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Abstract 
 

Designing tunnels in liquefiable sandy soils presents a significant challenge in determining the optimal depth and extent of the 

soil cementation around them. Reducing the depth of the tunnel decreases both the bending anchor force and the axial load on 

the tunnel's shell, yet it leads to an increase in ground surface settlement, and the opposite is true when depth is increased. 

Enhancing the cementation level at the tunnel's optimal depth reduces both structural uplift and shear forces exerted on the 

tunnel lining. Still, it also leads to an increase in axial loads and vice versa. Given the contradictory nature of these outcomes, 

the FLAC software was employed to simulate tunnels in liquefiable soils to address this dilemma. Subsequently, a neural 

network was utilized to identify the correlations between the inputs and outputs of the simulation. This network was the 

objective function for identifying optimal values by applying a genetic algorithm. Optimal design parameters were derived 

using the NSGA-II modified algorithm, a multi-objective optimization technique based on the objective functions. Ultimately, 

Pareto charts generated from the multi-objective optimization process enabled designers to select the most suitable tunnel 

location according to their specific requirements concerning depth and the soil cementation in liquefied soils. 
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1.Introduction 

 

The excess pore water pressure generated in saturated 

sandy soil during an earthquake reduces the effective 

soil stress and resistance, ultimately resulting in soil 

liquefaction. Excavating tunnels near the earth's 

surface can also reduce soil resistance and cause the 

uplift of both the structure and earth's surface[1]. In a 

study by Liu and Song, the effects of liquefaction on 

underground structures were investigated, and it was 

reported that soil liquefaction results in the uplift of 

the structure (Fig. 1). They also stated that the uplift 

of the structure and ground surface heave were 36 and 

34 cm, respectively[2]. 

Ji-Lei Hu et al. (2017) used the FE-FD method to 

design underground structures. They also investigated 

the behavior of underground structures by applying 

seismic force to a subway station at different depths. 

They reported that as the seismic load time increases, 

the degree of liquefaction of the surrounding soils and 

the uplift behavior of the underground structure 

increases [3]. 

 

 

 
Fig 1. Display of structure and surface ground uplift due to the 

dynamic loading (2) 

 

Gang et al. (2020) used artificial neural network 

(ANN) and support vector machine (SVM) models to 

predict the liquefaction-induced uplift displacement 

of underground structures [4].Qing Liao et al. (2019) 

investigated various parameters of tunnels exposed to 

liquefaction using multi-objective optimization. They 

reported that two contradictory objectives can be *Corresponding Author: Email Address: azadi@qiau.ac.ir 
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simultaneously optimized using a multi-objective 

optimization method [5]. Nokande et al. (2023) used 

the shaking table test to minimize the liquefaction-

induced uplift of tunnels excavated near the Earth's 

surface. They reported that helical piles can 

significantly decrease rapid tunnel uplift in this soil 

type [6]. Rashiddel et al. (2024) studied the impact of 

psychopathy on the soil surrounding shallow tunnels 

and the interaction between the tunnel and the 

superstructure[7]. ZHONG et al. (2024) used SPT 

testing to investigate the uplift values of tunnels 

excavated in cohesive soils. The results show that the 

more minor SPT-blow counts and tunnel depth are, 

the larger the uplift is [8]. Azadi et al. (2010) 

investigated pore water pressure and effective stress 

at the top and bottom of the tunnel. They reported that 

structural uplifting-induced swell of the ground 

gradually decreases with increasing distance from the 

location of the tunnel [9].  

The Cementation (bonding between the grains) is one 

of the effective factors in reducing the liquefaction 

potential. Therefore, it is possible to increase the 

resistance of non-cemented soils against liquefaction 

using artificial cementation. Azadi et al. (2007) 

investigated the axial force and sheer force of the 

tunnel lining by increasing the cementation degree. 

They stated that as the degree of the cementation of 

the soil surrounding the tunnel increases, the axial 

force increases and the shear force decreases. They 

also assessed the uplift of the Earth's surface. The 

results showed that as the degree of the cementation 

of the soil surrounding the tunnel increases, the uplift 

of the Earth's surface decreases significantly [10]. 

Wayne et al. (1989) performed several laboratory 

tests on the liquefaction of sands. They indicated that 

the percentage of clay particles is one of the main 

factors affecting the liquefaction behavior of soils 

[11]. 

Liang et al. (2000) conducted dynamic triaxial 

laboratory tests on damaged samples to investigate 

the effects of clay particles on the liquefaction 

behavior of soils. The tests were performed on eight 

soil groups, including 65 samples with different clay 

particles [12]. Furthermore, several shaking table 

tests were conducted to obtain the forces and anchors 

acting on the tunnel lining in liquefiable soils [13] 

Artificial intelligence methods used to solve 

geotechnical engineering problems can also be used 

to find the relationship between the input and output 

parameters of the objective function. So far, very few 

studies have been performed in the field of multi-

objective optimization of NSGA II to assess the 

tunnel depth and the cementation degree of the soil 

surrounding the tunnel in a liquefaction-prone zone. 

