𝑦𝑟𝑗(𝑟 = 1, … , 𝑠) represent the input and output values 

of 𝐷𝑀𝑈𝑗 (𝑗 = 1, … , 𝑛) respectively. The efficiency score of 𝐷𝑀𝑈𝑘 can be determined using 

the formula: 

   𝐸𝑘𝑘
 =

∑ 𝑢𝑟𝑘𝑦𝑟𝑘
𝑠
𝑟=1

∑ 𝑣𝑖𝑘𝑥𝑖𝑘
𝑚
𝑖=1

                                                                         (1) 

In this context, 𝑣𝑖𝑘 and 𝑢𝑟𝑘 represent the weights attributed to the 𝑖-th input and 𝑟-th output 

of 𝐷𝑀𝑈𝑘 respectively. The CCR model used to assess 𝐷𝑀𝑈𝑘 can be articulated as follows: 



 

           𝐸𝑘𝑘
 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑘𝑦𝑟𝑘

𝑠
𝑟=1  

            𝑠. 𝑡.  ∑ 𝑣𝑖𝑘𝑥𝑖𝑘
𝑚
𝑖=1 = 1,                                                                            (2)                

                     ∑ 𝑢𝑟𝑗𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑗𝑥𝑖𝑗
𝑚
𝑖=1 ≤ 0,𝑠

𝑟=1  𝑗 = 1, … , 𝑛, 

                     𝑢𝑟𝑗 , 𝑣𝑖𝑗 ≥ 0, 𝑟 = 1, … , 𝑠, 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛, 

In this model, 𝑣𝑖𝑗 and 𝑢𝑟𝑗 represent virtual multipliers for the 𝑖-th input and 𝑟-th output 

respectively. The optimal solution to model (1) for 𝐷𝑀𝑈𝑘 is denoted as 𝑢𝑟𝑘
∗  (𝑟 = 1, . . . , 𝑠) and 

𝑣𝑖𝑘
∗  (𝑖 = 1, . . . , 𝑚). 𝐷𝑀𝑈𝑘 is considered efficient if and only if 𝐸𝑘𝑘

∗  =  1, while if the value is 

below one, the DMU is considered inefficient.  

Let's consider a scenario where 𝑛 DMUs are organized into 𝐾 groups, with each group 𝑘 

(𝑘 = 1, … , 𝐾) comprising 𝐷𝑘 members. Each member 𝐷𝑀𝑈𝑑𝑘
 (𝑑𝑘 = 1, … , 𝐷𝑘) within a 

group has 𝑚 inputs 𝒙𝑑𝑘
= (𝑥𝑖𝑑𝑘

) and 𝑠 outputs 𝒚𝑑𝑘
= (𝑦𝑟𝑑𝑘

).. For each group 𝑡 (𝑡 = 1, … , 𝐾) 

under evaluation, the group efficiency score based on average performance is obtained by 

solving the optimization model (3). 

𝐸𝑡
𝐴 = 𝑚𝑎𝑥

∑ ∑ 𝑢𝑟𝑡
𝐷𝑡
𝑑𝑡=1

𝑠
𝑟=1 𝑦𝑟𝑑𝑡

∑ ∑ 𝑣𝑖𝑡𝑥𝑖𝑑𝑡

𝐷𝑡
𝑑𝑡=1

𝑚
𝑖=1

 

              s. t.
∑ 𝑢𝑟𝑡𝑦𝑟𝑑𝑘

𝑠
𝑟=1

∑ 𝑣𝑖𝑡𝑥𝑖𝑑𝑘
  𝑚

𝑖=1

≤ 1, 𝑘 = 1, … , 𝐾,   𝑑𝑘 = 1, … , 𝐷𝑘,                               (3)  

                   
∑ ∑ 𝑢𝑟𝑡

𝐷𝑡
𝑑𝑡=1

𝑠
𝑟=1 𝑦𝑟𝑑𝑡

∑ ∑ 𝑣𝑖𝑡𝑥𝑖𝑑𝑡

𝐷𝑡
𝑑𝑡=1

𝑚
𝑖=1

≤ 1   

                    𝑣𝑖𝑡 , 𝑢𝑟𝑡 ≥ 0,   𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠.    

