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Abstract  

Based on a modified higher order sandwich shell theory, the buckling behaviours of cylindrical sandwich shells are investigated. 

Sandwiches consist of two functionally graded face-sheets and a homogenous core in type-I and two homogeneous face-sheets and a 

functionally graded core in type-II. Functionally graded materials are varied gradually across the thickness based on a power law rule which 

modified by considering the even and uneven porosity distributions. All materials are temperature dependent. Nonlinear Von-Karman 

strain, thermal stresses in all layers and in-plane strain and transverse flexibility of the core are considered to obtain the governing 

equations based on the minimum potential energy principle. A Galerkin method is used to solve in simply supported and clamped boundary 

conditions under an axial in-plane compressive load. The results of the present method are compared with some literatures to verify the 

procedure. Also, the effect of variation of temperature, some geometrical parameters and porosities on the critical load are studied. 
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1. Introduction  

High performance and high bending rigidity with a low 

weight make the modern industries such as nuclear 

reactor, aerospace, marine, satellite, aircraft, sport devices 

and construction to use the sandwich structures which 

usually composed of two thin and stiff face sheets that 

cover a thick and soft core. To avoid the delamination, 

stress concentration and failure in the ordinary composite 

materials and laminates in the sandwich panels in high 

temperature conditions, functionally graded materials 

have been proposed by Japanese scientists which are in-

homogeneous microscopic materials and their properties 

vary across the thickness smoothly. But during the 

manufacturing the FGMs, some micro voids are appeared 

that affect the materials properties, so the porosity 

distributions should be considered to modify the models 

of FGMs. Also, the high temperature conditions affect the 

material properties, so it is important to consider the 

dependency of materials properties to the temperature 

(Rahmani, Mohammadi et al. 2019, Rahmani, 

Mohammadi et al. 2020).  

In the classical plate and shell theories, the core is 

considered as an inflexible layer, but to accurate 

investigation of the mechanical behavior of sandwich 

structures and detect some local modes, the core should 

be considered as a transversely flexible layer. So, the high 

order sandwich theory was presented (Frostig, Baruch et 

al. 1992). Many researchers have been studied the 

mechanical behaviors of cylindrical sandwich shells such 

as buckling and post-buckling by using different theories. 

Lopatin and Morozov presented the buckling analysis of 

fully clamped composite sandwich cylindrical shell 

subjected to uniform lateral pressure by using the 

Galerkin method (Lopatin and Morozov 2015). 

Shahgholian and Rahimi investigated the global buckling 

of composite cylindrical shells with lattice cores under 

uniaxial compression based on the smeared stiffener 

method and using Rayleigh-Ritz method (Ghahfarokhi 

and Rahimi 2018). Hieu et al. studied the buckling and 

postbuckling behavior of FGM sandwich cylindrical 

shells subjected to external pressure in thermal conditions 

based on the classical shell theory and using Galerkin 

method (Hieu and Tung 2021). Daikh studied the thermal 

buckling of FG sandwich cylindrical shell based on the 

Donnell theory. Material properties was modelled by 

sigmoid function and the thermal uniform, linear and 

nonlinear loads distributions were considered (Eslami, 

Eslami et al. 2018).Based on the Donnell shell theory and 

smeared technique, Nam et al. studied the nonlinear 

torsional buckling and postbuckling of sandwich FG 

cylindrical shells reinforced by stiffeners under thermal 

conditions (Nam, Phuong et al. 2019). Fallah and Taati 

studied the nonlinear bending and post-buckling of 

laminated sandwich cylindrical shells with isotropic, FG 

or isogrid core under the thermo-mechanical loadings and 

different boundary conditions (Fallah and Taati 2019). 

