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Abstract–End-User Development (EUD) is a dynamic research area in computer science, 

focusing on empowering end-users to create and modify software through various approaches, 

constantly evolving with new methods and tools. To enhance end-user participation, research 

suggests developing user-friendly tools for end-users to design the UI, with the final source code 

derived from analyzing and automatically transforming this UI. Controlled natural language 

programming uses a limited version of a natural language for coding. This approach enhances 

programming accessibility by enabling end-users to code in a familiar language, maintaining the 

necessary precision and clarity. This research study the development of the CNUIML language and 

generation of an editor for it using Xtext. It delves into syntax error checking and target code 

generation using Xtext and Xtend. The CNUIML language is used to describe web application 

interfaces, focusing on system requirements and end-user concerns. Web applications consist of 

interconnected pages and forms, forming a tree of objects. Each application is a set of forms with 

specific value types and domains. In order to evaluate the usability of the designed tool, we have 

used a case study. This case study demonstrates the process of creating CNUIML models and 

generating the associated HTML codes using CNL2C.

 

Keywords: User interface description language, Model-driven user interface modeling, Xtext, 

Xtend, Automatic code generation 

 

 

 

1. Introduction 
 

Software development is a costly, complex process with 

the risk of not achieving the original goals, or with 

unusually high resource or time requirements. For this 

reason, many efforts have been made in research and 

development to reduce waste and increase the success rate 

of software projects[1]. 

According to one of the principles of Lean Thinking, the 

shorter the time span between the initial understanding of 

the problem and the presentation of a partial or final 

solution, the less the waste of resources and the higher the 

project success[2].In this regard, the new methods of 

software development are based on the agility of the 

development process and rely on a set of basic principles 

and guidelines. 

One of the approaches considered in the research 

literature to address the above challenge is to leverage the 

skills of experienced and capable users who are able to 

actively participate in the development process from the 

earliest stages and directly contribute to the development of 

the final result[3].End-User Development (EUD) is an 

emerging paradigm in software development that focuses 

on enabling end-users, who are not professional software 

developers, to create, modify, or extend software 

artifacts[4]. This can increase the flexibility and usability of 

software systems, and can also help to bridge the gap 

between end-users’ high domain knowledge and their 

limited programming expertise[5]. 

End-User Development (EUD) is an active research 

topic within the field of computer science and human-

computer interaction. Various EUD approaches exist, 

including natural language programming, spreadsheets, 

scripting languages (particularly in an office suite or art 

application), visual programming, trigger-action 

programming, and programming by example[6]. These are 

just a few examples of the many EUD approaches 

represented in research and literature. The field is 

constantly evolving as new methods and tools are 

developed to empower end-users to create and modify 

software artifacts. 

Model-driven software development (MDSE) is a 

software development approach that focuses on the use of 
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models as the primary artifacts of the development process. 

In MDSE, models are used to represent different aspects of 

the software system, such as its structure, behavior, and 

requirements. These models are then used to automatically 

generate code and other artifacts through model 

transformations. 

While MDSE can help to improve the quality of 

software systems by providing a high-level, abstract view 

of the system and enabling automated code generation, it is 

not typically considered an approach to End-User 

Development (EUD).EUD focuses on enabling end-users, 

who are not professional software developers, to create, 

modify, or extend software artifacts. This is achieved 

through a set of methods, techniques, and tools that are 

designed to be accessible and usable by non-professional 

developers. 

In contrast, MDSE typically requires a high level of 

expertise in modeling languages and model transformation 

techniques, which may not be accessible to end-users. 

However, it is possible that some aspects of MDSE could 

be incorporated into EUD approaches to provide additional 

support for end-users in creating and modifying software 

artifacts. 

Although standard transformation methods have been 

proposed in recent approaches to transform the initial and 

intermediate models into the final code, this still limits the 

end-user participation in the development process, because 

one of the main challenges is the difficulty of creating 

conceptual models by the end-user [7].  Most end users lack 

the necessary skills to develop such models. 

