
 CNL2C: An Editor, Syntax Checker and Code Generator for CNUIML using Xtext and Xtend

8

CNL2C: An Editor, Syntax Checker and Code

Generator for CNUIML using Xtext and Xtend

H.Bahri

1
, H.Motameni

2*
, B.Barzegar

3

Abstract–End-User Development (EUD) is a dynamic research area in computer science,

focusing on empowering end-users to create and modify software through various approaches,

constantly evolving with new methods and tools. To enhance end-user participation, research

suggests developing user-friendly tools for end-users to design the UI, with the final source code

derived from analyzing and automatically transforming this UI. Controlled natural language

programming uses a limited version of a natural language for coding. This approach enhances

programming accessibility by enabling end-users to code in a familiar language, maintaining the

necessary precision and clarity. This research study the development of the CNUIML language and

generation of an editor for it using Xtext. It delves into syntax error checking and target code

generation using Xtext and Xtend. The CNUIML language is used to describe web application

interfaces, focusing on system requirements and end-user concerns. Web applications consist of

interconnected pages and forms, forming a tree of objects. Each application is a set of forms with

specific value types and domains. In order to evaluate the usability of the designed tool, we have

used a case study. This case study demonstrates the process of creating CNUIML models and

generating the associated HTML codes using CNL2C.

Keywords: User interface description language, Model-driven user interface modeling, Xtext,

Xtend, Automatic code generation

1. Introduction

Software development is a costly, complex process with

the risk of not achieving the original goals, or with

unusually high resource or time requirements. For this

reason, many efforts have been made in research and

development to reduce waste and increase the success rate

of software projects[1].

According to one of the principles of Lean Thinking, the

shorter the time span between the initial understanding of

the problem and the presentation of a partial or final

solution, the less the waste of resources and the higher the

project success[2].In this regard, the new methods of

software development are based on the agility of the

development process and rely on a set of basic principles

and guidelines.

One of the approaches considered in the research

literature to address the above challenge is to leverage the

skills of experienced and capable users who are able to

actively participate in the development process from the

earliest stages and directly contribute to the development of

the final result[3].End-User Development (EUD) is an

emerging paradigm in software development that focuses

on enabling end-users, who are not professional software

developers, to create, modify, or extend software

artifacts[4]. This can increase the flexibility and usability of

software systems, and can also help to bridge the gap

between end-users’ high domain knowledge and their

limited programming expertise[5].

End-User Development (EUD) is an active research

topic within the field of computer science and human-

computer interaction. Various EUD approaches exist,

including natural language programming, spreadsheets,

scripting languages (particularly in an office suite or art

application), visual programming, trigger-action

programming, and programming by example[6]. These are

just a few examples of the many EUD approaches

represented in research and literature. The field is

constantly evolving as new methods and tools are

developed to empower end-users to create and modify

software artifacts.

Model-driven software development (MDSE) is a

software development approach that focuses on the use of

1 Department of Computer Engineering, Babol Branch, Islamic Azad

University, Babol, Iran. Email:h.bahri@iausari.ac.ir

2* Corresponding Author :Department of Computer Engineering, Sari

Branch, Islamic Azad University, Sari, Iran.

Email:h_motameni@yahoo.com

3Department of Computer Engineering, Babol Branch, Islamic Azad

University, Babol, Iran. Email:barzegar.behnam@yahoo.com

Received: 2024.04.05; Accepted: 2024.06.09

Journal of Applied Dynamic Systems and Control,Vol.7, No.2, 2024: 8-18

9

models as the primary artifacts of the development process.

In MDSE, models are used to represent different aspects of

the software system, such as its structure, behavior, and

requirements. These models are then used to automatically

generate code and other artifacts through model

transformations.

While MDSE can help to improve the quality of

software systems by providing a high-level, abstract view

of the system and enabling automated code generation, it is

not typically considered an approach to End-User

Development (EUD).EUD focuses on enabling end-users,

who are not professional software developers, to create,

modify, or extend software artifacts. This is achieved

through a set of methods, techniques, and tools that are

designed to be accessible and usable by non-professional

developers.

In contrast, MDSE typically requires a high level of

expertise in modeling languages and model transformation

techniques, which may not be accessible to end-users.

However, it is possible that some aspects of MDSE could

be incorporated into EUD approaches to provide additional

support for end-users in creating and modifying software

artifacts.

Although standard transformation methods have been

proposed in recent approaches to transform the initial and

intermediate models into the final code, this still limits the

end-user participation in the development process, because

one of the main challenges is the difficulty of creating

conceptual models by the end-user [7]. Most end users lack

the necessary skills to develop such models.

Controlled natural language programming has been the

subject of research within the field of EUD, and various

tools and techniques have been developed to support this

approach. Controlled natural language programming is a

type of natural language programming that uses a restricted

subset of a natural language to express program instructions.

This approach aims to make programming more accessible

to end-users by allowing them to write programs using a

language that is familiar to them, while still providing the

precision and unambiguity required for programming.

A controlled natural modeling language for form-based

software development is presented in [8] by the authors.To

develop this modeling language, the MDA approach has

been used.

Model Driven Architecture (MDA) is a software design

approach for the development of software systems that falls

under the umbrella of Model-Driven Software Engineering

(MDSE)[9].MDA provides a set of guidelines for the

structuring of specifications, which are expressed as models.

It supports model-driven engineering of software systems

and is a kind of domain engineering. MDA was launched by

the Object Management Group (OMG) in 2001. In MDA,

models are created at varying levels of abstraction, from a

conceptual view down to the smallest implementation detail.

OMG literature speaks of three such levels of abstraction,

or architectural viewpoints: the Computation-independent

Model (CIM), the Platform-independent model (PIM), and

the Platform-specific model (PSM). The CIM describes a

system conceptually, the PIM describes the computational

aspects of a system without reference to the technologies

that may be used to implement it, and the PSM provides the

technical details necessary to implement the system.

Today’s user interfaces (UIs) are complex software

components, which play an essential role in the usability of

an application. A user interface model is a representation of

how the end user interacts with a computer program or

another device and also how the system responds. In many

software projects, a lot of time is spent on user interface

development (UI). Research in the early 1990s found that

about 48% of source code and 50% of application

development time was spent implementing user interfaces

[10]. These figures are still acceptable today, especially

given the increasing demand for graphical and web-based

user interfaces [11]. Therefore, one of the ideas pursued in

the research literature to increase end-user participation in

the development process is the development of an easy-to-

use tool that allows the end-user to design the user interface

of the final product. Based on this method, the final source

code is obtained from the analysis and automatic

transformation of this user interface[12].

Model-based development has also influenced the

development of web applications in the last decades. In [8],

we investigated the development of rich Internet

applications using user interface models. User interface is

the critical factor for web application adoption[13].In this

research we want to investigate the development of a tool

for modeling the user interface of form-based web

applications using EMF and Xtext Language. This tool

supports controlled natural language described in [8].

The Eclipse Modeling Framework (EMF) is a modeling

framework and code generation facility for building tools

and other applications based on a structured data model.

EMF is a powerful tool for building tools and applications

based on structured data models. It provides a flexible and

extensible framework that can be used to develop a wide

range of applications. EMF is commonly used as a standard

for UI frameworks, and support for transformations [14].