Balbin and Bisagni studied the buckling of sandwich 

cylindrical shells with composite face sheets and a 

deformable core (Balbin and Bisagni 2021). Based on the 

Donnell shell theory, Chan et al. studied the nonlinear 

buckling and postbuckling of imperfect FG porous 

sandwich cylindrical panels subjected to axial loading 

under various boundary conditions (Chan, Van Hoan et al. 
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2021). Hung et al. studied the nonlinear buckling and post 

buckling of spiral corrugated sandwich FG cylindrical 

shells under external pressure resting on the elastic 

foundation and based on the Donnell shell theory and 

using a Galerkin method to solve the problems (Tho 

Hung, Thuy Dong et al. 2020). Semenyuk et al. 

investigated the stability and initial post-buckling 

behavior of orthotropic cylindrical sandwich shells by 

asymptotic Koiter–Budiansky method (Semenyuk, Trach 

et al. 2019). Malekzadeh et al. studied the free vibration 

and buckling analysis of cylindrical sandwich panel with 

magneto rheological layer based on an improved higher 

order sandwich panel theory (MalekzadehFard, Gholami 

et al. 2017). Shatov et al. studied the buckling of 

sandwich cylindrical shell with composite lattice core 

under hydrostatic pressure based on a finite element 

method (Shatov, Burov et al. 2020). Nam et al. 

investigated the nonlinear buckling and post-buckling of 

FG porous circular cylindrical shells reinforced by 

orthogonal stiffeners resting on elastic foundation in 

thermal condition and under torsional load by using the 

classical shell theory (Nam and Trung 2019). Phuong et 

al. investigated the nonlinear stability of FG sandwich 

cylindrical shells with stiffeners under axial compression 

in thermal conditions based on the Donnell shell theory 

(Phuong, Nam et al. 2019). Han et al. studied the buckling 

behavior of cylinder shell with FGM coating under the 

thermal (Han, Wang et al. 2017). Evkin presented 

mathematical model of local buckling of cylindrical shells 

based on Pogorelov‟s geometrical method (Evkin 2019). 

Trablesi et al. studied the thermal buckling of FG plates 

and cylindrical shells by usisng a modified first order 

shear deformation theory (Trabelsi, Frikha et al. 2019). 

Mehralian and Beni studied the size-dependent torsional 

buckling behavior of FG cylindrical shell based on 

modified couple stress theory using shell model and GDQ 

method (Mehralian and Beni 2016). Fan studied the 

critical buckling load of compresses cylindrical shell 

based on the non-destructive probing method (Fan 2019). 

Sofiyev and Hui studied the vibration and stability of FG 

cylindrical shells under the external pressure based on the 

first order shear deformation theory and Galerkin method 

(Sofiyev and Hui 2019). Based on the Donnell shell 

theory, Gao et al. studied the dynamic stability behavior 

of FG orthotropic cylindrical shell resting on the elastic 

foundation (Gao, Gao et al. 2018). Sheng and Wang 

studied the dynamic stability and nonlinear vibration of 

stiffened FG cylindrical shell in thermal condition by 

using FSDT, smearing method and Bolotin method 

(Sheng and Wang 2018). Sofiyev et al. studied the effect 

of shear stresses and rotary inertia on the stability and 

vibration of sandwich cylindrical shells with FG core 

resting on the elastic medium based on the FSDT 

(Sofiyev, Hui et al. 2016). Asai et al. investigated the 

thermal instability of geometrically imperfect sandwich 

cylindrical shells under uniform heating based on the 

Brinson phenomenological model and third order shear 

deformation theory. The sandwich were made of FG face 

sheets and a SMA fiber reinforced composite core (Asadi, 

Akbarzadeh et al. 2015). 

By reviewing the accessible references, it‟s found that 

more investigation should be done in the critical load 

responses. To study the buckling behavior of two kinds of 

sandwich cylindrical shells in the uniform temperature 

distributions under the clamped and simply supported 

boundary conditions, a modified high order sandwich 

shell theory is used to detect the more accurate modes. In 

sandwich type-I, a homogeneous core is covered by FG 

face sheets, and in sandwich type-II, two homogeneous 

face sheets coat a FG core. A power law rule which 

modified by considering the even and uneven porosity 

distributions are used to model the gradually variation of 

the FGMs. Also, all materials are considered temperature 

dependent. In-plane stresses and high order stresses of the 

core, and thermal stresses and thermal stress resultants of 

the face-sheets and core, which usually ignored by the 

researchers, are considered in this paper. The equations 

are derived based on the minimum potential energy 

principle under an axial compression and nonlinear Von-

Karman strains are used. A Galerkin method is used to 

solve the equations. The effects of the temperature 

variation, some geometrical parameters and porosity 

variation on the critical load of sandwich beams are 

investigated, too. 