Controlled natural language programming has been the 

subject of research within the field of EUD, and various 

tools and techniques have been developed to support this 

approach. Controlled natural language programming is a 

type of natural language programming that uses a restricted 

subset of a natural language to express program instructions. 

This approach aims to make programming more accessible 

to end-users by allowing them to write programs using a 

language that is familiar to them, while still providing the 

precision and unambiguity required for programming. 

A controlled natural modeling language for form-based 

software development is presented in [8] by the authors.To 

develop this modeling language, the MDA approach has 

been used. 

Model Driven Architecture (MDA) is a software design 

approach for the development of software systems that falls 

under the umbrella of Model-Driven Software Engineering 

(MDSE)[9].MDA provides a set of guidelines for the 

structuring of specifications, which are expressed as models. 

It supports model-driven engineering of software systems 

and is a kind of domain engineering. MDA was launched by 

the Object Management Group (OMG) in 2001. In MDA, 

models are created at varying levels of abstraction, from a 

conceptual view down to the smallest implementation detail. 

OMG literature speaks of three such levels of abstraction,

or architectural viewpoints: the Computation-independent 

Model (CIM), the Platform-independent model (PIM), and 

the Platform-specific model (PSM). The CIM describes a 

system conceptually, the PIM describes the computational 

aspects of a system without reference to the technologies 

that may be used to implement it, and the PSM provides the 

technical details necessary to implement the system.

Today’s user interfaces (UIs) are complex software 

components, which play an essential role in the usability of 

an application. A user interface model is a representation of 

how the end user interacts with a computer program or 

another device and also how the system responds. In many 

software projects, a lot of time is spent on user interface 

development (UI). Research in the early 1990s found that 

about 48% of source code and 50% of application 

development time was spent implementing user interfaces 

[10]. These figures are still acceptable today, especially 

given the increasing demand for graphical and web-based 

user interfaces [11]. Therefore, one of the ideas pursued in 

the research literature to increase end-user participation in 

the development process is the development of an easy-to-

use tool that allows the end-user to design the user interface 

of the final product. Based on this method, the final source 

code is obtained from the analysis and automatic 

transformation of this user interface[12].

Model-based development has also influenced the 

development of web applications in the last decades. In [8], 

we investigated the development of rich Internet 

applications using user interface models. User interface is 

the critical factor for web application adoption[13].In this 

research we want to investigate the development of a tool 

for modeling the user interface of form-based web 

applications using EMF and Xtext Language. This tool 

supports controlled natural language described in [8].

The Eclipse Modeling Framework (EMF) is a modeling 

framework and code generation facility for building tools 

and other applications based on a structured data model. 

EMF is a powerful tool for building tools and applications 

based on structured data models. It provides a flexible and 

extensible framework that can be used to develop a wide 

range of applications. EMF is commonly used as a standard 

for UI frameworks, and support for transformations [14].

Xtext is an open-source software framework for 

developing programming languages and domain-specific 

languages (DSLs). Unlike standard parser generators, Xtext
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generates not only a parser, but also a class model for the 

abstract syntax tree, as well as providing a fully featured, 

customizable Eclipse-based IDE. Xtext is being developed 

in the Eclipse Project as part of the Eclipse Modeling 

Framework Project and is licensed under the Eclipse Public 

License.

The Xtext tool is an open source framework for 

programming language development and specifically for 

the DSLs that can be used to define a language using a 

powerful grammar language. As a result, we have a 

complete infrastructure, including parser, linker, type 

checker, compiler, as well as editing support for Eclipse and 

any other editor that supports the language server protocol 

and a web browser [15].

The main contributions of this research are as follows:

• We have developed a controlled natural modeling

language based on CNUIML meta-model as a user 

interface modeling language using Xtext, to enable 

end-user  describe the initial   description of 

functional requirements.

• We describe how source code in HTML & CSS is 

generated from user interface model 

automatically.

