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Abstract 

Software-defined networking (SDN) is a network structure where the control and data planes are 

separated. In traditional SDN, a single controller was in charge of control management, but this architecture 
had several constraints. To address these constraints, it is advisable to incorporate multiple controllers in 
the network. Selecting the number of controllers and connecting switches to them is known as the controller 
placement problem (CPP). CPP is a key hurdle in enhancing SDNs. In this paper a metaheuristic algorithm 
called Honey Badger Algorithm (HBA), is used to determine the optimal alignment between switches and 
controllers. HBA is modified using genetic operators (GHBA). The assessments are conducted with a 

diverse range of controllers on four prominent software-defined networks sourced from the Internet 
Topology Zoo and are compared to numerous algorithms in this field. It is noted that GHBA outperforms 
other competing algorithms in terms of end-to-end delay and energy consumption.  

Keywords: Software Defined Network, Controller Placement, Honey Badger Algorithm, Heuristic 
algorithms, Genetic operators. 
 

1. Introduction 

Modern developments in information and communication technologies, including cloud computing, Internet of 

Things (IoT), video conferencing, online gaming, increased traffic volume, and social networking, highlight the 

inadequacy of traditional networks to address evolving traffic demands and diverse application requirements. 

Consequently, network management encounters substantial challenges, and upgrading, managing, and providing new 

services without adding new hardware are essential in next-generation networks[1, 2]. Software Defined Networking 

(SDN) is a new generation of network that has the capability to transform traditional network infrastructures into more 

compatible, agile, flexible, and controllable network topologies by separating the control plane from the da ta plane[1, 

3, 4]. In traditional SDN networks, only one controller was responsible for control management, but this architecture 

had several limitations. One limitation of having only one controller in the network is that it can become a single point 

of failure. If the controller fails or encounters issues, it can compromise the performance and management of the entire 

network. Additionally, a single controller may struggle to meet the increasing demands of a large -scale network, 

leading to performance bottlenecks and scalability problems. To address these limitations, it is recommended to have 

multiple controllers in the network. Having multiple controllers enhances fault tolerance and scalability within the 

network[5, 6]. Typically, multiple controllers are physically distributed across the network to improve various 

performance metrics such as switch latency, fault tolerance, and controller response time. In a multi -controller 

architecture, each switch is assigned to only one controller, and each controller serves a specific set of switches. [7]. 

Having more controllers increases the efficiency of the network, but on the other hand, due to the high cost of 

controllers, it is not possible to use any number of controllers. Finding the optimal number of controllers to be placed 

in SDN and the position of these controllers is called the controller placement problem (CPP). The CPP takes the 

network topology as input and typically determines the number of controllers needed for the network and their 

locations and the switches assigned to each of them[8]. In static networks, the problem of controller placement can be 
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easily solved at the beginning of the network. But since we have assumed a dynamic network in this work, the 

determination of this number and allocation must be dynamic processes and be done based on the dynamic changes 

of the network. Determining the switches controlled by any controller is challenging because it has an exponential 

number of possible solutions and belongs to the class of computational problems that are difficult to solve efficiently. 

The number of possible network configurations and solutions to the switch mapping problem increases exponentially 

with the size of the network so that a comprehensive search for the optimal solution becomes computationally 

impossible. Due to the computational complexity and lack of efficient algorithms for its optimal solution, CPP is 

classified as an NP-hard problem[9].   

Meta-heuristic algorithms are high-level problem-solving techniques used to find approximate solutions to 

complex optimization problems. These algorithms are designed to explore the search space efficiently and effectively, 

even when the problem has many possible solutions or lacks a known mathematical formula. For this reason, we have 

used meta-heuristic methods to determine the mapping method. Meta-heuristic techniques have been widely used in 

recent years due to their efficiency in solving complex and large-scale problems[10]. Unlike traditional optimization 

algorithms that rely on explicit and problem-specific information, meta-heuristics are general-purpose and can be 

applied to a wide range of problems. Meta-heuristic algorithms draw inspiration from natural processes or phenomena 

like evolutionary biology, crowd intelligence, or physical phenomena[11]. Typically, these algorithms engage in 

iterative enhancements of a potential solution by traversing diverse areas within the search space. This study employs 

heuristics methods to steer the search process, enabling evasion from local optima and striving to locate high-quality 

solutions within acceptable timeframes. The primary objective of the proposed methodology is to enhance parameters 

related to delay and energy consumption in SDNs. 