2. Formulation 

Consider two types of sandwich cylindrical shells which 

are shown in Fig.1. In sandwich type-I, a homogeneous 

core is covered by two porous FG face sheets, and in 

sandwich type-II the homogeneous face sheets cover a 

porous FG core.   

 
Fig .1. Schematic of various models of sandwich cylindrical 

shell 

All materials are temperature dependent which modelled 

as follows (Rahmani, Mohammadi et al. 2020): 
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where "P"s are coefficients of temperature, and they are 

unique for each material; T=T0+ΔT, which T0 is equal to 

300(K). A power law rule which consists of even porosity 

volume fraction is presented to model the FGM properties 

for type-I as follow (Rahmani, Mohammadi et al. 2020): 
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And the materials properties equation for sandwich type-

II is as follows (Rahmani, Mohammadi et al. 2020): 
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where "N" is the constant power law index; g(z) and [1-

g(z)] are volume fraction of ceramic and metal; "ζ" is the 

porosity distribution; and subscripts "o", "i" and "c" refer 

to outer and inner faces and the core, respectively. In the 

uneven case, the micro voids are spread in the middle area 

of the layers and decrease near to the edges and tend to 

the zero. So, power law rule in the uneven case for the 

type-I is modified as follows (Rahmani, Mohammadi et 

al. 2020): 
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And for In the type-II it is presented as follows (Rahmani, 

Mohammadi et al. 2020): 
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The minimum potential energy principle is used to obtain 

the governing equations of sandwich cylindrical shells 

which include potential of the external loads, “V”, and 

total strain energy, “U”; This principle is presented as 

follows (Rahmani, Mohammadi et al. 2019): 

 
(8) 

which “δ” denotes the variation operator. The variation of 

the total strain energy includes mechanical stresses and 

thermal stresses with nonlinear strains in the faces and 

core. The compatibility conditions rule as constraints 

which are attended as six Lagrange multipliers in the 

principle. By considering the in-plane stresses of the core, 

“δU” is as follows: 
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(9) 

where ζss, ζθθ and ηsθ display the in-plane normal and 

shear stresses; εss, εθθ and γsθ are the in plane normal and 

shear strains of the layers; ζ
T

ss and ζ
T

θθ express the 

thermal stresses; ζ
c
zz and ε

c
zz present the lateral normal 

stress and strain in the core; η
c
sz, η

c
θz, γ

c
sz and γ

c
θz declare 

shear stresses and shear strains in the core; and λs, λθ and 

λz are the Lagrange multipliers at the face sheet-core 

interfaces. It should be noted that the material properties 

in the functionally graded layers are the function of the 

displacement and the temperature, and in the 

homogeneous layers are just function of the temperature 

The variation of the external loads as follows (Rahmani 

and Dehghanpour 2020): 
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where “  
 
” and   

 
(j = o, i) are the displacements of the 

mid-plane of the face sheets in the longitudinal and 

vertical directions, respectively; “  
 
” are the in-plane 

external loads of the top and bottom face sheets; and, “  ” 

and “  ” are the vertical distributed loads applied on the 

top and bottom face sheets, respectively. 

The displacement fields of the face sheets are modelled by 

the first order shear deformation theory. 
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where subscript “0” expresses values in association with 

the middle surface of the layers; and "ϕ" is the rotation of 

the normal to the middle surface. The kinematic relations 

of the core are presented as cubic patterns which contain 

seven unknown coefficients as follows: 
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The nonlinear von Kármán strain-displacement relations 

for the face sheets (j=o, i) can be defined as (Rahmani, 

Mohammadi et al. 2019, Rahmani, Mohammadi et al. 

2020): 
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The"(),i" expresses derivation with respect to “i”. The 

strain of the core can be defined as: 
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It is assumed that core is perfectly bonded to the face 

sheets. So, the compatibility conditions between core and 

face-sheets which obtained by Lagrange multipliers in Eq. 