The structure of this paper is as follows, we provide an 

overview of the research community's efforts to create 

appropriate frameworks and tools for the development of 

the model-driven user interface design tools and its 

transformation into final code in Section 2. In Section 3, we 

present an overview of CNUIML, which is presented in [8] 

by authors. Then, in Section 4 we describe the CNL2C, an 

editor for CNUIML created by Xtext and EMF. To evaluate 

the usability of CNL2C, in Section 5 we implement the user 

interface of a sample system (case study) using the 

described language. In Section 6 we discuss the capabilities,

shortcomings, and weaknesses of CNL2C make suggestions 

for improving the current solution and strategies for 

developing and extending the capabilities of the current 

research.

 

2. Related works 

 

Various approaches to modeling user interfaces have 

been proposed in the literature. Model-based user interface 

development environments (MB-UIDE) approach consists 

of a method to generate UIs from a set of declarative and 

high-level models and the necessary supporting tools to 

assist the modeling task and/or the automatic generation of 

the UI[11]. Other approaches include Domain modeling, 

Navigation modeling and Task modeling. 

MDE has been applied to user interface development to 

increase the level of abstraction, improve the management 

of complexity and evolution, and maximize productivity. 

Model-Driven User Interface Development (MDUID) 

support the efficient development of user interfaces through 

the use of abstract modeling and transformation to final 

user interfaces. Widely studied approaches include 

UsiXML, MARIA, and IFML[16].

User interface modeling languages can be categorized 

into two main types: textual and graphical. Textual 

modeling languages use standardized keywords 

accompanied by parameters or natural language terms and 

phrases to make computer-interpretable expressions. An 

example of a textual modeling language is EXPRESS, 

which is both a graphical and textual modeling language. 

Graphical modeling languages use a diagram technique 

with named symbols that represent concepts and lines that 

connect the symbols and represent relationships and various 

other graphical notation to represent constraints. Some 

examples of graphical user interface modeling languages 

include MARIA XML, UMLi, UsiXML, DiaMODL, 

Himalia, and IFML.

IFML is a powerful tool for modeling user interactions 

and front-end behavior in software systems. It provides a 

flexible and extensible framework that can be used to 

develop a wide range of applications. The focus of IFML is 

on the structure and behavior of the application as 

perceived by the end user. IFML was developed in 2012 

and 2013 under the lead of WebRatio and was inspired by 

the WebML notation, as well as by a few other experiences 

in the Web modeling field. It was adopted as a standard by 

the Object Management Group (OMG) in March 2013.

Erazo-Garzón et al.[17] show that, articles on MDE 

applied to the UI began to be published starting in 2005. 

They claimed (70.59%) of article apply the models only at 

design time to increase the abstraction and automation of 

the UI artifact development process and 45.10% of studies 

are focused on the web. Several studies (39.22%) aligned 

with the Model-Driven Architecture (MDA). Almost half of 

the studies (45.10%) suggested a DSL tool and only 35.29%

suggested model-to-text conversion. Most of the tools used 

by researchers to build DSLs are EMF (Eclipse Model 

Framework) and only a few of them have used Xtext. The 

approaches studied, generate the code of the target UI 

artifacts mostly in languages such as Java, JavaScript and 

HTML, and Python, C++, C\#, Objective-C, XAML, 

ASP.NET languages are less used. The results show that the 

papers that carried out a case study represent 31.37% and 

76.47% represent the research papers developed in an 

academic environment.

A textual domain-specific language and a corresponding 

meta-model introduced by Mart to describe user interaction
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using abstract UI patterns that can be transformed into more 

platform specific UI patterns during application 

generation[18].

Language and metamodels consist of separate parts that 

describes the aspects and levels of detail of the interactive 

elements provided to the system users during each 

interaction step and all the possible interactions provided by 

the user interface.

The primary goal of user interface description language 

is to capture the sets or partitions of user interface elements 

that are made available to system users during each 

interaction step. Interaction elements referenced in the 

language are represented as abstract patterns. The most 

basic abstract patterns including data entry, secure data 

entry, list of selectable items and event firing. The authors 

of the article demonstrate the grammar definition using the 

Xtext DSL grammar definition and suggests that the model 

can be transformed into both a graphical user interface and 

a conversational user interface, such as a voice or command 

line but How the AUI is transformed to the FUI model is 

not described.