Xtext is an open-source software framework for

developing programming languages and domain-specific

languages (DSLs). Unlike standard parser generators, Xtext

 CNL2C: An Editor, Syntax Checker and Code Generator for CNUIML using Xtext and Xtend

10

generates not only a parser, but also a class model for the

abstract syntax tree, as well as providing a fully featured,

customizable Eclipse-based IDE. Xtext is being developed

in the Eclipse Project as part of the Eclipse Modeling

Framework Project and is licensed under the Eclipse Public

License.

The Xtext tool is an open source framework for

programming language development and specifically for

the DSLs that can be used to define a language using a

powerful grammar language. As a result, we have a

complete infrastructure, including parser, linker, type

checker, compiler, as well as editing support for Eclipse and

any other editor that supports the language server protocol

and a web browser [15].

The main contributions of this research are as follows:

• We have developed a controlled natural modeling

language based on CNUIML meta-model as a user

interface modeling language using Xtext, to enable

end-user describe the initial description of

functional requirements.

• We describe how source code in HTML & CSS is

generated from user interface model

automatically.

The structure of this paper is as follows, we provide an

overview of the research community's efforts to create

appropriate frameworks and tools for the development of

the model-driven user interface design tools and its

transformation into final code in Section 2. In Section 3, we

present an overview of CNUIML, which is presented in [8]

by authors. Then, in Section 4 we describe the CNL2C, an

editor for CNUIML created by Xtext and EMF. To evaluate

the usability of CNL2C, in Section 5 we implement the user

interface of a sample system (case study) using the

described language. In Section 6 we discuss the capabilities,

shortcomings, and weaknesses of CNL2C make suggestions

for improving the current solution and strategies for

developing and extending the capabilities of the current

research.

2. Related works

Various approaches to modeling user interfaces have

been proposed in the literature. Model-based user interface

development environments (MB-UIDE) approach consists

of a method to generate UIs from a set of declarative and

high-level models and the necessary supporting tools to

assist the modeling task and/or the automatic generation of

the UI[11]. Other approaches include Domain modeling,

Navigation modeling and Task modeling.

MDE has been applied to user interface development to

increase the level of abstraction, improve the management

of complexity and evolution, and maximize productivity.

Model-Driven User Interface Development (MDUID)

support the efficient development of user interfaces through

the use of abstract modeling and transformation to final

user interfaces. Widely studied approaches include

UsiXML, MARIA, and IFML[16].

User interface modeling languages can be categorized

into two main types: textual and graphical. Textual

modeling languages use standardized keywords

accompanied by parameters or natural language terms and

phrases to make computer-interpretable expressions. An

example of a textual modeling language is EXPRESS,

which is both a graphical and textual modeling language.

Graphical modeling languages use a diagram technique

with named symbols that represent concepts and lines that

connect the symbols and represent relationships and various

other graphical notation to represent constraints. Some

examples of graphical user interface modeling languages

include MARIA XML, UMLi, UsiXML, DiaMODL,

Himalia, and IFML.

IFML is a powerful tool for modeling user interactions

and front-end behavior in software systems. It provides a

flexible and extensible framework that can be used to

develop a wide range of applications. The focus of IFML is

on the structure and behavior of the application as

perceived by the end user. IFML was developed in 2012

and 2013 under the lead of WebRatio and was inspired by

the WebML notation, as well as by a few other experiences

in the Web modeling field. It was adopted as a standard by

the Object Management Group (OMG) in March 2013.

Erazo-Garzón et al.[17] show that, articles on MDE

applied to the UI began to be published starting in 2005.

They claimed (70.59%) of article apply the models only at

design time to increase the abstraction and automation of

the UI artifact development process and 45.10% of studies

are focused on the web. Several studies (39.22%) aligned

with the Model-Driven Architecture (MDA). Almost half of

the studies (45.10%) suggested a DSL tool and only 35.29%

suggested model-to-text conversion. Most of the tools used

by researchers to build DSLs are EMF (Eclipse Model

Framework) and only a few of them have used Xtext. The

approaches studied, generate the code of the target UI

artifacts mostly in languages such as Java, JavaScript and

HTML, and Python, C++, C\#, Objective-C, XAML,

ASP.NET languages are less used. The results show that the

papers that carried out a case study represent 31.37% and

76.47% represent the research papers developed in an

academic environment.

A textual domain-specific language and a corresponding

meta-model introduced by Mart to describe user interaction

Journal of Applied Dynamic Systems and Control,Vol.7, No.2, 2024: 8-18

11

using abstract UI patterns that can be transformed into more

platform specific UI patterns during application

generation[18].

Language and metamodels consist of separate parts that

describes the aspects and levels of detail of the interactive

elements provided to the system users during each

interaction step and all the possible interactions provided by

the user interface.

The primary goal of user interface description language

is to capture the sets or partitions of user interface elements

that are made available to system users during each

interaction step. Interaction elements referenced in the

language are represented as abstract patterns. The most

basic abstract patterns including data entry, secure data

entry, list of selectable items and event firing. The authors

of the article demonstrate the grammar definition using the

Xtext DSL grammar definition and suggests that the model

can be transformed into both a graphical user interface and

a conversational user interface, such as a voice or command

line but How the AUI is transformed to the FUI model is

not described.

Lachgar and Abdali, in [19] proposed a new approach to

UI design for mobile applications that would be generalized

to all mobile platforms and web-based components, by

defining a single language, completely shared for GUI

development, called Technology Neutral DSL. Their

approach proposes an Android GUI meta-model to design a

graphical user interface model of an Android application.

Then M2M (Model to Model) and M2T (Model to Text)

transformations are applied to generate GUI code targeting

a specific platform. They generate their DSL with Xtext and

validate its semantics using the Xtend stub automatically

generated by Xtext. They have also done model-to-model

and model-to-text transformation based on their DSL using

Xtend.

In[20], the MDA approach is used to build a textual user

interface modeling language. The architecture is structured

in three main levels: At level 1, the development of mobile

metamodels is addressed. This meta-model takes into

account graphical user interface modeling, navigating

between screens, menus, multimedia components, events,

component types (date, text, email, number, etc.), the

container, configuration files, and resources needed to run

an application. Level 2 describes how to develop PIM-

mobile. After defining the meta-model, we can create a

textual model that represents the mobile app. In this step,

validation for the model have implemented. In level 3 code

generator was built. The code generator consists of two

main blocks: The transformation of PIM-Mobile to PSM

using Xtend 2 and Projection to generate the source code

from the resulting PSM. The templates were developed

using Xtend 2.

In[21], the authors suggest using the meta-model to

represent and specify the most common GUI (Graphical

User Interface) elements in mobile platforms. They define a

new DSL, described through this meta-model that allow

developers to design platform-independent mobile apps. A

code generation engine defined and implemented to

generate native code on different platforms. Metamodels

are defined in UML. The proposed DSL grammar is

inspired by the previous PIM meta-model and is defined in

Xtext. The starting Xtext rule of the DSL is the Application

rule. The screen rule (referenced from the application rule)

describes a page. This rule also contains one or more

element rules. The element rule delegates to a Container

rule or (|) a Widget rule. A container rule describes a

container element that is used to contain other elements on

the screen, including other containers. Widget rules are

used to describe a generic graphic element, which can be

contained by a screen or a container. It can be Button,

InputText, RadioButton, etc. In this article, authors focus on

generating code for the Android operating system that

transforms each component of the application designed

using the defined DSL, into its corresponding component(s)

in the Android platform. This transformation from the PIM

meta-model to the Android meta-model is released with the

Xtend 2 templates.