The findings indicate that the suggested algorithm surpasses other competing algorithms in efficiency, 

reducing both end-to-end delay and energy consumption. The key outcomes of this paper are summarized 

as follows: 

• Modifying HBA using genetic operators. 

• Applying the GHBA to the CPP. 

• Assessing the suggested controller placement algorithm on two actual software-defined networks. 

• Contrasting the outcomes of the proposed algorithm with four state-of-the-art meta-heuristic-based 
algorithms.   

 The structure of the paper is as follows: Section 2 presents a review of related literature in this field, 

while section 3 describes the metrics utilized in this study. Section 4 elaborates on the proposed controller 

placement algorithm for addressing CPP. The evaluation results are outlined in section 5, and the concluding 

remarks are covered in section 6. 

2. Related work 

This section briefly reviews some related works to how to select and place the controller in SDN. Since 

CPP is an NP method, a heuristic method or a meta-heuristic method is used in most of the works[11]. 

Dynamic placement of controllers was investigated for the first time in [12]. In this study, the location of 

the controllers was adjusted to be responsive to the changes occurring in the network traffic. In this work, 

the problem of dynamic placement of controllers for large samples was raised and for this purpose, two 

heuristic algorithms were proposed and the setup time and end-to-end delays were significantly reduced. 

The authors in [13]proposed a new method based on GSO for the placement of SDN controllers, which 

used the combination of the 0-1 knapsack problem and Garter snake optimization algorithm to improve the 

placement of controllers in the network. This method compared to other optimization algorithms in terms 

of Quality, calculation time, utilization of network resources and reduction of point-to-point delays had 

better performance. However, this method did not provide good performance in the Colt network. The 

evaluations showed that the performance of the algorithm was efficient in small-scale (Aarnet) to large-

scale (Cogent) networks, but in the Colt network, it was not able to achieve minimum delays close to 

optimal. In this study, the authors did not provide a clear explanation for the failure of the algorithm in the 

Colt network and the scalability of the algorithm, which may be a limitation of the proposed approach.  



In [14], the authors found the number of controllers using game theory and then optimized the way of 

mapping switches to each controller by combining two metaheuristic algorithms of golden eagle and gray 

wolf. In this article, end-to-end delay factors, load imbalance, energy consumption were considered and 

improved. The drawback of this method was the consumption of more memory and processor.  

In [6], Ateya et al proposed a meta-heuristic algorithm based on the Salp Swarm Optimization Algorithm 

(SSOA) that dynamically determines the optimal number of controllers as well as the optimal paths between 

switches and controllers. Their proposed method was able to improve network latency and reliability in 

SDN, but it had high computational complexity and did not guarantee accuracy. In the controller placement 

method in [15], the focus was on minimizing network propagation delay. The authors used the concept of 

network segmentation and the hybrid feeding algorithm (MRFO) of the Salp Swarming Algorithm (SSA). 

However, the use of more CPU time and the need for additional storage space were cited as drawbacks of 

this study. 

In [16], Gao et al. introduced a new algorithm for the controller placement problem in SDNs. The 

introduced algorithm considers controllers with capacity constraints, delay between controllers and delay 

between switches and controllers. In this plan, a meta-heuristic algorithm based on PSO algorithm was 

proposed to solve the problem and the global delay was defined. Experiments showed that although the 

proposed algorithm minimized the propagation delay, the static traffic load of the controller was ignored. 

In addition, in the present article, the discretization problem and approach were not obvious. Furthermore, 

their proposed method was presented for SDN networks with capacity. In [17], Tehamasbi and his 

colleagues proposed an optimization algorithm for the placement of controllers for synchronizing WSN 

networks to optimize network performance. In the proposed algorithm, the optimization process was 

performed using the Cuckoo Search algorithm, which is a metaheuristic optimization algorithm. The 

performance of the proposed algorithm was compared with the training and quantum bending algorithms. 