Lachgar and Abdali, in [19] proposed a new approach to 

UI design for mobile applications that would be generalized 

to all mobile platforms and web-based components, by 

defining a single language, completely shared for GUI 

development, called Technology Neutral DSL. Their 

approach proposes an Android GUI meta-model to design a 

graphical user interface model of an Android application. 

Then M2M (Model to Model) and M2T (Model to Text) 

transformations are applied to generate GUI code targeting 

a specific platform. They generate their DSL with Xtext and 

validate its semantics using the Xtend stub automatically 

generated by Xtext. They have also done model-to-model 

and model-to-text transformation based on their DSL using 

Xtend.

In[20], the MDA approach is used to build a textual user 

interface modeling language. The architecture is structured 

in three main levels: At level 1, the development of mobile 

metamodels is addressed. This meta-model takes into 

account graphical user interface modeling, navigating 

between screens, menus, multimedia components, events, 

component types (date, text, email, number, etc.), the 

container, configuration files, and resources needed to run 

an application. Level 2 describes how to develop PIM-

mobile. After defining the meta-model, we can create a 

textual model that represents the mobile app. In this step, 

validation for the model have implemented. In level 3 code 

generator was built. The code generator consists of two

main blocks: The transformation of PIM-Mobile to PSM 

using Xtend 2 and Projection to generate the source code 

from the resulting PSM. The templates were developed 

using Xtend 2.  

In[21], the authors suggest using the meta-model to 

represent and specify the most common GUI (Graphical 

User Interface) elements in mobile platforms. They define a 

new DSL, described through this meta-model that allow 

developers to design platform-independent mobile apps. A 

code generation engine defined and implemented to 

generate native code on different platforms. Metamodels 

are defined in UML. The proposed DSL grammar is 

inspired by the previous PIM meta-model and is defined in 

Xtext. The starting Xtext rule of the DSL is the Application 

rule. The screen rule (referenced from the application rule) 

describes a page. This rule also contains one or more 

element rules. The element rule delegates to a Container 

rule or ( | ) a Widget rule. A container rule describes a 

container element that is used to contain other elements on 

the screen, including other containers. Widget rules are 

used to describe a generic graphic element, which can be 

contained by a screen or a container. It can be Button, 

InputText, RadioButton, etc. In this article, authors focus on 

generating code for the Android operating system that 

transforms each component of the application designed 

using the defined DSL, into its corresponding component(s) 

in the Android platform. This transformation from the PIM 

meta-model to the Android meta-model is released with the 

Xtend 2 templates. 

As the literature review shows, the Eclipse Modeling 

Framework (EMF) in combination with Xtext and Xtend is 

currently the state of the art for developing MDE 

infrastructures. 

Xtext allows the creation of domain-specific modeling 

languages in the form of EBNF-style grammars. Based on 

the concrete syntax that can be specified in an Xtext 

grammar, a text-based editor can be generated automatically. 

All generated editors have syntax highlighting, auto-

completion and model validation. To allow for custom 

extensions, the generated plugin structures allow the 

implementation of additional features such as editor 

quickfixes, validation rules, and formatters. The generated 

skeleton files allow an uncomplicated start for 

infrastructure developers. A popular solution for the 

realization of template-based generators with metamodel 

support is provided by the Xtend framework, which 

perfectly matches grammar-based DSL solutions created 

with Xtext[22]. 

Ceri, S et al have presented WebML, a modeling 

language for website design. This language is based on 
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XML syntax rules and graphical notation. This language 

includes a set of structural models to specify the website 

data, the composition model that assembles the website 

pages, the navigation model that shows the link between 

pages, the presentation model that specifies the layout and 

graphics requirements for page creation, and the 

personalization model that specifies the personalization 

features for one-to-one content delivery[23]. 