As the literature review shows, the Eclipse Modeling

Framework (EMF) in combination with Xtext and Xtend is

currently the state of the art for developing MDE

infrastructures.

Xtext allows the creation of domain-specific modeling

languages in the form of EBNF-style grammars. Based on

the concrete syntax that can be specified in an Xtext

grammar, a text-based editor can be generated automatically.

All generated editors have syntax highlighting, auto-

completion and model validation. To allow for custom

extensions, the generated plugin structures allow the

implementation of additional features such as editor

quickfixes, validation rules, and formatters. The generated

skeleton files allow an uncomplicated start for

infrastructure developers. A popular solution for the

realization of template-based generators with metamodel

support is provided by the Xtend framework, which

perfectly matches grammar-based DSL solutions created

with Xtext[22].

Ceri, S et al have presented WebML, a modeling

language for website design. This language is based on

 CNL2C: An Editor, Syntax Checker and Code Generator for CNUIML using Xtext and Xtend

12

XML syntax rules and graphical notation. This language

includes a set of structural models to specify the website

data, the composition model that assembles the website

pages, the navigation model that shows the link between

pages, the presentation model that specifies the layout and

graphics requirements for page creation, and the

personalization model that specifies the personalization

features for one-to-one content delivery[23].

Bernardi et al. presented M3D (Model Driven

Development with Declare), a tool that contains three

metamodels representing the main components of a web

application. These metamodels are provided along with a

declarative language, DECLARE, for modeling business

processes. This article describes the structure of a Web

application in four layers: Information, Service,

Presentation and Process. UML notation is used to describe

the metamodel of each of the above layers. A DSL is used

to describe the models of each layer. In the code generation

step, the transformation of the models into the final code

based on the MVC pattern based on the J2EE framework is

completed using the Xpand language[24].

Sabraoui et al. have proposed an MDA-based model-

driven approach to automatically generate GUIs for mobile

applications. They describe the approach in four steps,

including: GUI analysis and modeling using UML,

transforming models to XMI files using JDOM API, model-

to-model transformation using the ATL language to convert

PIM models to PSM, and using the Xpand language to

transform the model to text and generate the final code[25].

Table 1.Comparison of the features of Xtext, DSL Forge, Spoofax,

and JetBrains MPS

Xtext
DSL

Forge
Spoofax

JetBrains

MPS

Syntax

Highlighting
Yes Yes Yes Yes

Syntax

Validation
Yes Yes Yes Yes

Content

Assist/Code

Completion

Yes Yes Yes Yes

Semantic

Validation
Yes

Server-

side
Yes Yes

Code

Refactoring
Yes No No Yes

Error Checking Yes Yes Yes Yes

Quick Fixes Yes No No Yes

Debugging of

DSLs
Yes No No Yes

Language

Versioning
Yes No No Yes

Code Folding Yes Yes No Yes

Text Hovering Yes Yes No Yes

Brace

Matching
Yes Yes No No

Scoping Yes Yes Yes Yes

Generators Yes Yes Yes Yes

There are some graphical editor tools similar to Xtext

that can be utilized for developing an editor for a Domain-

Specific Language (DSL). DSL Forge , Spoofax , Jetbrains

MPS are among these tools and also text-based formats

created with Xtext can be combined with GEF, Sirius or

Graphiti too.These tools can be compared in terms of

different factors. Table 1 compares the most important

features of these tools.

3. CNUIML (Controlled Natural User Interface

Modeling Language) Overview

In [8] , authors described a controlled metalanguage that

closely resembles natural language and can be used to

describe user interface elements. This language includes

features such as grouping data items into entities, defining

relationships between entities, and automatically

recognizing data types based on sample values or

descriptive expressions.

CNUIML is created based on a meta-meta-model to

describe the user interface of a web application. Some

features of the user interface of web applications are

defined by business analysts, software system designers, or

programmers, and the focus in the CNUIML is on features

related to the main requirements of the system and the

concerns of the end user. The most web applications consist

of interconnected pages and forms, and each page may

contain containers or sub-containers with related data items.

This structure forms a tree of objects, where each node is a

form, a sub-container, or a data item representing a single

value or a set of values.

The meta-model for a web application, excluding

navigation, event, action, and modularization UI features,

consists of four elements: Form, Sub-form (container or

subspace), Data item, and Domain range and type of values.

Each web application is a set of forms containing data items

with specific value types and domains. Forms can have zero

or more associated sub-forms, with a one-to-many

relationship between forms and sub-forms.

The range and type of data values can be specified using

a limited or unlimited set of specific data types or by

referring to data items in other forms or lists of

homogeneous data items. Acceptable data types include

integers, decimals, dates, times, letters, character strings,

logical values, emails, and binary arrays like images and

attachments.

The CNUIML meta-model is described using the Xtext

Journal of Applied Dynamic Systems and Control,Vol.7, No.2, 2024: 8-18

13

method. Figure1 shows part of the grammar of the language.

Fig. 1.A section of the grammar of CNUIML

Each application is viewed as a project with a unique

identifier or name, encompassing a collection of forms for

data display, input, and modification. This collection of

forms is a series of statements that outline the forms and

their associated sub-forms, concluding with "End of Form".

The project ID commences with a legitimate alphabetical

character and may comprise both letters and numbers.

The form's description starts with "Form of", followed by

the form's descriptive ID, and further elaborates after "as".

In order to describe the form, the descriptive expressions of

the data items are provided first, followed by the placement

of the sub-forms' description. The descriptive ID of each

statement's form consists of valid letters, with spaces

permitted in between them.

To describe data items, two attributes are necessary: the

label or name of the data item and a sample of its valid

values that define the type and value range. The "::" symbol

is utilized to distinguish these two parts.

The valid value range of a data item can encompass one

or more (a set) of distinct values. These individual values

could be either limited or unlimited. For instance, "Man"

represents a single value, "Man, Woman" signifies a finite

set of values, and "Bachelor, MA, Ph.D.,..." denotes an

infinite set of values. Permitted values include date, time,

numbers, literal strings, email, logical values, and binary

values. Binary values pertain to images or other

attachments that can be uploaded in binary format.

To illustrate the value range of an expression, we employ

one or more value ranges depicted as "start..end", where

"start" signifies the minimum value and "end" represents

the maximum value of the range. Date, time, and numbers

are acceptable values for the start and end of the range.

In certain instances, the valid value range of a data item

is confined to the set of values present in other project

entities. Referential expressions are utilized to portray these

types of ranges, which refer to the name or label of a data

item from another project form.

The definition of sub-forms mirrors that of the form and

includes the title of the sub-form and the title of the

referenced form. The sub-form maintains a one-to-many

relationship with the main form. The titles of the data

elements of the sub-form can be a subset of the titles of the

data items of the referenced form or all of them. The same

descriptive expression is employed in the description of the

data elements of the sub-forms as in the description of the

forms.

4. CNL2C (Controlled Natural Language to Code)

Tool

CNL2C is a full feature editor for CNUIML developed

using Xtext. In this section, we describe the features of this

tool and how to develop it. To generate a full-featured

editor for a Domain Specific Language (DSL) using Xtext,

we should implement features such as syntax

highlighting,content assist,validation and quick fixes. These

features are essential for creating a user-friendly and

efficient editor for a DSL. Xtext provides a comprehensive

set of tools and extensions to help developer implement

these features and more.