The results of the comparisons showed that the proposed algorithm performed better than the competing 

algorithms in terms of network resistance and delay reduction. But the algorithm was not considered in 

terms of scalability and faced problems in large networks. A scalable placement algorithm for SDN was 

proposed in [18],which uses poly-stable pairing to distribute switches equally among controllers and assigns 

switches considering load and delay. This algorithm also reduced the delay between switches and 

controllers by moving switches. The proposed algorithm was evaluated in three real ISP networks with 

medium and large scale to check its scalability and efficiency in WAN. The results showed that the proposed 

algorithm has a better performance compared to the existing algorithms in terms of load distribution and 

delay reduction and easily provided close to optimal solutions, but this algorithm consumes more memory 

and processor. The authors in [19]first formulated the controller placement problem as a multi-objective 

optimization problem. They include reliability, fault tolerance, latency performance, synchronization, and 

deployment cost. They used the Cuckoo optimization algorithm, the evaluation results showed that this 

algorithm is superior in performance and synchronization cost, and is significantly more cost-effective, 

which makes it applicable in large wireless sensor networks. 

In [20], a dynamic controller placement method for optical transmission networks was presented that 

considered the diversity of optical controllers, resource constraints at edge host locations, and delay 

requirements. The proposed method was a virtual method that allows for greater flexibility and scalability 

in the network and also enables easy recovery from failures or disasters. This method helps the problem of 

controller placement by using machine learning algorithms by predicting the active controllers. This method 

reported the accuracy of the proposed method for different traffic levels and evaluated the performance 

criteria such as accuracy, ROC area. Evaluations showed that the proposed method works better in placing 

controllers in optical transmission networks and can be expanded in other types of networks. In [21], a 

multi-objective method for placing controllers in SDN was proposed, which was able to reduce the 

communication delay of the switch to the controller for both link failure and link failure modes. This 



algorithm generated an initial acceptable solution using a greedy method with grid partitioning and then 

iteratively generated new solutions by variable local search. Whenever a new solution was generated, the 

algorithm decided whether to accept the new solution as an acceptable solution to the problem and 

performed an update operation on the set of Pareto optimal solutions. Meanwhile, to avoid falling into the 

local optimum, the algorithm used the chaos strategy. 

 In [9], the authors presented a new algorithm for controller placement in SDN networks. The presented 

algorithm provided a support technique against the failure of a link and minimized the communication delay 

by using flexibility. The presented algorithm used particle group optimization algorithm and firefly 

algorithm to achieve the mentioned goals. Also, delay between controllers, delay between switches and 

controllers and multi-path connection between switches and controllers were considered in the presented 

algorithm. The evaluation results showed that the proposed algorithm improves the survivability of the 

network path and improves the network performance effectively. In addition, Jalili and colleagues presented 

an innovative algorithm for controller placement using NSGA-II for large software defined networks[22] . 

In the presented algorithm, the controllers considered maximum and average delay and load balancing as 

objective functions. Several networks of Zoo Internet topology were evaluated using the proposed 

algorithm, and the obtained results showed the superiority of the proposed algorithm over other similar 

algorithms. Multi-objective controller placement algorithm using NSGA-II optimized the delay and load 

balance of controllers. Although the proposed algorithm was applied to several SDN networks, it was 

compared with PSA and PSO algorithms, which were not able to accurately express the possible superiority 

of the proposed algorithm.  

In [23], Singh et al. developed an innovative optimization algorithm called Varna-based optimization 

(VBO) and used it to solve the controller placement problem in SDN. The main goal of the proposed 

algorithm was to reduce the average network delay. VBO does not assume the same formula for all particles 

in the population. Also, it was not necessary that particles always remain in a particular class in a generation. 

VBO could be improved by dividing particles into more than two classes, each class having a specific task. 

This method had a more optimal result than the results based on clustering and the results based on 

optimization for the controller placement problem with capacity. At the same time, its convergence rate was 

better than other algorithms. However, in this method, the discretization method and operators were not 

transparent and the complexity was not discussed. The results show that optimization-based methods 

provide better results than clustering-based methods. 

 

3. Problem formulation 

   Most of the proposed solutions for CPP focus on determining the optimal number and placement of 

controllers, as well as devising strategies for assigning switches to controllers[24]. Considering end-to-end 

delay, this work is an attempt to reduce the average energy consumption.  