 

Model (3) in linear form is as follows:  

 𝐸𝑡
𝐴 = 𝑚𝑎𝑥 ∑ ∑ 𝑢𝑟𝑡

𝐷𝑡

𝑑𝑡=1

𝑠

𝑟=1

𝑦𝑟𝑑𝑡
 

           𝑠. 𝑡 ∑ 𝑢𝑟𝑡𝑦𝑟𝑑𝑘

𝑠

𝑟=1

− ∑ 𝑣𝑖𝑡𝑥𝑖𝑑𝑘
  

𝑚

𝑖=1

≤ 0,    𝑘 = 1, … , 𝐾,   𝑑𝑘 = 1, … , 𝐷𝑘,  

                    ∑ ∑ 𝑣𝑖𝑡𝑥𝑖𝑑𝑡

𝐷𝑡
𝑑𝑡=1

𝑚
𝑖=1 = 1,                                                                       (4) 

                    𝑣𝑖𝑡 , 𝑢𝑟𝑡 ≥ 0,   𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠.    



Suppose  𝑢𝑟𝑡
∗ , 𝑣𝑖𝑡

∗  are the optimal solutions for model (4). The optimal solution for model (4) 

provides the average group efficiency score for group t as follows: 

𝐸𝑡
𝐴∗ = ∑ ∑ 𝑢𝑟𝑡

∗𝐷𝑡
𝑑𝑡=1

𝑠
𝑟=1 𝑦𝑟𝑑𝑡

                                                                                   (5) 

When the efficiency of the group reaches the optimal level, the efficiency values of each 

DMU in group 𝑡 can be calculated as follows: 

 𝑒𝑑𝑡

𝐴∗=
∑ 𝑢𝑟𝑡

∗𝑠
𝑟=1 𝑦𝑟𝑑𝑡

∑ 𝑣𝑖𝑡
∗𝑚

𝑖=1 𝑥𝑖𝑑𝑡

,   𝑑𝑡 = 1, … , 𝐷𝑡.                                                                        (6) 

 

In this paper, we utilize a combination of machine learning and group performance evaluation 

models to predict group efficiency scores. Prior to that, in the following section, we introduce 

our selected machine learning algorithm and present its overview. 

 

2.2 BPNN ML algorithm 

The progression of machine learning (ML) can be delineated into three distinct epochs. 

Initially, Hebb [24] laid the foundation for ML by pioneering neuropsychological learning 

mechanisms, initiating a brief period of development. However, from the mid-1960s to the late 

1970s, progress stagnated due to constraints in computer memory and processing speed, 

impeding the realization of practical AI solutions. Since the late 1970s, ML has experienced a 

resurgence, expanding beyond single-concept learning to encompassing multiple concepts and 

exploring diverse learning strategies. This revival has attracted considerable scholarly 

attention, particularly amidst rapid advancements in AI and data mining, resulting in numerous 

breakthroughs.  

ML is inherently multidisciplinary, drawing insights from diverse domains such as probability 

theory, statistics, approximation theory, convex analysis, and algorithm complexity theory. At 

its core, ML aims to emulate human learning behaviors, facilitating the acquisition of new 

knowledge and skills to continually enhance performance. Over decades of evolution, ML has 

garnered widespread recognition, featuring algorithms that scrutinize data, glean insights, and 

make informed decisions or predictions regarding unknown phenomena. Its applications span 

a plethora of domains, including data mining, computer vision, biometric recognition, stock 

market analysis, and robotics. In essence, ML relies on algorithms to scrutinize data, extract 

patterns, and derive actionable insights. This paradigm shift obviates the need for explicitly 



programmed tasks, instead fostering autonomous algorithmic development. ML encompasses 

a gamut of methodologies, including supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning, each exhibiting distinct strengths and 

weaknesses. Supervised learning, for instance, is widely employed for classification and 

regression tasks, as elucidated in spam filtering and weather forecasting applications, 

respectively. For further elucidation on ML, one may refer to Stuart et al. [25], Mehryar et al.  

[26] along with a myriad of other pertinent literature. 

Given that the technical efficiency derived from the DEA-CCR model appears as continuous 

data, this study investigates a machine learning algorithm tailored specifically for regression 

tasks known as the back-propagation neural network (BPNN).  

To introduce BPNN, we must first delve into Artificial Neural Networks (ANNs) (Mcculloch 

et al. [27]. ANNs, prominent in machine learning and cognitive science, are inspired by 

biological neural networks found in the central nervous systems of animals. They serve to 

estimate or approximate functions that may depend on numerous inputs, typically of unknown 

nature. Let's provide a succinct overview of the original concept of ANNs: The foundational 

neuron model can be depicted as shown in Figure 1, representing the simplest form of a neuron. 