To generate the editor, we should follow these steps:

define the DSL, generate the language infrastructure, create

the editor,customize the editor features and generate the

editor. As mentioned in Section 3, the CNUIML domain-

specific language is described using the Xtext language.

The generator will then produce a parser, an AST-meta

model (which is implemented in EMF), and a

comprehensive Eclipse Text Editor based on our definition.

We used Xtext to construct the language framework, which

encompasses the parser, compiler, and all other essential

elements. This can be accomplished by executing the Xtext

generator. Xtext provides a default editor with syntax

highlighting, content assist, and other basic features. Figure

2 shows a view of the Eclipse environment containing the

DSL definition and the infrastructure created by the code

generator.

Fig.

S

text, validating expressions and generating the final

code

Stub codes can be generated using both Java and Xtend.

Figure 3 shows how these snippets are used to add new

lines to form definitions. The setNewLines method ensures

that at least and preferably one and at most two new lines

are adde

The code editor's built

numerous validations, which are governed by the syntax

rules defined in the language.

based on syntax rules can be extremely challenging or even

unfeasible due to the limitations of parser evaluation.In the

CNUIML language, the parser is unable to validate whether

the lower and upper

definition are of the same type.Such validations are checked

through the use of stub codes.

type validation stub code for the upper and lower

boundaries of a Range

Fig.

14

Fig. 2.A view of the Eclipse environment containing the DSL definition

Stub codes are automatically generated for formatting

text, validating expressions and generating the final

code,after running the project in the

Stub codes can be generated using both Java and Xtend.

Figure 3 shows how these snippets are used to add new

lines to form definitions. The setNewLines method ensures

that at least and preferably one and at most two new lines

are added at the end of each form definition.

The code editor's built

numerous validations, which are governed by the syntax

rules defined in the language.

based on syntax rules can be extremely challenging or even

unfeasible due to the limitations of parser evaluation.In the

CNUIML language, the parser is unable to validate whether

the lower and upper

definition are of the same type.Such validations are checked

through the use of stub codes.

type validation stub code for the upper and lower

boundaries of a Range

Fig. 4.Data type validation stub code for the uppe

 CNL2C: An

view of the Eclipse environment containing the DSL definition

tub codes are automatically generated for formatting

text, validating expressions and generating the final

fter running the project in the

Stub codes can be generated using both Java and Xtend.

Figure 3 shows how these snippets are used to add new

lines to form definitions. The setNewLines method ensures

that at least and preferably one and at most two new lines

d at the end of each form definition.

Fig. 3.Form formatter stub code

The code editor's built-in features are used to carry out

numerous validations, which are governed by the syntax

rules defined in the language.

based on syntax rules can be extremely challenging or even

unfeasible due to the limitations of parser evaluation.In the

CNUIML language, the parser is unable to validate whether

the lower and upper bounds

definition are of the same type.Such validations are checked

through the use of stub codes.

type validation stub code for the upper and lower

boundaries of a Range.

ata type validation stub code for the uppe

CNL2C: An Editor, Syntax

view of the Eclipse environment containing the DSL definition

tub codes are automatically generated for formatting

text, validating expressions and generating the final

fter running the project in the Eclipse environment

Stub codes can be generated using both Java and Xtend.

Figure 3 shows how these snippets are used to add new

lines to form definitions. The setNewLines method ensures

that at least and preferably one and at most two new lines

d at the end of each form definition.

Form formatter stub code

in features are used to carry out

numerous validations, which are governed by the syntax

rules defined in the language. However, certain validations

based on syntax rules can be extremely challenging or even

unfeasible due to the limitations of parser evaluation.In the

CNUIML language, the parser is unable to validate whether

 in the RangeValues da

definition are of the same type.Such validations are checked

through the use of stub codes.Figure 4, illustrates the data

type validation stub code for the upper and lower

ata type validation stub code for the upper and lower boundaries

yntax Checker and

view of the Eclipse environment containing the DSL definition

tub codes are automatically generated for formatting

text, validating expressions and generating the final

Eclipse environment

Stub codes can be generated using both Java and Xtend.

Figure 3 shows how these snippets are used to add new

lines to form definitions. The setNewLines method ensures

that at least and preferably one and at most two new lines

d at the end of each form definition.

Form formatter stub code

in features are used to carry out

numerous validations, which are governed by the syntax

However, certain validations

based on syntax rules can be extremely challenging or even

unfeasible due to the limitations of parser evaluation.In the

CNUIML language, the parser is unable to validate whether

in the RangeValues data type

definition are of the same type.Such validations are checked

Figure 4, illustrates the data

type validation stub code for the upper and lower

r and lower boundaries

Checker and Code Generator for CNUIML using Xtext and Xtend

view of the Eclipse environment containing the DSL definition

tub codes are automatically generated for formatting

text, validating expressions and generating the final

Eclipse environment.

Stub codes can be generated using both Java and Xtend.

Figure 3 shows how these snippets are used to add new

lines to form definitions. The setNewLines method ensures

that at least and preferably one and at most two new lines

in features are used to carry out

numerous validations, which are governed by the syntax

However, certain validations

based on syntax rules can be extremely challenging or even

unfeasible due to the limitations of parser evaluation.In the

CNUIML language, the parser is unable to validate whether

ta type

definition are of the same type.Such validations are checked

Figure 4, illustrates the data

type validation stub code for the upper and lower

r and lower boundaries

The code

the Range's upper and lower

type.

types of values within a

the same data type. If a value of a different data type is

detected within the set, a syntax error will be

The code

the

in the set

error is

When implementing the semantics of a DSL,

on defining how the language behaves

systems

The process of

Language (DSL) into the

is an essential aspect of implementing the language’s

semantics.

CSS

should adhere to the semantics defined by the DSL. During

code generation, DSL constructs (such as DSL expressions

or statements)

target language.

Accor

CNUIML is classified as a Platform Independent Model

(PIM). To generate the final code, it needs to be

transformed into a platform

PIM can be transformed into various distinct platform

spec

based web application model, which can be implemented in

different ways. Table 2 illustrates the sample used by the

researchers, demonstrating how CNUIML language

elements map to the chosen platform

elements.

enerator for CNUIML using Xtext and Xtend

The code shows

the Range's upper and lower

type. Figure 5

types of values within a

the same data type. If a value of a different data type is

detected within the set, a syntax error will be

The code shows

the first value with the data types of all subsequent values

in the set. The moment a mismatch is detected, a syntax

error is generated

Fig. 5.Validating the data types of values within a set

When implementing the semantics of a DSL,

on defining how the language behaves

ystems, reduction

The process of

Language (DSL) into the

is an essential aspect of implementing the language’s

semantics. This step involves generating code (e.g.

CSS, Python) from DSL programs

should adhere to the semantics defined by the DSL. During

code generation, DSL constructs (such as DSL expressions

or statements) is mapped

target language.

According to MDA (Model

CNUIML is classified as a Platform Independent Model

(PIM). To generate the final code, it needs to be

transformed into a platform

PIM can be transformed into various distinct platform

specific models. In our research, we focused on the form

based web application model, which can be implemented in

different ways. Table 2 illustrates the sample used by the

researchers, demonstrating how CNUIML language

elements map to the chosen platform

elements.

enerator for CNUIML using Xtext and Xtend

of a Range

shows that a syntax error will be

the Range's upper and lower boundsare not

Figure 5 shows the process of validating the data

types of values within a set. All values in a set

the same data type. If a value of a different data type is

detected within the set, a syntax error will be

shows the method of comparing the data type of

value with the data types of all subsequent values

. The moment a mismatch is detected, a syntax

generated.

alidating the data types of values within a set

When implementing the semantics of a DSL,

on defining how the language behaves

eduction rules, interpreters

The process of transforming

Language (DSL) into the source

is an essential aspect of implementing the language’s

This step involves generating code (e.g.