   The SDN can be modeled by an undirected graph 𝐺 = (𝑉, 𝐸) where 𝑉 =  {𝑖, . . . 𝑛} is the set of nodes 

(routers) and 𝐸 is the set of edges. The edge 𝑢𝑣 corresponds to the bidirectional link between nodes 𝑢 and 

𝑣 and its weight. Some usual metrics in SDN are defined as follows. 

 
3.1. End-to-End delay 

   Let 𝑆 = {𝑠1 , 𝑠2 , … , 𝑠𝑚  } denotes the switches in the network and 𝐶 = {𝑐1 ,𝑐2 , … , 𝑐𝑛} denotes the 

controllers. The end-to-end delay in this method is calculated by Equation (1). It is the sum of the average 

inter-controller propagation latency denoted by AvgICL and the average switch-to-controller propagation 

Latency denoted by AvgSCL. 

𝐷𝑒2𝑒 = 𝐴𝑣𝑔𝐼𝐶𝐿 + 𝐴𝑣𝑔𝑆𝐶𝐿 (1) 

 

 



3.2. Energy consumption 

   This article examines the energy usage of controllers, switches, and communication links to determine 

the overall energy consumption of the network. The calculation methodology is outlined as follows: 

𝐸 = ∑(𝑒𝑙𝑖 × 𝐸𝑠𝑤𝑖 + 𝑒2𝑖 × 𝐸𝑐𝑖 + 𝑒3𝑖 × 𝐿) + 𝐸𝑙𝑖𝑛𝑘

𝑛

𝑖=1

 (2) 

In this context, 𝐸𝑠𝑤𝑖  signifies the energy consumption of the 𝑖𝑡ℎ switch, while 𝐸𝑐𝑖  denotes the energy usage 

of the 𝑖𝑡ℎ controller. Additionally, L and 𝐸𝑙𝑖𝑛𝑘  stand for the latency of the network and the aggregate energy 

consumption of all operational links within the network. Three normalized weight parameters, namely 𝑒𝑙𝑖 , 

𝑒2𝑖  , and 𝑒3𝑖  are obtained through simulation runs conducted over a specific duration. [25]. 

4. Proposed Algorithm 

In this section, the algorithm that is used in this paper is described. 

4.1. Honey Badger Algorithm 

The Honey Badger Algorithm (HBA) is inspired by the foraging behavior of the honey badger, which 

involves two main approaches for locating food sources. In the first approach, known as the digging mode, 

the honey badger uses its sense of smell to estimate the location of prey. Upon reaching the target area, it 

then moves strategically to choose the optimal spot for digging and capturing the prey. In the second 

approach, called the honey mode, the honey badger follows the guidance of the honeyguide bird to directly 

locate a beehive. 

The HBA is structured into two distinct phases: the "digging phase" and the "honey phase", each serving 

specific functions outlined in further detail as follows: 

 

4.1.1. Algorithmic steps 

In theory, the HBA algorithm incorporates both exploration and exploitation stages, qualifying it as a global 
optimization technique. The mathematical formulation of the proposed HBA algorithm is elaborated as follows.  
Step 1: Initialization phase begins by setting the number of honey badgers (population size N) and determining their 
initial positions using Equation (3). 

Population of candidate solutions =[

𝑥1 … 𝑥𝑑
⋮ ⋱ ⋮

𝑥𝑛1
… 𝑥𝑛𝑑

] 

𝑖𝑡ℎ position of honey badger 𝑥𝑖= [𝑥𝑖
1 ,𝑥𝑖

2 , 𝑥𝑖
3 ,… , 𝑥𝑖

𝑑] 

𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟1 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖),r1 is a random number between 0 and 1 
 

(3) 

Where 𝑥𝑖 is 𝑖𝑡ℎ  honey badger position referring to a candidate solution in a population of N, while 𝑙𝑏𝑖  and 𝑢𝑏𝑖  

denote the lower and upper bounds of the search domain, respectively. 