This model serves as an exemplar to elucidate the fundamental concept of ANNs. Imagine there 

are 𝑚 Decision-Making Units (DMUs), each possessing 𝑛 features (i.e., n inputs denoted as 

𝑥1, 𝑥2, … , 𝑥𝑛 in Figure 1. Additionally, each DMU has a target variable  𝑦, also known as the 

output variable, unique to each DMU (labeled as 𝑦𝑖 for 𝐷𝑀𝑈𝑖). Given the varying importance 

of each feature for 𝐷𝑀𝑈𝑖, distinct weights are assigned to them (represented as 

𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑛 in Figure 1). Subsequently, the weighted sum of inputs and 𝑦𝑖 establishes a 

mapping relationship through an activation function. 

𝑦𝑖 = 𝜑 (∑ 𝑤𝑖𝑗𝑥𝑗

𝑛

𝑗=0

) − 𝜃                    (7) 

In equation (7),  ∑ 𝑤𝑖𝑗𝑥𝑗
𝑛
𝑗=0  represents the weighted sum of inputs, 𝜃 denotes the intercept term, 

and 𝜑 symbolizes the activation function. Common activation functions include the sigmoid 

function, tanh function, rectified linear unit function (ReLU), softmax function, etc. By 

collecting data from 𝑛 DMUs with known inputs and outputs, the weights 𝑤𝑖𝑗 and 𝜃 can be 

estimated based on equation (7), a process known as model training. Once the trained model is 

obtained, new DMUs with known inputs but unknown outputs can be evaluated using the 

model. Any necessary adjustments to the weights 𝑤𝑖𝑗 and 𝜃 can be made accordingly. The 



principles of the multilayer neural network model closely resemble this process; for further 

details, refer to Cheng [28]. 
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Figure. 1 Diagram of single neuron model 

Following extensive development, BPNN has emerged as the predominant method for training 

ANNs (Rumelhart et al. [29]). It boasts two primary features: (a) being a supervised learning 

method, extending the delta rule, and (b) requiring the use of activation functions that are 

differentiable everywhere. 

The BPNN algorithm evolved from ANN, with its mathematical intricacies extensively 

discussed in various literature. This paper provides a concise introduction to its core principles: 

propagation and weight adjustment (namely, the computation of actual output proceeds from 

input to output, while weight and threshold modifications occur in the opposite direction). 

Phase 1: Propagation involves two main steps: 

a. Forward propagation entails passing a training pattern's input through the neural network to 

produce output activations. 

b. Back-propagation involves propagating the output activations generated in step (a) back 

through the neural network using the target associated with the training pattern. This step 

calculates the deltas for all output and hidden neurons. 

During this phase, the output value of each node is computed based on various factors, 

including the output values of nodes in the preceding layer, the weights connecting the current 

node to all nodes in the previous layer, the current node's threshold, and the activation function. 

Commonly, the sigmoid function is employed as an activation function in this context. 

Phase 2: Weight Update comprises the following steps: 

a. Compute the gradient of the weight by multiplying its output delta with the input activation. 



b. Adjust the weight in the direction opposite to the gradient by subtracting a portion of it from 

the weight. 

This phase constitutes the error back-propagation process. The fundamental concept behind 

BPNN is to refine network parameters by minimizing the error between the output layer and 

the expected value, thereby reducing the overall error. 

3. Research structure 

The research framework investigates the amalgamation of the DEA method with the BPNN 

ML algorithm. The DEA-CCR model is initially utilized to evaluate the efficiency of each 

Decision Making Unit (DMU) within the training datasets. This assessment categorizes DMUs 

based on their technical efficiency, with the DEA efficiency serving as the target variable and 

the input/output indicators of the DEA model acting as feature variables. Subsequently, the 

BPNN algorithm is employed to analyze these categorized DMUs and derive patterns: What 

input/output combinations correspond to specific DEA efficiencies? Following training with 

the datasets, the BPNN model is refined until it meets evaluation criteria, and then it's applied 

to unclassified DMUs with unknown DEA efficiencies. This process facilitates the prediction 

of efficiency for these DMUs using the trained BPNN model. 