, Python) from DSL programs

should adhere to the semantics defined by the DSL. During

code generation, DSL constructs (such as DSL expressions

is mapped to corresponding constructs in the

ding to MDA (Model

CNUIML is classified as a Platform Independent Model

(PIM). To generate the final code, it needs to be

transformed into a platform

PIM can be transformed into various distinct platform

ific models. In our research, we focused on the form

based web application model, which can be implemented in

different ways. Table 2 illustrates the sample used by the

researchers, demonstrating how CNUIML language

elements map to the chosen platform

enerator for CNUIML using Xtext and Xtend

of a Range

that a syntax error will be

boundsare not

the process of validating the data

. All values in a set

the same data type. If a value of a different data type is

detected within the set, a syntax error will be

the method of comparing the data type of

value with the data types of all subsequent values

. The moment a mismatch is detected, a syntax

alidating the data types of values within a set

When implementing the semantics of a DSL,

on defining how the language behaves that

nterpreters, transformation

transforming code in a Domain

source code in the target language

is an essential aspect of implementing the language’s

This step involves generating code (e.g.

, Python) from DSL programs. The generated code

should adhere to the semantics defined by the DSL. During

code generation, DSL constructs (such as DSL expressions

to corresponding constructs in the

ding to MDA (Model-Driven Architecture),

CNUIML is classified as a Platform Independent Model

(PIM). To generate the final code, it needs to be

transformed into a platform-specific model (PS

PIM can be transformed into various distinct platform

ific models. In our research, we focused on the form

based web application model, which can be implemented in

different ways. Table 2 illustrates the sample used by the

researchers, demonstrating how CNUIML language

elements map to the chosen platform

enerator for CNUIML using Xtext and Xtend

that a syntax error will be displayed

boundsare not of the same data

the process of validating the data

. All values in a set must be of

the same data type. If a value of a different data type is

detected within the set, a syntax error will be generated

the method of comparing the data type of

value with the data types of all subsequent values

. The moment a mismatch is detected, a syntax

alidating the data types of values within a set

When implementing the semantics of a DSL, we focus

that includes t

ransformation rules

code in a Domain-Specific

code in the target language

is an essential aspect of implementing the language’s

This step involves generating code (e.g., HTML

The generated code

should adhere to the semantics defined by the DSL. During

code generation, DSL constructs (such as DSL expressions

to corresponding constructs in the

Driven Architecture),

CNUIML is classified as a Platform Independent Model

(PIM). To generate the final code, it needs to be

specific model (PSM). Any

PIM can be transformed into various distinct platform

ific models. In our research, we focused on the form

based web application model, which can be implemented in

different ways. Table 2 illustrates the sample used by the

researchers, demonstrating how CNUIML language

elements map to the chosen platform-specific model

displayed if

same data

the process of validating the data

must be of

the same data type. If a value of a different data type is

generated.

the method of comparing the data type of

value with the data types of all subsequent values

. The moment a mismatch is detected, a syntax

focus

type

ules.

Specific

code in the target language

is an essential aspect of implementing the language’s

HTML,

The generated code

should adhere to the semantics defined by the DSL. During

code generation, DSL constructs (such as DSL expressions

to corresponding constructs in the

Driven Architecture),

CNUIML is classified as a Platform Independent Model

(PIM). To generate the final code, it needs to be

). Any

PIM can be transformed into various distinct platform-

ific models. In our research, we focused on the form-

based web application model, which can be implemented in

different ways. Table 2 illustrates the sample used by the

researchers, demonstrating how CNUIML language

ific model

Table

CNUIML Meta Model (PIM)

Project

Form.name

Form

Form

Form statements

Statement

Expression

Statement.name

A

into a platform

platformspecific implementation depends entirely on the

execution environment and the target language.

shows the mapping table of CNUIML language

components to HTML5 language.

Table

Web Form Application Meta

Project Home Page

Link to Web Form

Web Form Home Page

Web Form

Submit Button

Field Groups

Field Group

Input Component

Label

In the context of MDA (Model

MDE (Model

transformation plays a crucial role.

converting a model into a text document, adhering to a

specific metamodel. The resulting text document can serve

various purposes, such as source code, documentation, or

configuration scripts. Typically, this transformation is

achieve

model elements into textual content. These templates are

often expressed using a

Language is a programming language designed to process

and generate structured text. Within T

specific structures allow repetitive actions to be performed

on all elements of the source model. The resulting text

output considers the features of these elements while

accounting for necessary conditions.

the fina

These codes can be in Java or Xtend language.

employs its unique template language for code generation.

Journal of

Table 2. Mapping

CNUIML Meta Model (PIM)

Project

Form.name

Form

Form

Form statements

Statement

Expression

Statement.name

Any platform

into a platform

platformspecific implementation depends entirely on the

execution environment and the target language.

shows the mapping table of CNUIML language

components to HTML5 language.

Table 3.mapping table of CNUIML language components to HTML5

Web Form Application Meta

Model (PSM)

Project Home Page

Link to Web Form

Web Form Home Page

Web Form

Submit Button

Field Groups

Field Group

Input Component

Label

In the context of MDA (Model

MDE (Model-Driven Engineering), M2T (Model

transformation plays a crucial role.

converting a model into a text document, adhering to a

specific metamodel. The resulting text document can serve

various purposes, such as source code, documentation, or

configuration scripts. Typically, this transformation is

achieved by defining templates that specify how to translate

model elements into textual content. These templates are

often expressed using a

Language is a programming language designed to process

and generate structured text. Within T

specific structures allow repetitive actions to be performed

on all elements of the source model. The resulting text

output considers the features of these elements while

accounting for necessary conditions.

the final code

These codes can be in Java or Xtend language.

employs its unique template language for code generation.

Journal of Applied Dynamic Systems and Control,V

 table of CNUIML language components to

application model

CNUIML Meta Model (PIM)

ny platform-specific model

into a platform-specific implementation (PSI).

platformspecific implementation depends entirely on the

execution environment and the target language.

shows the mapping table of CNUIML language

components to HTML5 language.

mapping table of CNUIML language components to HTML5

languag

Web Form Application Meta

Model (PSM)

Web Form Home Page

In the context of MDA (Model

Driven Engineering), M2T (Model

transformation plays a crucial role.

converting a model into a text document, adhering to a

specific metamodel. The resulting text document can serve

various purposes, such as source code, documentation, or

configuration scripts. Typically, this transformation is

d by defining templates that specify how to translate

model elements into textual content. These templates are

often expressed using a template

Language is a programming language designed to process

and generate structured text. Within T

specific structures allow repetitive actions to be performed

on all elements of the source model. The resulting text

output considers the features of these elements while

accounting for necessary conditions.

 are automatically generated using

These codes can be in Java or Xtend language.

employs its unique template language for code generation.