Step 2: Calculating the intensity metric (I), as a measure of the prey's concentration strength and its proximity to the 
𝑖𝑡ℎ honey badger, is crucial. The scent intensity of the prey, represented as 𝐼𝑖, plays a significant role in determining 
the speed of movement. Specifically, higher scent intensity corresponds to increased pace, while lower intensity results 
in slower motion. This correlation is precisely expressed through Equation (4) in a mathemati cal formulation. 

𝐼𝑖 = 𝑟2 ×
4

4𝜋𝑑2 , r2 is a random number between 0 and 1 

𝑆 = (𝑥𝑖 − 𝑥𝑖+1)2  

𝑑𝑖 = 𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖  

(4) 

In this context, S denotes the source strength or concentration level, which signifies the prey's position. 

Furthermore, 𝑑𝑖  represents the distance between the prey and the  𝑖𝑡ℎ honey badger. 
Step 3: Adjust the density factor, represented by α, to introduce variability in randomization over time, aiding in 

transitioning smoothly from exploration to exploitation. Update the decreasing factor α such that it decreases with 
each iteration, gradually reducing randomization as time progresses. Implement this modification effectively using 
Equation (5). 

𝛼 = 𝐶 × 𝑒𝑥𝑝 (
−𝑡

𝑡𝑚𝑎𝑥

) , 𝑡𝑚𝑎𝑥 = maximum number of iterations 
(5) 



where C is a constant ≥ 1 (default = 2). 
Step 4: In order to avoid getting stuck in local optima during the algorithm, a flag called F is used to adjust the search 
direction. This modification allows agents to explore the search space more extensively, enhancing the likelihood of 
discovering favorable opportunities and preventing confinement to suboptimal areas.  

Step 5:In the Honey Badger Algorithm (HBA), the adjustment of agent positions is carried out through a procedure 
known as the𝑥𝑛𝑒𝑤 position update. This process is divided into two main phases, namely the "digging phase" and the 
"honey phase" as previously outlined. 

4.2. Genetic HBA 

During the digging phase, a honey badger moves in a manner resembling a Cardioid shape. This Cardioid motion 
can be calculated using Equation (6): 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝛽 × 𝐼 × 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟3 × 𝛼 × 𝑑𝑖 × |cos(2𝜋𝑟4) × [1 − cos(2𝜋𝑟5 )]| (6) 

Here, 𝑥𝑝𝑟𝑒𝑦 represents the location of the prey, which corresponds to the best position discovered thus far – 

essentially the global best position. β (with a default value of 6) is the honey badger's capability to find food. di denotes 

the distance between the prey and the 𝑖𝑡ℎ honey badger, while  𝑟3 , 𝑟4, and 𝑟5  are three distinct random numbers ranging 
from 0 to 1. The flag F adjusts the search direction and is determined using Equation (7).  

𝐹 = {
1    𝑖𝑓 𝑟6 ≤ 0.5
−1             𝑒𝑙𝑠𝑒

     r6 is a random number between 0 and 1 
(7) 

During the digging phase, the honey badger places significant emphasis on the scent intensity I of prey 𝑥𝑝𝑟𝑒𝑦. The 

badger's position relative to the prey di and the dynamically changing search influence factor (α) are crucial factors 
during the digging phase. Furthermore, during the digging phase, the badger may experience disturbances labeled as 

F, potentially aiding in the discovery of a more favorable prey location. The mathematical representation of a honey 
badger tracking a honey guide bird to find a beehive in the Honey phase is captured by Equation (8). 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟7 × 𝛼 × 𝑑𝑖 ,            𝑟7 is a random number between 0 and 1 (8) 

In Equation (8), 𝑥𝑛𝑒𝑤  represents the updated position of the honey badger, while xprey indicates the location of the 
prey. The equation demonstrates that the honey badger's search strategy near the currently known prey location xprey 

is determined by the distance measurement 𝑑𝑖 and is affected by the time-varied search behavior represented by α. 
Additionally, the presence of a disturbance F may influence the honey badger's search process at this point . 

In this study, genetic operators are employed in the update phase of the algorithm to facilitate both exploration and 
exploitation. As previously stated, during the digging phase, it is crucial to uncover new positions. Therefore, genetic 
operators, such as the mutation operator, are utilized to aid in the exploration of new positions. The random value  𝑟8, 
ranging between 0 and 1, plays a role in deciding whether to apply the original Honey Badger Algorithm formula or 
the genetic operators. 