 

Figure.2 Research structure exploring the connection between the DEA and ML 



The research framework involves two main stages: the DEA stage and the ML stage, illustrated 

in Figure 4. In the first stage, known as the DEA stage, DMUs with suitable input and output 

indicators are selected based on real-world considerations. Their DEA efficiencies are then 

assessed using a DEA model. Moving to the second stage, known as the ML stage, the DEA 

outcomes are utilized to predict the DEA efficiency of unclassified DMUs through a frontier 

formed by the BPNN algorithm. Within this ML stage, four steps are undertaken: 

Step1: Data Preprocessing. Primarily involves standardizing the data. 

Step2: Model Training. Utilizing the training datasets containing DMUs marked by their DEA 

efficiency to extract rules, specifically determining the input/output combinations 

corresponding to specific DEA efficiencies. 

Step3: Evaluation Criteria. If the model meets predefined standards regarding accuracy and 

stability, it is considered trained. Otherwise, further training is conducted. 

Step4: Model Prediction. Utilizing the trained BPNN model to predict the DEA efficiency of 

new DMUs. This involves adding the new DMUs to the testing datasets and executing a Python 

code, which automatically calculates their predicted efficiency. 

During the comparison and conclusion phase, the DEA efficiency is meticulously analyzed and 

juxtaposed with the ML-DEA efficiency (i.e., prediction efficiency). This analysis 

encompasses assessing the accuracy and stability of the model, conducting statistical tests, and 

making inferences. 

4. Empirical analysis 

In this section, we present the empirical application of our research, aimed at evaluating the 

efficiency of 525 branches of Mellat Bank in Iran. These branches are divided into 21 groups, 

each comprising 25 members include the following financial information: 

Inputs:  

𝑰𝟏: Regulatory Compliance Costs: Expenses related to ensuring compliance with banking 

regulations and laws, including hiring compliance officers, conducting audits, and 

implementing compliance software.  

𝑰𝟐: Marketing and Advertising Expenses: Costs related to advertising campaigns, 

promotional materials, and marketing strategies aimed at attracting customers.  

Outputs:  



𝑶𝟏: Investment Gains: Revenue earned from returns on the bank's investments in stocks, 

bonds, and other financial instruments.  

𝑶𝟐: Loan Interest Income: Revenue generated from interest payments on loans provided to 

customers, including personal loans, business loans, and mortgages.  

These inputs and outputs were selected to comprehensively capture the factors influencing the 

bank’s operational efficiency and financial outcomes, ensuring that the model provides a 

meaningful analysis of the bank’s performance. (See Table 1)  

Table. 1 Inputs and Outputs with Related Articles in Banking Industry Studies.  

Inputs/Outputs Description References 

𝑰𝟏: Regulatory Compliance Costs Expenses related to ensuring compliance with 

banking regulations and laws. 
[30],[31] 

𝑰𝟐: Marketing and Advertising Expense 

 

 
 

Costs related to advertising campaigns, promotional 

materials, and marketing strategies. 
[30],[31] 

𝑶𝟏: Investment Gains 

 

 
 

Revenue earned from returns on the bank's 

investments in stocks, bonds, and other financial 

instruments 

[30],[31] 

𝑶𝟐: Loan Interest Income 

 

 

Revenue generated from interest payments on loans 

provided to customers  
[30],[31] 

 

Our analysis focuses on assessing the individual efficiency scores of members within Group 

21 and subsequently determining the group efficiency score (GE) of Group 21. Table 2 presents 

the summary statistics of the data collected from the Iranian Mellat Bank branches. The data 

encompass two inputs (𝐼1 & 𝐼2) and two outputs (𝑂1 & 𝑂2).  

We employ the Data Envelopment Analysis (DEA) approach, specifically the DEA-CCR 

model, to assess the efficiency of the Mellat Bank branches. Additionally, we utilize the DEA-

BPNN model to enhance the accuracy of our predictions. 

Table. 2 Description of Data for 525 Mellat Bank Branches.  

 𝑰𝟏 𝑰𝟐 𝑶𝟏 𝑶𝟐 

Count 525 525 525 525 

Mean 4.8E+09 6.84E+09 3.59E+08 7.17E+09 

Std 1.59E+10 4.31E+10 2.06E+09 4.51E+10 

Min 22595676 15879188 -9.1E+09 12697732 

25% 7.63E+08 4.55E+08 45309186 5.06E+08 

50% 1.69E+09 1.24E+09 97692782 1.32E+09 



75% 3.75E+09 3.4E+09 2.28E+08 3.43E+09 

Max 2.91E+11 9.15E+11 4.12E+10 9.6E+11 

Table 3 presents the results of our analysis, including individual efficiency scores of members 

within Group 21 and the corresponding group efficiency scores. 