(9) are as follows: 
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Based on compatibility conditions, the displacements of 

the face-sheets are dependent to the core, so the unknown 

decrease to fifteen and the number of the governing 

equations are fifteen. 
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where 
( )cj

lN w
is defined as follows (Kheirikhah, Khalili 

et al. 2012): 
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“A”, “B” and “D” are the constant coefficients of 

stretching, the bending-stretching, and bending stiffness: 
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Also the strain components in the Eqs. (51-53) are defined 
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as: 
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It should be noted that 

2
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is the shear correction factor in 

FSDT. Also,    
  
    

  
    

  
 and    

  
 are the thermal stress 

resultants. “A” is the stretching stiffness; “B” is the 

bending-stretching stiffness; and “D” is the bending 

stiffness; which are constant coefficients and express as: 
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(60) 

On    where   (     ) ,   (     ) and   (     )          

are the modulus of elasticity, Poisson„s ratio and the 

thermal expansion coefficient of the FG face sheets, 

respectively, and introduced by power-law function of 

FGMs. "o" and "i" refer to the outer and inner face sheet 

layers, respectively. And also, twenty three stress 

resultants of the core are defined as: 
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where Finally, by substituting the high order stress 

resultants in terms of the kinematic relations, the 

equations are derived in terms of the nine unknowns.  

Eq. (50) can be rewritten as (Kheirikhah, Khalili et al. 

2012): 

, , ,

, , , , , ,

)

1 12

; ( , ,

ˆ

), (0,1,2)

ˆ ˆ(

ˆ ˆ ˆ

c j c j c

l ss s l s ss l ss

j c j c j c j c

s s l s l s l l

w w r w

w w w w
r

N

r

j o i c l

rN N

N N N N        



   



 

 

(67) 

where  ̂  
 
  ̂  

 
      ̂  

 
are the external in-plane loads 

exerted to the top and bottom face sheets and the core. 

Therefore 

, , ,
ˆ ˆ ˆ)( 2c j c j c j c

l ss l ss s l s lN Nw w w wN N       (68) 

The axial in-plane compressive loads,  ̂  
 

, are the parts of 

total external load,  ̂ , as follows: 

0
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ss ss ssN N N N     
(69) 

Hence, in this analysis, uniform state of strain for the face 

sheets and the core is assumed. At edges “s=0” or “s=L” 

and with a little simplification the equilibrium equations 

can be defined as: 
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where  ̅   is the equilibrium elasticity modulus of the 

layers that are defined as: 

 
2

2
; ( , , )

j

j

h

j j j

h

j

j

E z dz

E j o i c
h


 


 

(71) 

Hence, by using of Eq. (70) and (71), the external in-plane 

loads exerted to the face sheets and the core along the “s” 

direction can be obtained as: 
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3. Galerkin method 

A Galerkin procedure is applied to solve the governing 

equations of two types of FG sandwich cylindrical shells, 

with trigonometric shape functions, which satisfy the 

boundary conditions. The shape functions of simply 

supported boundary condition are expressed as follows: 

   0 cos ;   , ,k uk

m s
u C cos n k o i c

L

 
   

 

 

 

(73) 

 0 sink k

m s
C sin n

L


 
   

 

 

 

(74) 

 0 cosk wk

m s
w C sin n

L

 
  

 

 

 

(75) 

   cos ;    ,sjs

j m s
C cos n j o i

L


 
    

 

  (76) 

 cosj

j

m s
C cos n

L


 
   

 

 

 

(77) 

And the shape functions of the clamped boundary 

condition can be expressed as(Rahmani and Mohammadi 

2021): 
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which m  and m should satisfy the conditions as follow: 

cos .cosh 1m m  
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Nine where “
/ma m L 

”; “m” is the wave number and “

, ,uk wk jC C C ”are the nine unknown constants of the shape 

functions. These fifteen equations can be displayed with a 

15×15 matrix as follows: 

0( ) 0m mmk N G C  
 

(85) 

 



Mohsen Rahmani ,Younes Mohammadi, Mahdi Abtahi / Nonlinear buckling analysis of different types … 

 

30 

4. Verification and numerical method 

To verify the approach of this study, present results are 

compared with the results of the literatures  (Fard and 

Livani 2015), (Vodenitcharova and Ansourian 1996), 

(Shen 2003) and (Khazaeinejad and Najafizadeh 2010). 