𝑥𝑛𝑒𝑤 = {
𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝛽 × 𝐼 × 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟3 × 𝛼 × 𝑑𝑖 × |cos(2𝜋𝑟4) × [1 − cos(2𝜋𝑟5)]|        𝑖𝑓 𝑟8 > 0.5          

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑥𝑝𝑟𝑒𝑦)                                                                                                                              𝑒𝑙𝑠𝑒                     
 

(8) 

In the honey phase, a greater emphasis is placed on exploitation. Consequently, in certain scenarios, a crossover 

operation is performed on 𝑥𝑝𝑟𝑒𝑦 and 𝑥𝑖, as indicated by Equation (9). The random value𝑟8 , falling within the range 

of 0 to 1, dictates whether to employ the original Honey Badger Algorithm formula or genetic operators. 

𝑥𝑛𝑒𝑤 = {
𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟7 × 𝛼 × 𝑑𝑖 ,                   𝑖𝑓 𝑟8 > 0.5

𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑥𝑖, 𝑥𝑝𝑟𝑒𝑦  )                                𝑒𝑙𝑠𝑒        
 

(9) 

By simultaneously utilizing genetic operators and HBA formulas for updating, the exploration and exploitation 

capabilities of HPA are enhanced, leveraging the advantages of both approaches.  

5. Performance Evaluation 

This study aims to tackle the challenge presented by the dynamic characteristics of networks, which result 

in variations in the ideal quantity and positions of active controllers, along with their interactions with 

switches[6]. The primary objective is to reevaluate the allocation of switches to controllers to enhance 

network efficiency amidst these fluctuations. The article endeavors to address the CPP utilizing the GHBA 

algorithm. 

This section commences by outlining the key elements of the experimental outcomes that evaluate the 

efficiency of the proposed algorithm. The experiments employ network topologies sourced from the Internet 

Topology Zoo[26]. The algorithms are constrained to a maximum of 50 iterations. Within this framework, 

up to 12 controllers are at disposal, allowing for activation or deactivation based on network traffic levels. 

Diverse network setups are examined using 6, 8, 10, and 12 controllers. Each network undergoes testing 

with the transmission of 200 packets, concluding upon reaching the maximum iteration limit. Notably, all 



experiments are conducted within the same environment defined by the specifications in Table 1. The 

algorithms are coded in MATLAB, and multiple iterations are executed for each algorithm.  
 

 

Table 1:The characteristics of the test environment 

Name Value 

CPU Core i5 

RAM 8GB 

HARD driver 500GB 

Operating Systems Windows 10 

Language MATLAB R2016b 

Initially, the GHBA method is pitted against four other methodologies in a real-world network scenario to 

gauge its effectiveness. The comparative analysis involves benchmarking the proposed algorithm against 

several state-of-the-art metaheuristic algorithms, including GEO[27], PSO[28], SOA[29] and HBA. The 

efficiency of the GHBA algorithm is scrutinized using Anova diagrams and convergence rate diagrams. 

Anova diagrams assess algorithm efficiency by scrutinizing variance among random states, helping in 

evaluating performance across diverse states. On the other hand, convergence diagrams illustrate the speed 

at which each algorithm converges towards a solution, offering insights into their exploration and 

exploitation balancing capabilities. 

Figure1 shows the Anova test and the convergence rate for the proposed algorithm in the Bics network.  

The Anova diagrams reveal that the GHBA outperforms its competitors by producing more stable results 

with fewer random states. GHBA exhibits notable stability, as indicated by its lower standard deviation in 

comparison to other algorithms. Additionally, the convergence curves highlight GHBA's superior rate of 

convergence, demonstrating its ability to quickly attain optimal solutions surpassing those of other 

algorithms. Specifically, in the Bics network featuring 46 switches and 85 edges, both the Anova chart and 

convergence rate diagrams consistently show the effectiveness of GHBA relative to its counterparts. This 

visual data effectively showcases GHBA's dominance in the context of the Bics network scenario. 

(a) (b) 

 
 

Figure 1: (a) the Anova chart for the proposed algorithm in the Bics network, (b) the convergence rate for the proposed algorithm 

in the Bics network. 