Applied Dynamic Systems and Control,V

table of CNUIML language components to

application model

Web Form Application Meta

Model (PSM)

Project Home Page

Link to Web Form

Web Form Home Page

Web Form

Field Groups

Field Group

Input Component

Label

specific model (PSM) can be transformed

specific implementation (PSI).

platformspecific implementation depends entirely on the

execution environment and the target language.

shows the mapping table of CNUIML language

components to HTML5 language.

mapping table of CNUIML language components to HTML5

language

HTML Web Page Meta Model

(PSI)

<html> tag

<a> tag

<html> tag

<form> tag

<input> tag

<table> tag

<tr> tag

<input> tag

<label> tag

In the context of MDA (Model-Driven Architecture) or

Driven Engineering), M2T (Model

transformation plays a crucial role. This process involves

converting a model into a text document, adhering to a

specific metamodel. The resulting text document can serve

various purposes, such as source code, documentation, or

configuration scripts. Typically, this transformation is

d by defining templates that specify how to translate

model elements into textual content. These templates are

template language

Language is a programming language designed to process

and generate structured text. Within Template Language,

specific structures allow repetitive actions to be performed

on all elements of the source model. The resulting text

output considers the features of these elements while

accounting for necessary conditions. Stub codes

are automatically generated using

These codes can be in Java or Xtend language.

employs its unique template language for code generation.

Applied Dynamic Systems and Control,V

table of CNUIML language components to web form

Web Form Application Meta

Model (PSM)

Project Home Page

Link to Web Form

Web Form Home Page

Input Component

can be transformed

specific implementation (PSI). The

platformspecific implementation depends entirely on the

execution environment and the target language. Table

shows the mapping table of CNUIML language

mapping table of CNUIML language components to HTML5

HTML Web Page Meta Model

(PSI)

Driven Architecture) or

Driven Engineering), M2T (Model-to-Text)

This process involves

converting a model into a text document, adhering to a

specific metamodel. The resulting text document can serve

various purposes, such as source code, documentation, or

configuration scripts. Typically, this transformation is

d by defining templates that specify how to translate

model elements into textual content. These templates are

language. Template

Language is a programming language designed to process

emplate Language,

specific structures allow repetitive actions to be performed

on all elements of the source model. The resulting text

output considers the features of these elements while

Stub codesto generate

are automatically generated using Xtext

These codes can be in Java or Xtend language. Xtend

employs its unique template language for code generation.

Applied Dynamic Systems and Control,Vol

web form

can be transformed

The

platformspecific implementation depends entirely on the

Table3

shows the mapping table of CNUIML language

mapping table of CNUIML language components to HTML5

Driven Architecture) or

Text)

This process involves

converting a model into a text document, adhering to a

specific metamodel. The resulting text document can serve

various purposes, such as source code, documentation, or

configuration scripts. Typically, this transformation is

d by defining templates that specify how to translate

model elements into textual content. These templates are

Template

Language is a programming language designed to process

emplate Language,

specific structures allow repetitive actions to be performed

on all elements of the source model. The resulting text

output considers the features of these elements while

to generate

Xtext.

Xtend

employs its unique template language for code generation.

Unlike typical template languages, Xtend stands out by

supporting grayspace. This distinctive feat

a potent tool for code generation within the realms of MDE

(Model

Architecture)

the mapping table.

for

languageprogram.

Fig.

The method iterates over all elements (e) in the resource

that are of type Form. For each Form element, it constructs

an HTML link. The filename is derived from the fully

qualified name of the Form element, with .html appended.

The links string accumulates

points to the generated .html file corresponding to the Form

element.

using the fsa.generateFile method.The content of the file is

obtained from the e.compile expression

responsible for transforming each

HTML5 code.

element in the resource. It retrieves Project element and

constructs a project

HTML structure with a t

autogenerated message, and the previously generated

links.

5.

T

systematic way to evaluate the usability

DSR, taking into account the complexity and context

specific nature of design problems

this research is the course management system

[8]

ol.7, No.2, 202

Unlike typical template languages, Xtend stands out by

supporting grayspace. This distinctive feat

a potent tool for code generation within the realms of MDE

(Model-Driven Engineering) or MDA (Model

Architecture). The transformation rules are created based on

the mapping table.

for generating

language program.

Fig. 6.stub code responsible for generating HTML5 code from a CNUIML

The method iterates over all elements (e) in the resource

that are of type Form. For each Form element, it constructs

an HTML link. The filename is derived from the fully

qualified name of the Form element, with .html appended.

The links string accumulates

points to the generated .html file corresponding to the Form

element. For each Form element, it generates an .html file

using the fsa.generateFile method.The content of the file is

obtained from the e.compile expression

responsible for transforming each

HTML5 code.The snippet assumes there is a Project

element in the resource. It retrieves Project element and

constructs a project

HTML structure with a t

autogenerated message, and the previously generated

links.Other transformation methods have a similar structure.

. Evaluation (Case Studies)

The case study approach provides a rigorous and

systematic way to evaluate the usability

DSR, taking into account the complexity and context

specific nature of design problems

this research is the course management system

[8]. The purpose of the course management system is to

, 2024: 8-18

Unlike typical template languages, Xtend stands out by

supporting grayspace. This distinctive feat

a potent tool for code generation within the realms of MDE

Driven Engineering) or MDA (Model

The transformation rules are created based on

the mapping table. Figure 6shows

g HTML5 code from a CNUIML

stub code responsible for generating HTML5 code from a CNUIML

language program

The method iterates over all elements (e) in the resource

that are of type Form. For each Form element, it constructs

an HTML link. The filename is derived from the fully

qualified name of the Form element, with .html appended.

The links string accumulates

points to the generated .html file corresponding to the Form

For each Form element, it generates an .html file

using the fsa.generateFile method.The content of the file is

obtained from the e.compile expression

responsible for transforming each

The snippet assumes there is a Project

element in the resource. It retrieves Project element and

constructs a project-level .html file.

HTML structure with a t

autogenerated message, and the previously generated

Other transformation methods have a similar structure.

Evaluation (Case Studies)

he case study approach provides a rigorous and

systematic way to evaluate the usability

DSR, taking into account the complexity and context

specific nature of design problems

this research is the course management system

. The purpose of the course management system is to

Unlike typical template languages, Xtend stands out by

supporting grayspace. This distinctive feat

a potent tool for code generation within the realms of MDE

Driven Engineering) or MDA (Model

The transformation rules are created based on

shows the stub code responsible

HTML5 code from a CNUIML

stub code responsible for generating HTML5 code from a CNUIML

language program

The method iterates over all elements (e) in the resource

that are of type Form. For each Form element, it constructs

an HTML link. The filename is derived from the fully

qualified name of the Form element, with .html appended.

The links string accumulates these HTML links. The link

points to the generated .html file corresponding to the Form

For each Form element, it generates an .html file

using the fsa.generateFile method.The content of the file is

obtained from the e.compile expression

responsible for transforming each Form element into

The snippet assumes there is a Project

element in the resource. It retrieves Project element and

level .html file. The file contains an

HTML structure with a title (project.name), an

autogenerated message, and the previously generated

Other transformation methods have a similar structure.