Consider a simply supported metallic isotropic cylindrical 

shell with structural parameters such as h = 0.001m, 

L=2R, E=200 GPa and ν=0.3. These comparisons are 

shown in Table 1. 

 

Table 1 

Buckling pressure for cylindrical isotropic panel 

L/

R 

Presen

t study 

(Fard and 

Livani 

2015) 

(Vodenitchar

ova and 

Ansourian 

1996) 

(Shen 

2003) 

(Khazaei

nejad and 

Najafizad

eh 2010) 

0.5 2765.4 2768.1 2766.2 2761.4 2767.4 

1 1272.9 1272.0 1269.6 1272.6 1273.1 

2 611.7 611.6 607.3 611.7 611.7 

3 408.5 411.9 407.2 402.6 412.6 

Because, theory and solution method of the present 

analysis are different with reference [30], a discrepancy is 

found in the results. Now, another numerical problem will 

be discussed to more investigation the present approach. 

Consider two kinds of FG sandwich cylindrical shell. In 

type-I, the face sheets interior planes and the core are 

made of the zirconium dioxide and the outer planes of the 

faces are made of silicon nitride. In type-II, the interior 

plane of the core and inner face sheet are made of the 

zirconium dioxide and the outer plane of the core and 

outer face sheet are made of silicon nitride. The 

temperature-dependent properties of constituent materials 

which is introduced by Eq. (1) are available in reference 

(Reddy 2003). In general, “ht-hc-hb” sandwich shell is a 

structure with the indices of top face sheet thickness, core 

thickness and bottom face sheet thickness equal to “ht”, 

“hc” and “hb”, respectively. Therefore, in 1-8-1 sandwich, 

the thickness of the core is eight times of each face sheet 

thickness. For simplicity, the non-dimensional critical 

load parameter is defined as follows: 

0

910
cr

N
N 

 
(86) 

The material properties of structures are affected in high 

temperature conditions. Based on Eq. (1), increasing the 

temperature reduces the Young modulus and density of 

metal and ceramic. As a result, the strength of the panels 

reduces, which is an important reason in decreasing the 

critical load in high temperature conditions. Figure 2 

shows the critical parameter variation versus the 

temperature for two types of 1-8-1 FG sandwich 

cylindrical shell with simply supported (S-S) and clamped 

(C-C) boundary conditions. Geometrical parameters are 

“h=0.02m, R/h=50, L=2R”. By increasing the 

temperature, the critical load parameters decrease. As 

shown in Figure 2, when N=0, the FG layers are made of 

full ceramic, as a result, the stability and resistant against 

the high temperature conditions are more than the other 

values of “N”, so critical load parameters are higher than 

others. By increasing the power law index, “N”, the 

amount of the ceramic reduces in the structure which 

causes the young modulus of the FGM and the stability of 

the structures decrease. In 1-8-1 sandwich, the core 

thickness is eight times of the face sheet, so in sandwich 

type-II which has a FG core, the amount of the ceramic is 

more than the type-I. As a result, the stability and resistant 

of the type-II is higher than the type-I, so the critical load 

parameter of the type-II is higher. When N=2, in 

sandwiches type-I and type-II with simply supported 

boundary condition (S-S), the amount of the ceramic is 

low in the FG layers, so, in the high temperature the 

stability of the structure is low. The critical load 

parameters of simply supported boundary conditions in 

both types, are lower than the clamped (C-C) boundary 

conditions. Based on the Fig. 2, the sandwich type-II with 

the clamped boundary condition is most resistant 

sandwich in the high temperature environments. Also, in 

sandwich type-I (S-S), when “N=0”, by increasing the 

temperature, the critical load parameter decreases 39.94%, 

for “N=1” and “N=2” it decreases 45.15%, and 46.90%, 

respectively. In sandwich type-I (C-C), when “N=0”, by 

increasing the temperature, the critical load parameter 

decreases 46.59.%, for “N=1” and “N=2” it decreases 

50.92%, and 52.11%, respectively. And in sandwich type-

II (S-S), when “N=0”, by increasing the temperature, the 

critical load parameter decreases 17.14%, for “N=1” and 

“N=2” it decreases 28.97%, and 33.71%, respectively. 