Bernardi et al. presented M3D (Model Driven 

Development with Declare), a tool that contains three 

metamodels representing the main components of a web 

application. These metamodels are provided along with a 

declarative language, DECLARE, for modeling business 

processes. This article describes the structure of a Web 

application in four layers: Information, Service, 

Presentation and Process. UML notation is used to describe 

the metamodel of each of the above layers. A DSL is used 

to describe the models of each layer. In the code generation 

step, the transformation of the models into the final code 

based on the MVC pattern based on the J2EE framework is 

completed using the Xpand language[24]. 

Sabraoui et al. have proposed an MDA-based model-

driven approach to automatically generate GUIs for mobile 

applications. They describe the approach in four steps, 

including: GUI analysis and modeling using UML, 

transforming models to XMI files using JDOM API, model-

to-model transformation using the ATL language to convert 

PIM models to PSM, and using the Xpand language to 

transform the model to text and generate the final code[25]. 

 

Table 1.Comparison of the features of Xtext, DSL Forge, Spoofax, 

and JetBrains MPS

 
 

Xtext 
DSL 

Forge 
Spoofax 

JetBrains 

MPS 

Syntax 

Highlighting 
Yes Yes Yes Yes 

Syntax 

Validation 
Yes Yes Yes Yes 

Content 

Assist/Code 

Completion 

Yes Yes Yes Yes 

Semantic 

Validation 
Yes 

Server-

side 
Yes Yes 

Code 

Refactoring 
Yes No No Yes 

Error Checking Yes Yes Yes Yes 

Quick Fixes Yes No No Yes 

Debugging of 

DSLs 
Yes No No Yes 

Language 

Versioning 
Yes No No Yes 

Code Folding Yes Yes No Yes 

Text Hovering Yes Yes No Yes 

Brace 

Matching 
Yes Yes No No 

Scoping Yes Yes Yes Yes 

Generators Yes Yes Yes Yes 

 

 

There are some graphical editor tools similar to Xtext 

that can be utilized for developing an editor for a Domain-

Specific Language (DSL). DSL Forge , Spoofax , Jetbrains 

MPS are among these tools and also text-based formats 

created with Xtext can be combined with GEF, Sirius or 

Graphiti too.These tools can be compared in terms of 

different factors. Table 1 compares the most important 

features of these tools. 

 

3. CNUIML (Controlled Natural User Interface 

Modeling Language) Overview 
 

In [8] , authors described a controlled metalanguage that 

closely resembles natural language and can be used to 

describe user interface elements. This language includes 

features such as grouping data items into entities, defining 

relationships between entities, and automatically 

recognizing data types based on sample values or 

descriptive expressions. 

CNUIML is created based on a meta-meta-model to 

describe the user interface of a web application. Some 

features of the user interface of web applications are 

defined by business analysts, software system designers, or 

programmers, and the focus in the CNUIML is on features 

related to the main requirements of the system and the 

concerns of the end user. The most web applications consist 

of interconnected pages and forms, and each page may 

contain containers or sub-containers with related data items. 

This structure forms a tree of objects, where each node is a 

form, a sub-container, or a data item representing a single 

value or a set of values. 

The meta-model for a web application, excluding 

navigation, event, action, and modularization UI features, 

consists of four elements: Form, Sub-form (container or 

subspace), Data item, and Domain range and type of values. 

Each web application is a set of forms containing data items 

with specific value types and domains. Forms can have zero 

or more associated sub-forms, with a one-to-many 

relationship between forms and sub-forms. 

The range and type of data values can be specified using 

a limited or unlimited set of specific data types or by 

referring to data items in other forms or lists of 

homogeneous data items. Acceptable data types include 

integers, decimals, dates, times, letters, character strings, 

logical values, emails, and binary arrays like images and 

attachments. 

The CNUIML meta-model is described using the Xtext 
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method. Figure1 shows part of the grammar of the language. 

 
 

Fig. 1.A section of the grammar of CNUIML 

 

Each application is viewed as a project with a unique 

identifier or name, encompassing a collection of forms for 

data display, input, and modification. This collection of 

forms is a series of statements that outline the forms and 

their associated sub-forms, concluding with "End of Form". 