In the subsequent phase, the GHBA algorithm is deployed to address the CPP. Initially, random traffic is 

introduced into the network to establish connections between switches based on packet exchange volumes. 

The optimization process focuses on assigning switches to controllers to ensure that switches with the 

highest number of connections are managed by a controller within the same domain. This strategy aims to 

minimize connectivity between switches in different domains controlled by separate controllers, ultimately 

streamlining data transfer and rule enforcement processes between switches. By avoiding unnecessary data 

transfers and ensuring efficient communication within the network, this configuration enhances overall 



network efficiency. The performance of GHBA in solving the CPP is compared against recently developed 

algorithms including CCPGWO[30], GEWO[14], PHCPA[14] and HOA in terms of average energy 

consumption and end-to-end delay. 

This section presents the results obtained for varying numbers of controllers on prominent software-

defined networks, Bics, and Colt sourced from the Internet Topology Zoo. Due to the optimized mapping 

of switches to controllers, the need for continuous loading of additional information into each controller is 

eliminated, resulting in more efficient end-to-end delay compared to other algorithms. Figure 2 illustrates 

the comparison of GHBA with CCPGWO, GEWO, PHCPA, and HOA algorithms employing different 

numbers of controllers in the Bics network. The outcomes demonstrate that the proposed algorithm excels 

in terms of energy consumption and end-to-end delay efficiency when contrasted with the other algorithms.  

Figure 2 depicts the outcomes of comparing the GHBA with the CCPGWO, GEWO, PHCPA, and HOA 

algorithms employing varying numbers of controllers in the Bics network. The results clearly indicate that 

the proposed algorithm outperforms the others in terms of energy consumption and end-to-end delay. 

(a) (b) 

  
Figure 2: Bar graph illustrating the results achieved by the algorithms on the Bics network. (a): Average End-to-end delay (b) 
Average energy consumption. 

Figure 3 illustrates a comparative analysis of GHBA against CCPGWO, GEWO, PHCPA, and HOA 

concerning energy consumption and end-to-end delay on the Colt network, which includes 149 switches 

and 191 links. The evaluation takes into account different numbers of controllers (6, 8, 10, and 12). The 

results indicate that the GHBA algorithm surpasses the other algorithms in terms of both energy 

consumption and end-to-end delay. 
 

(a) (b) 

  
Figure 3: Bar graph illustrating the results achieved by the algorithms on the Colt network. (a): Average End-to-end delay (b) 
Average energy consumption.  

0

0/1

0/2

0/3

0/4

0/5

0/6

CCPGWO GEWO PHCPA HBA GHBAA
ve

ra
ge

 E
n

d
 t

o
 E

n
d

 D
el

a
y

Metods

CL=6 CL=8 Cl=10 CL=12

0

200

400

600

800

1000

1200

A
ve

ra
ge

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n

Methods

CL=6 CL=8 CL=10 CL=12

0

0/5

1

1/5

2

CCPGWO GEWO PHCPA HBA GHBA

A
ve

ra
ge

 E
n

d
 t

o
 E

n
d

 D
el

a
y

Metods

CL=6 CL=8 Cl=10 CL=12

0

1000

2000

3000

4000

5000

6000

CCPGWO GEWO PHCPA HBA GHBA

A
ve

ra
ge

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n

Methods

CL=6 CL=8 CL=10 CL=12



 

6. Conclusion 

   This study aims to address the controller placement problem (CCP) in software-defined networks (SDN). 

Initially, the Honey Badger Algorithm is enhanced with genetic operators (GHBA). By incorporating 

genetic operators, the algorithm is better equipped to avoid local optima and improve both exploration and 

exploitation. The GHBA is then utilized in solving the controller placement problem (CPP) with the goal 

of reducing end-to-end delay and energy consumption. The performance of the proposed GHBA algorithm 

is evaluated on two real-world software-defined networks from topology zoo dataset. It is compared against 

four metaheuristic algorithms, each utilizing a different number of controllers. The results indicate that the 

GHBA algorithm surpasses its competitors by demonstrating superior efficiency with enhanced 

convergence rates, exploration, exploitation capabilities, and notable reductions in energy consumption and 

end-to-end delay. 
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