And in sandwich type-II (C-C), when “N=0”, by 

increasing the temperature, the critical load parameter 

decreases 11.63%, for “N=1” and “N=2” it decreases 

24.90%, and 29.88%, respectively. As shown in the 

results, the sandwich type-II is proper than the type-I in 

the same boundary condition for using in the thermal 

conditions.  

 

a. sandwich Type-I (S-S) 
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b. sandwich Type-I (C-C) 

 

a. sandwich Type-II (S-S) 

 

b. sandwich Type-II (C-C) 

Fig .2. Critical load variation versus temperature in different 

types of sandwich cylindrical shell. 

Figure 3 shows the effect of radius to thickness ratio (R/h) 

on the critical load parameter for 1-8-1 FG sandwich 

cylindrrrical shell in the simply supported (S-S) and 

clamped (C-C) boundary conditions. Geometrical 

parameters are “h = 0.02m, T=300K, L=2R, m=1”. By 

increasing the R/h ratio in a constant “N”, the critical load 

parameter shows different behaviors in the sandwiches. In 

the (S-S) cases of both types of sandwiches, incresing the 

ratio has a negligable effect on the critical load, but in the 

(C-C) cases, first the critical load reduses and after a 

certain value of R/h, the critical load incrreases. This 

shows that the boundary condition has an impressive 

effect on the stability of the structure. In both type of 

sandwiches, the critical load parameter of (S-S) boundary 

conditions, are too lower than (C-C) ones. It has been 

shown that in a same boundary condition, the critical load 

parameters of sandwich type-I are lower than sandwich 

type-II. Since the thicknesses of the FG layers in 

sandwich type-II are higher than the sandwich type-I, 

increasing the power law index, N, has more effect on 

type-II. Also, it is obvious that, by increasing the power 

law index, “N”, the critical load parameters decrease. For 

example, in sandwich type-I (S-S), for ''R/h=50'', by 

increasing “N”, the critical load parameter decreases 

7.08%, and for “N=0”, by increasing this ratio, the critical 

load parameter decreases 0.14%. In sandwich type-I (C-

C), for ''R/h=50'', by increasing “N”, the critical load 

parameter decreases 5.60%, and for “N=0”, by increasing 

this ratio, first the critical load parameter decreases 

60.30%, then increases 18.06%. In sandwich type-II (S-

S), for ''R/h=50'', by increasing “N”, the critical load 

parameter decreases 20.41%, and for “N=0”, by 

increasing this ratio, the critical load decreases 0.168%. 

And, in sandwich type-II (C-C), for ''R/h=50'', by 

increasing “N”, the critical load parameter decreases 

24.39%, and for “N=0”, by increasing this ratio, first the 

critical load decreases 52.13%, then it increases 12.82%. 

 

a. sandwich Type-I (S-S) 

 

b. sandwich Type-I (C-C) 

 

a. sandwich Type-II (S-S) 
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b. sandwich Type-II (C-C) 
Fig .3. Critical load variation versus R/h ratio in different types 

of sandwich cylindrical shell. 

Figure 4 shows the variation of the core to face sheet 

thickness ratio, “hc/ho”, on the critical load parameter in 

various power law indices and in a constant total 

thickness. Geometrical parameters are “h=0.02m, 

T=300K, m=1, R/h=50, L=2R”. When “hc/ho=0.5”, it 

means the face sheets thicknesses are two times of the 

core thickness, so it shows the results of the 2-1-2 

sandwich. And, when “hc/ht=8”, it shows results of the 1-

8-1 sandwich. In the case of (S-S) of sandwich type-I, by 

increasing the ratio, the critical load decreases, and in the 

case of (C-C) of sandwich type-I, by increasing the ratio, 

it increases. In the case of (S-S) of type-II, by increasing 

the ratio, first the critical load increases, but in the higher 

value of N, the behavior of critical load changes and it 

decreases. In the case of (C-C) of sandwich type-II, the 

critical load increases for all value of N. In the (S-S) of 

sandwich type-I, and in 2-1-2 sandwich, by increasing the 

ratio, the amount of ceramic decreases and the structure 

becomes softer, so the critical load parameters decrease. 