The project ID commences with a legitimate alphabetical 

character and may comprise both letters and numbers.

The form's description starts with "Form of", followed by 

the form's descriptive ID, and further elaborates after "as". 

In order to describe the form, the descriptive expressions of 

the data items are provided first, followed by the placement 

of the sub-forms' description. The descriptive ID of each 

statement's form consists of valid letters, with spaces 

permitted in between them.

To describe data items, two attributes are necessary: the 

label or name of the data item and a sample of its valid 

values that define the type and value range. The "::" symbol 

is utilized to distinguish these two parts.

The valid value range of a data item can encompass one 

or more (a set) of distinct values. These individual values 

could be either limited or unlimited. For instance, "Man" 

represents a single value, "Man, Woman" signifies a finite 

set of values, and "Bachelor, MA, Ph.D.,..." denotes an 

infinite set of values. Permitted values include date, time, 

numbers, literal strings, email, logical values, and binary 

values. Binary values pertain to images or other 

attachments that can be uploaded in binary format.

To illustrate the value range of an expression, we employ 

one or more value ranges depicted as "start..end", where 

"start" signifies the minimum value and "end" represents 

the maximum value of the range. Date, time, and numbers 

are acceptable values for the start and end of the range.

In certain instances, the valid value range of a data item 

is confined to the set of values present in other project 

entities. Referential expressions are utilized to portray these 

types of ranges, which refer to the name or label of a data

item from another project form. 

The definition of sub-forms mirrors that of the form and 

includes the title of the sub-form and the title of the 

referenced form. The sub-form maintains a one-to-many 

relationship with the main form. The titles of the data 

elements of the sub-form can be a subset of the titles of the 

data items of the referenced form or all of them. The same 

descriptive expression is employed in the description of the 

data elements of the sub-forms as in the description of the 

forms. 

 

4. CNL2C (Controlled Natural Language to Code) 

Tool 

 

CNL2C is a full feature editor for CNUIML developed 

using Xtext. In this section, we describe the features of this 

tool and how to develop it. To generate a full-featured 

editor for a Domain Specific Language (DSL) using Xtext, 

we should implement features such as syntax 

highlighting,content assist,validation and quick fixes. These 

features are essential for creating a user-friendly and 

efficient editor for a DSL. Xtext provides a comprehensive 

set of tools and extensions to help developer implement 

these features and more.

To generate the editor, we should follow these steps: 

define the DSL, generate the language infrastructure, create 

the editor,customize the editor features and generate the 

editor. As mentioned in Section 3, the CNUIML domain-

specific language is described using the Xtext language. 

The generator will then produce a parser, an AST-meta 

model (which is implemented in EMF), and a 

comprehensive Eclipse Text Editor based on our definition. 

We used Xtext to construct the language framework, which 

encompasses the parser, compiler, and all other essential 

elements. This can be accomplished by executing the Xtext 

generator. Xtext provides a default editor with syntax 

highlighting, content assist, and other basic features. Figure 

2 shows a view of the Eclipse environment containing the 

DSL definition and the infrastructure created by the code 

generator.
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tool. We have also explored the detection of syntax errors 

and the generation of target code using Xtext and 

Xtend.Xtext, as a powerful framework, not only automates 

the creation of stub codes for validation and formatting but 

also manages entity scope. Furthermore, it facilitates the 

generation of target code. The generated code can then be 

customized and extended as per the requirements of the 

specific project or application.  

The generation of transformation rules to extract 

equivalent models like Interaction Flow Modeling 

Language (IFML) or abstract models such as Unified 

Modeling Language (UML) class diagrams and task models 

is indeed a promising area of future research. Furthermore, 

the validation of these transformation rules is another 

important aspect that needs to be considered. This would 

ensure that the transformed models accurately represent the 

original models. Various validation techniques, such as 

simulation, formal verification, or empirical studies, could 

be employed for this purpose.The extraction of database 

code and the implementation of Create, Read, Update, and 

Delete (CRUD) operations, as well as the development of 

services and business logic layers, present a rich area for 

exploration and research. 
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