Table. 3 Prediction of AGE Using the BPNN-DEA Method. 

GRP DMUs DEA-CCR AGE DEA-BPNN AGE-BPNN P-Value 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group 21 

1 0.662  

 

 

 

 

 

 

 

 

 

 

 

 

0.675 

0.727  

 

 

 

 

 

 

 

 

 

 

 

 

0.707 

P<=0.001 

2 0.757 0.721 P<=0.001 

3 0.870  0.744 P<=0.001 

4 0.542  0.706 P<=0.001 

5 0.592  0.716 P<=0.001 

6 0.769  0.746 P<=0.001 

7 0.791 0.755 P<=0.001 

8 0.742  0.672 P<=0.001 

9 0.492  0.678 P<=0.001 

10 0.564  0.627 P<=0.001 

11 0.737  0.728 P<=0.001 

12 0.781  0.770 P<=0.001 

13 0.426  0.697 P<=0.001 

14 0.915  0.740 P<=0.001 

15 0.660  0.703 P<=0.001 

16 0.847  0.794 P<=0.001 

17 0.685  0.723 P<=0.001 

18 0.674  0.711 P<=0.001 

19 0.680  0.601 P<=0.001 

20 0.644  0.709 P<=0.001 

21 0.666  0.714 P<=0.001 

22 0.740  0.720 P<=0.001 

23 0.560  0.581  P<=0.001 

24 0.600  0.702  P<=0.001 

25 0.548  0.685 P<=0.001 
 

As depicted in Table 3, the DEA-CCR scores for individual branches within Group 21 range 

from 0.492 to 0.915, indicating varying levels of efficiency in resource utilization. 

Furthermore, the DEA-BPNN scores demonstrate slight variations compared to the DEA-CCR 

scores, suggesting the effectiveness of neural network-based modeling in capturing nuanced 

efficiency metrics.  

Notably, the p-values associated with the DEA-BPNN scores are all less than or equal to 0.001, 

indicating statistical significance and reinforcing the reliability of our findings.  

The results obtained from our empirical analysis provide valuable insights into the efficiency 

of Iranian Mellat Bank branches. By identifying and analyzing the efficiency scores of 



individual branches within Group 21, we gain a deeper understanding of the factors influencing 

bank performance. Moreover, the application of advanced modeling techniques such as DEA-

BPNN enhances the accuracy of our predictions, enabling more robust decision-making 

processes within the banking sector. In conclusion, our empirical application underscores the 

efficacy of Data Envelopment Analysis (DEA) methodologies in assessing the efficiency of 

Mellat Bank branches in Iran. Through meticulous analysis, we have elucidated the nuanced 

factors influencing bank performance, providing valuable insights for strategic management 

decisions. By accurately predicting individual and group efficiency scores, our approach equips 

bank managers with reliable metrics to inform decision-making processes. With a clearer 

understanding of resource allocation efficiency, managers can make informed strategic choices 

aimed at optimizing operations and enhancing overall bank performance.  

Moreover, our findings offer invaluable implications for risk management within the banking 

sector. By identifying inefficiencies and areas for improvement, banks can proactively mitigate 

risks and bolster their resilience in an increasingly competitive market landscape.  

In essence, our research not only contributes to enhancing the operational efficiency of Mellat 

Bank branches but also empowers managers with the tools and insights necessary to navigate 

challenges and capitalize on opportunities in the dynamic banking industry.  

 

5. Conclusion  

 

In this paper, we have applied Data Envelopment Analysis (DEA) in conjunction with 

Backpropagation Neural Network (BPNN) modeling to evaluate the efficiency of Mellat Bank 

branches in Iran. Through rigorous analysis of input-output relationships, we have provided 

valuable insights into the factors shaping bank performance. By accurately predicting 

individual and group efficiency scores, our approach equips bank managers with reliable 

metrics to drive strategic decision-making processes. The findings of this study offer actionable 

insights for optimizing resource allocation and enhancing overall bank performance. 

Additionally, they underscore the significance of advanced modeling techniques in capturing 

nuanced efficiency metrics within the banking sector. By leveraging DEA and BPNN 

methodologies, we have contributed to the empirical literature on bank efficiency evaluation 

and provided practical implications for strategic management in the banking industry.  
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