Since in 1-8-1 sandwich, the amount of ceramic is lower 

than 2-1-2 one, it is clear that the critical load parameter is 

lower. But the results in (C-C) of sandwich type-I are 

different and the 1-8-1 sandwich has taken more critical 

load. In the 1-8-1 sandwich type-II, the amount of ceramic 

is the most. By increasing the ratio in a constant 

thickness, the amount of ceramic increases and the 

structure becomes stiffer, so the critical load parameters 

increase at lower gradient indices, especially in “N=0”. 

Since in 1-8-1 sandwich type-II, the amount of ceramic is 

more than 2-1-2 one, it is clear that the critical load 

parameter is higher. But in the case of (S-S) of sandwich 

type-II, from a certain value of the power law index, by 

increasing ratio, the critical load of the 2-1-2 becomes 

more than 1-8-1 sandwiches. By increasing the power law 

index in a constant thickness, ceramic quantity of FG 

layer decreases, so, for all values of “hc/ho”, the critical 

load parameters decrease for both types of sandwiches. 

For sandwich type-I (S-S), in “hc/ho=0.5”, the critical 

load parameter decreases 20.46% when “N” is increased, 

and in “hc/ho=8”, the critical load parameter decrease 

7.08. Also, for “N=0”, by increasing this ratio, the critical 

load decreases 28.22%, but for ''N=2'', it decreases 

16.14%. For sandwich type-I (C-C), in “hc/ho=0.5”, the 

critical load parameter decreases 24.76% when “N” is 

increased, and in “hc/ho=8”, the critical load parameter 

decrease 5.60%. Also, for “N=0”, by increasing this ratio, 

the critical load increases 9.84%, but for ''N=2'', it 

incrreases 28.14%. For sandwich type-II (S-S), in 

“hc/ho=0.5”, the critical load parameter decrease 5.41% 

when “N” is increased, and in “hc/ho=8”, the critical load 

parameter decrease 20.41%. Also, for “N=0”, by 

increasing this ratio, the critical load increases 5.74%, but 

for ''N=2'', it decreases 10.72%. For sandwich type-II (C-

C), in “hc/ho=0.5”, the critical load parameter decreases 

7.95% when “N” is increased, and in “hc/ho=8”, the 

critical load parameter decreases 24.39%. Also, for 

“N=0”, by increasing this ratio, the critical load increases 

23.37%, and for ''N=2'', it increase 6.71%. 

 

a. sandwich Type-I (S-S) 

 

b. sandwich Type-I (C-C) 

 

a. sandwich Type-II (S-S) 
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b. sandwich Type-II (C-C) 
Fig .4. Critical load variation versus “hc/ho” ratio in different 

types of sandwich cylindrical shell. 

Effect of the variation of the length to radius “L/R“, on 

the critical load parameter in various power law indices 

for different simply supported and clamped FG sandwich 

cylindrical shell is depicted in Figure 5. Geometrical 

parameters are “T=300K, m=1, R/h=50, h=0.02m”. In the 

(S-S) cases of both types of sandwich, by increasing the 

ratio, the critical load parameter increases. In the (C-C) 

case of both types of sandwich, the critical load parameter 

shows a oscillating behavior. The slope of increasing the 

critical load in the value of lower than 2 is sever for (S-S) 

sandwiches. For example, in (S-S) type-I, by increasing 

the ratio for N=0, the critical load increases 88.29% and 

in (S-S) type-II, it increases 88.44%.  

 
a. sandwich Type-I (S-S) 

 

b. sandwich Type-I (C-C) 

 

a. sandwich Type-II (S-S) 

 

b. sandwich Type-II (C-C) 

Fig .5. Critical load variation versus L/R ratio in different types 

of sandwich cylindrical shell. 

 

In order to clearly understand the porosity influence, Fig. 

6 and Fig. 7 show the effect of even and uneven porosity 

distributions on the critical load parameters of the 

different types of sandwich cylindrical shell, respectively. 