Evaluation (Case Studies)

he case study approach provides a rigorous and

systematic way to evaluate the usability

DSR, taking into account the complexity and context

specific nature of design problems[26].The case study of

this research is the course management system

. The purpose of the course management system is to

Unlike typical template languages, Xtend stands out by

ure makes Xtend

a potent tool for code generation within the realms of MDE

Driven Engineering) or MDA (Model-Driven

The transformation rules are created based on

the stub code responsible

HTML5 code from a CNUIML

stub code responsible for generating HTML5 code from a CNUIML

The method iterates over all elements (e) in the resource

that are of type Form. For each Form element, it constructs

an HTML link. The filename is derived from the fully

qualified name of the Form element, with .html appended.

these HTML links. The link

points to the generated .html file corresponding to the Form

For each Form element, it generates an .html file

using the fsa.generateFile method.The content of the file is

obtained from the e.compile expression.e.compile is

orm element into

The snippet assumes there is a Project

element in the resource. It retrieves Project element and

The file contains an

itle (project.name), an

autogenerated message, and the previously generated

Other transformation methods have a similar structure.

he case study approach provides a rigorous and

 of an artifact in

DSR, taking into account the complexity and context

The case study of

this research is the course management system described in

. The purpose of the course management system is to

15

Unlike typical template languages, Xtend stands out by

ure makes Xtend

a potent tool for code generation within the realms of MDE

Driven

The transformation rules are created based on

the stub code responsible

HTML5 code from a CNUIML

stub code responsible for generating HTML5 code from a CNUIML

The method iterates over all elements (e) in the resource

that are of type Form. For each Form element, it constructs

an HTML link. The filename is derived from the fully

qualified name of the Form element, with .html appended.

these HTML links. The link

points to the generated .html file corresponding to the Form

For each Form element, it generates an .html file

using the fsa.generateFile method.The content of the file is

e.compile is

orm element into

The snippet assumes there is a Project

element in the resource. It retrieves Project element and

The file contains an

itle (project.name), an

autogenerated message, and the previously generated

Other transformation methods have a similar structure.

he case study approach provides a rigorous and

of an artifact in

DSR, taking into account the complexity and context-

The case study of

described in

. The purpose of the course management system is to

record the profile of each instructor, course topics and

training courses.

generated by CNL2C related to course management

forms.

Fig.

Figure 8 also shows one of the generated forms of the

project.

which is coded in the CNUIML language, following the

specifications outlined in the program.

16

record the profile of each instructor, course topics and

training courses.

generated by CNL2C related to course management

forms. This view contains links to other project forms.

Fig. 7.view of home web page generated by CNL2C related to course

Figure 8 also shows one of the generated forms of the

project. This view displays the course registration

which is coded in the CNUIML language, following the

specifications outlined in the program.

 CNL2C: An

record the profile of each instructor, course topics and

training courses. Figure 7 shows the view of

generated by CNL2C related to course management

This view contains links to other project forms.

view of home web page generated by CNL2C related to course

management system

Figure 8 also shows one of the generated forms of the

This view displays the course registration

which is coded in the CNUIML language, following the

specifications outlined in the program.

CNL2C: An Editor, Syntax

record the profile of each instructor, course topics and

Figure 7 shows the view of

generated by CNL2C related to course management

This view contains links to other project forms.

view of home web page generated by CNL2C related to course

management system

Figure 8 also shows one of the generated forms of the

This view displays the course registration

which is coded in the CNUIML language, following the

specifications outlined in the program.

yntax Checker and

record the profile of each instructor, course topics and

Figure 7 shows the view of home page

generated by CNL2C related to course management system

This view contains links to other project forms.

view of home web page generated by CNL2C related to course

Figure 8 also shows one of the generated forms of the

This view displays the course registration form,

which is coded in the CNUIML language, following the

Checker and Code Generator for CNUIML using Xtext and Xtend

record the profile of each instructor, course topics and

page

system

view of home web page generated by CNL2C related to course

Figure 8 also shows one of the generated forms of the

form,

which is coded in the CNUIML language, following the

When the project is built, eclipse automatically

the target code and saves it in html files. Figure 9 shows the

structure of the

the program, an HTML file has been

separate file has been

be seen, the gener

Figure 10 shows a

outline of the entities defined in the project.

of all entities defined in the program is displayed as an

outline. The project entity and all its forms can be seen in

the figure.

Fig.

6. Conclusion

In this study, we have examined the evolution of the

CNUIML language through the use of Xtext and an editing

enerator for CNUIML using Xtext and Xtend

Fig.

When the project is built, eclipse automatically

the target code and saves it in html files. Figure 9 shows the

structure of the

the program, an HTML file has been

separate file has been

be seen, the gener

Fig.

Figure 10 shows a

outline of the entities defined in the project.

of all entities defined in the program is displayed as an

outline. The project entity and all its forms can be seen in

the figure.

Fig. 10.A section of the project code and the outline of the entities

. Conclusion

In this study, we have examined the evolution of the

CNUIML language through the use of Xtext and an editing

enerator for CNUIML using Xtext and Xtend

Fig. 8.Course registration form

When the project is built, eclipse automatically

the target code and saves it in html files. Figure 9 shows the

structure of the generated files.

the program, an HTML file has been

separate file has been created

be seen, the generated code matches the expected code.

Fig. 9.Structure of the generated files

Figure 10 shows a section

outline of the entities defined in the project.

of all entities defined in the program is displayed as an

outline. The project entity and all its forms can be seen in

section of the project code and the outline of the entities

 and future works

In this study, we have examined the evolution of the

CNUIML language through the use of Xtext and an editing

enerator for CNUIML using Xtext and Xtend

ourse registration form view

When the project is built, eclipse automatically

the target code and saves it in html files. Figure 9 shows the

files. For each form specified in

the program, an HTML file has been generated

created for the project

ated code matches the expected code.

tructure of the generated files

section of the project code

outline of the entities defined in the project.

of all entities defined in the program is displayed as an

outline. The project entity and all its forms can be seen in

section of the project code and the outline of the entities

and future works

In this study, we have examined the evolution of the

CNUIML language through the use of Xtext and an editing

enerator for CNUIML using Xtext and Xtend

view

When the project is built, eclipse automatically generates

the target code and saves it in html files. Figure 9 shows the

For each form specified in

generated, and a

for the project entity.As can

ated code matches the expected code.

tructure of the generated files

of the project code and

outline of the entities defined in the project. The hierarchy

of all entities defined in the program is displayed as an

outline. The project entity and all its forms can be seen in

section of the project code and the outline of the entities

In this study, we have examined the evolution of the

CNUIML language through the use of Xtext and an editing

generates

the target code and saves it in html files. Figure 9 shows the

For each form specified in

, and a

As can

 the

The hierarchy

of all entities defined in the program is displayed as an

outline. The project entity and all its forms can be seen in

section of the project code and the outline of the entities

In this study, we have examined the evolution of the

CNUIML language through the use of Xtext and an editing

Journal of Applied Dynamic Systems and Control,Vol.7, No.2, 2024: 8-18

17

tool. We have also explored the detection of syntax errors

and the generation of target code using Xtext and

Xtend.Xtext, as a powerful framework, not only automates

the creation of stub codes for validation and formatting but

also manages entity scope. Furthermore, it facilitates the

generation of target code. The generated code can then be

customized and extended as per the requirements of the

specific project or application.

The generation of transformation rules to extract

equivalent models like Interaction Flow Modeling

Language (IFML) or abstract models such as Unified

Modeling Language (UML) class diagrams and task models

is indeed a promising area of future research. Furthermore,

the validation of these transformation rules is another

important aspect that needs to be considered. This would

ensure that the transformed models accurately represent the

original models. Various validation techniques, such as

simulation, formal verification, or empirical studies, could

be employed for this purpose.The extraction of database

code and the implementation of Create, Read, Update, and

Delete (CRUD) operations, as well as the development of

services and business logic layers, present a rich area for

exploration and research.