As shown in these figures, in both types of sandwiches, 

by increasing the porosity volume fraction, the critical 

load parameter decreases. These decreasing are stronger 

in the case of even porosity distribution in both 

sandwiches. In even distributions, porosities occur all 

over the cross-section of FG layer. While, in uneven 

distribution, porosities are available at middle zone of 

cross section. In sandwich type-I (S-S), and for the even 

case and “N=0”, by increasing the volume fraction of the 

porosity, the critical load decreases 12.51%, and in the 

uneven case in “N=0”, by increasing the volume fraction 

of the porosity, the critical load decreases 6.24%. In 

sandwich type-I (C-C), and for the even case and “N=0”, 

by increasing the volume fraction of the porosity, the 

critical load decreases 3.73%, and in the uneven case in 

“N=0”, by increasing the volume fraction of the porosity, 

the critical load decreases 1.52%. In sandwich type-II (S-

S), and for the even case and “N=0”, by increasing the 

volume fraction of the porosity, the critical load decreases 

30.81%, and in the uneven case in “N=0”, by increasing 

the volume fraction of the porosity, the critical load 

decreases 15.12%. And, in sandwich type-II (C-C), and 

for the even case and “N=0”, by increasing the volume 

fraction of the porosity, the critical load decreases 

25.08%, and in the uneven case in “N=0”, by increasing 

the volume fraction of the porosity, the critical load 
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decreases 11.61%. 

 

a. sandwich Type-I (S-S) 

 

b. sandwich Type-I (C-C) 

 

a. sandwich Type-II (S-S) 

 

b. sandwich Type-II (C-C) 

Fig .6. Critical load variation versus even porosity in 

different types of sandwich cylindrical shell. 

 

 

a. sandwich Type-I (S-S) 

 

b. sandwich Type-I (C-C) 

 

a. sandwich Type-II (S-S) 

 

b. sandwich Type-II (C-C) 

Fig .7. Critical load variation versus L/R ratio in different 

types of sandwich cylindrical shell. 
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5. Conclusion 

By applying a modified high-order sandwich shell theory 

and considering the high-order stress resultants and 

thermal stress resultants, in plane stresses and thermal 

stresses, and nonlinear strains in face-sheets and core, 

buckling behavior of two types of porous FG sandwich 

cylindrical shell which were temperature dependent was 

investigated in this paper. The displacement fields of the 

face-sheets and the core were considered based on the 

first order shear deformation theory and the polynomial 

distributions, respectively. A power law distribution 

which modified by considering even and uneven porosity 

distributions was used to model the material properties of 

the FG layers. The FG layers were location dependent too. 

The governing equations were obtained by minimum 

potential energy principal and solved by using Galerkin 

method for simply supported and clamped boundary 

condition. Also, a method was applied to reduce the 

number of the equations. Effects of temperature, 

thickness, radius, and porosities distributions on the 

critical load were discussed. The following conclusion 

can be drawn: 

 By increasing the temperature, the critical load 

parameters decrease. 

 By increasing the power law index, the critical 

load parameters decrease. 

 The stability of sandwich types-II is higher than 

type-I in the high temperature conditions. 

 The critical load parameters of the sandwiches 

with simply supported boundary conditions are 

lower than sandwiches with clamped (C-C) 

boundary conditions. 

 The sandwich type-II with the clamped boundary 

condition is most resistant sandwich in the high 

temperature environments. 

 Increasing the radius to thickness ratio has a very 

small effect on the critical load of (S-S) 

sandwiches, but in (C-C) sndwiches first it 

reduses and after aa certain value increases. It 

shows the effect of boundary conditions on the 

behavior of the structure. 

 Variation of the core to face-sheet thickness ratio 

has different effects on sandwiches.  

 By increasing the L/R ratio, the critical load 

parameters increases in (S-S) sandwiches and 

shows a oscillating beahvior in (C-C) 

sandwiches. 

 By increasing the porosity volume fraction in 

both even and uneven distributions, the critical 

load parameters decrease. Also, variation of 

critical load in even porosity case is more than 

uneven case. 
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