References

[1] G. Kumar and P. K. Bhatia, “Impact of agile

methodology on software development process,”

International Journal of Computer Technology and

Electronics Engineering (IJCTEE), vol. 2, no. 4, pp.

46-50-46–50, 2012, doi: 10.1145/2735399.2735410.

[2] B. Fitzgerald and K.-J. Stol, “Continuous software

engineering: A roadmap and agenda,” Journal of

Systems and Software, vol. 123, pp. 176–189, 2017,

doi: 10.1016/j.jss.2015.06.063.

[3] M. Bano and D. Zowghi, “User involvement in

software development and system success: a

systematic literature review,” in Proceedings of the

17th International Conference on Evaluation and

Assessment in Software Engineering, Porto de

Galinhas Brazil: ACM, Apr. 2013, pp. 125–130. doi:

10.1145/2460999.2461017.

[4] H. Lieberman, F. Paternò, M. Klann, and V. Wulf,

“End-User Development: An Emerging Paradigm,”

in End User Development, vol. 9, H. Lieberman, F.

Paternò, and V. Wulf, Eds., in Human-Computer

Interaction Series, vol. 9. , Dordrecht: Springer

Netherlands, 2006, pp. 1–8. doi: 10.1007/1-4020-

5386-X_1.

[5] T. Ludwig, J. Dax, V. Pipek, and V. Wulf, “A

Practice-Oriented Paradigm for End-User

Development,” in New Perspectives in End-User

Development, F. Paternò and V. Wulf, Eds., Cham:

Springer International Publishing, 2017, pp. 23–41.

doi: 10.1007/978-3-319-60291-2_2.

[6] M. Snoeck and Y. Wautelet, “Agile MERODE: a

model-driven software engineering method for user-

centric and value-based development,” Softw Syst

Model, vol. 21, no. 4, pp. 1469–1494, Aug. 2022, doi:

10.1007/s10270-022-01015-y.

[7] H. Soude and K. Koussonda, “A Model Driven

Approach for Unifying user Interfaces Development,”

IJACSA, vol. 13, no. 7, 2022, doi:

10.14569/IJACSA.2022.01307107.

[8] H. Bahri, H. Motameni, and B. Barzegar, “CNUIML:

Towards the automatic generation of enterprise-level

rich Internet applications using Controlled Natural

User Interface Modeling Language,” Scientia Iranica,

Dec. 2023, doi: 10.24200/sci.2023.62435.7839.

[9] D. Torre, M. Genero, Y. Labiche, and M. Elaasar,

“How consistency is handled in model-driven

software engineering and UML: an expert opinion

survey,” Software Qual J, vol. 31, no. 1, pp. 1–54,

Mar. 2023, doi: 10.1007/s11219-022-09585-2.

[10] B. A. Myers and M. B. Rosson, “Survey on user

interface programming,” in Proceedings of the

SIGCHI conference on Human factors in computing

systems - CHI ’92, Monterey, California, United

States: ACM Press, 1992, pp. 195–202. doi:

10.1145/142750.142789.

[11] J. Ruiz, E. Serral, and M. Snoeck, “Evaluating user

interface generation approaches: model-based versus

model-driven development,” Softw Syst Model, vol.

18, no. 4, pp. 2753–2776, Aug. 2019, doi:

10.1007/s10270-018-0698-x.

[12] S. Kent, “Model driven engineering,” in

International conference on integrated formal

methods, Springer, 2002, pp. 286–298.

[13] K. E. Emam and A. G. Koru, “A Replicated Survey

of IT Software Project Failures,” IEEE Softw., vol. 25,

no. 5, pp. 84–90, Sep. 2008, doi:

10.1109/MS.2008.107.

[14] R. Gronback, “Eclipse Modeling Project | The

Eclipse Foundation.” Accessed: Aug. 08, 2023.

[Online]. Available:

https://eclipse.dev/modeling/emf/

[15] I. M. T. Gamito, “From Rigorous Requirements and

User Interfaces Specifications into Software Business

Applications: The ASL Approach,” PhD Thesis,

Master’s thesis, Instituto Superior Técnico, 2021.

[16] E. Yigitbas, I. Jovanovikj, K. Biermeier, S. Sauer, and

G. Engels, “Integrated model-driven development of

self-adaptive user interfaces,” Software and Systems

Modeling, vol. 19, no. 5, pp. 1057-1081-1057–1081,

2020, doi: 10.1007/s10270-020-00777-7.

[17] L. Erazo-Garzón, S. Suquisupa, A. Bermeo, and P.

Cedillo, “Model-Driven Engineering Applied to User

Interfaces. A Systematic Literature Review,” in

Applied Technologies, M. Botto-Tobar, M. Zambrano

Vizuete, S. Montes León, P. Torres-Carrión, and B.

Durakovic, Eds., in Communications in Computer

 CNL2C: An Editor, Syntax Checker and Code Generator for CNUIML using Xtext and Xtend

18

and Information Science. Cham: Springer Nature

Switzerland, 2023, pp. 575–591. doi: 10.1007/978-3-

031-24985-3_42.

[18] M. Karu, “A textual domain specific language for

user interface modelling,” in Emerging Trends in

Computing, Informatics, Systems Sciences, and

Engineering, Springer, 2013, pp. 985–996.

[19] M. Lachgar and A. Abdali, “Generating Android

graphical user interfaces using an MDA approach,” in

2014 Third IEEE International Colloquium in

Information Science and Technology (CIST), Oct.

2014, pp. 80–85. doi: 10.1109/CIST.2014.7016598.

[20] M. Lachgar and A. Abdali, “Modeling and generating

native code for cross-platform mobile applications

using DSL,” Intelligent Automation & Soft

Computing, vol. 23, no. 3, pp. 445–458, Jul. 2017,

doi: 10.1080/10798587.2016.1239392.

[21] A. Sabraoui, A. Abouzahra, K. Afdel, and M.

Machkour, “MDD Approach for Mobile Applications

Based On DSL,” in 2019 International Conference of

Computer Science and Renewable Energies

(ICCSRE), Jul. 2019, pp. 1–6. doi:

10.1109/ICCSRE.2019.8807572.

[22] D. Priefer, “Applying Model-Driven Engineering to

Development Scenarios for Web Content

Management System Extensions,” 2021.

[23] S. Ceri, P. Fraternali, and A. Bongio, “Web modeling

language (webML): A modeling language for

designing web sites,” in Ninth International World

Wide Web Conference, Elsevier, Amsterdam,

Netherlands, 2000.

[24] M. L. Bernardi, M. Cimitile, G. A. Di Lucca, and F.

M. Maggi, “M3D: a tool for the model driven

development of web applications,” in Proceedings of

the twelfth international workshop on Web

information and data management, in WIDM ’12.

New York, NY, USA: Association for Computing

Machinery, 2012, pp. 73–80. doi:

10.1145/2389936.2389951.

[25] A. Sabraoui, M. El Koutbi, and I. Khriss, “A MDA-

based model-driven approach to generate GUI for

mobile applications,” International Review on

Computers and Software Journal (IRECOS), vol. 8,

no. 3, pp. 844–852, 2013.

[26] E. Costa, A. L. Soares, and J. P. de Sousa, “Situating

Case Studies Within the Design Science Research

Paradigm: An Instantiation for Collaborative

Networks,” Collaboration in a Hyperconnected

World, p. 531, 2016.