In most studies, the optimization has been performed 

as a single objective, with few evaluating conflicting 

results simultaneously. These cases indicate the 

difference between the present study and previous 

studies and are supposed one of the strengths of this 

study. Therefore, the present study aims to investigate 

the depth of the tunnel, the uplift of the Earth's 

surface, the forces and moment acting on the tunnel 

lining, and the degree of the cementation of the soil 

surrounding the tunnel at the optimum depth and 

optimize the results using the multi-objective genetic 

algorithm. 

 

2. Methodology  
 

Generally, there is no specific analytical or numerical 

method for designing and determining the depth of 

the tunnel and the degree of the cementation of the 

soil surrounding the tunnels in the form of multi-

objective optimization. Most studies have used 

single-objective optimization methods, and 

simultaneous optimization of various parameters has 

not been conducted. Therefore, this study employed 

multi-objective optimization methods. 

In this method, several objective functions are 

defined, and then optimized simultaneously. In most 

cases, the defined objective functions      conflict, 

where improvement in one objective function leads to 

a decline in the other objective functions. Therefore, 

there is no unique solution that optimizes all the 

defined objective functions simultaneously. A set of 

optimal solutions called Pareto curves [14] can be 

used to perform multi-objective optimization 

simultaneously. NSGA-II is one of the best multi-

objective optimization algorithms introduced by Deb, 

which performs faster and better in finding a set of 

non-superior solutions [15]. In this study, the 

modified NSGA-II algorithm [16] was used for multi-

objective optimization of the tunnel depth and the 

cementation degree of the liquefiable soil surrounding 

the tunnel at the optimum depth. This method is 

expected to obtain the optimum depth of the tunnel 

and the optimum degree of the cementation of the 

liquefiable soil surrounding the tunnel based on the 

bending moment and axial force acting on the tunnel 

lining and the uplift rate of earth's surface 

simultaneously. As a result, the modified NSGA-II 

algorithm provided all the optimal points of the 

design in terms of the objective functions. 
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3.  Concepts in Multi-Objective Optimization  
 

In multi-objective optimization problems, the goal is 

looking to find the design vector 𝑋∗ = [𝑥1
∗. 𝑥2

∗. … . 𝑥𝑛
∗ ], 

a member of Rn, which can optimize the target 

function 𝐹 = [𝑓1(𝑥). 𝑓2(𝑥). … . 𝑓𝑘(𝑥)]𝑇, a member of 

Rk, under m, the unequal condition as per equation 1 

and P, the equal condition, as per equation 2. 

 
𝑔𝑡(𝑥) ≤ 0          𝑡 = 1.2. … . 𝑚                                      (1)                                                                              

 

ℎ𝑗(𝑥) = 0           𝑗 = 1.2. . … . 𝑝                                     (2)                                                                             

 

Regardless of the reduction in the generality of the 

problems, if we aim to minimize all objective function 

vectors, multi-objective optimization is categorized 

as Pareto problems [14]and is introduced as follows. 

 

3.1. Pareto dominated 

Vector 𝑈 = [𝑢1. 𝑢2. … . 𝑢𝑛] has Pareto dominance 

over vector 𝑉 = [𝑣1. 𝑣2. … . 𝑣𝑛], )𝑈 < 𝑉) if and only 

if the following expression stands: 

 
∀𝑖 ∈ {1.2. … . k}. 𝑢𝑖 ≤ 𝑣𝑖 ∧ ∃𝑗  ∈ {1. 2. … . 𝑘}: 𝑢𝑖 < 𝑣𝑗  (3)                                                                        

 

3.2. Pareto Optimality    
 

A point 𝑋∗ ∈ Ω (Ω is an acceptable design area that 

can satisfy Equations 1 and 2) is called a Pareto 

optimal point if no other point in Ω dominates it. If 

and only if 𝐹(𝑋∗) < 𝐹(𝑋). this can be described as 

the following: 
∀𝑋 ∈ Ω. 𝑋 ≠ 𝑋∗. ∃𝑖∈ {1.2. … . 𝑘} ∶  𝑓𝑖(𝑋∗) < 𝑓𝑖(𝑋)     (4)                                               
(4) 
 

3.3. Pareto Set 
 

In multi-objective optimization problems, a Pareto set 

(P∗) includes all Pareto optimal vectors. 

 
P∗ = {X ∈ Ω| ∃X′ ∈ Ω: 𝐹(X′) < 𝐹(X)}                      (5)                                                         
 

Conventional methods rely on derivatives of the 

function for optimization, whereas evolutionary 

algorithms do not require derivatives of the function 

and only utilize the function's value itself. While other 

iterative methods start from an initial point to find a 

solution and only return a single answer in each run, 

evolutionary algorithms divide the search space into 

several subsections and employ various initial points 

to decrease the likelihood of becoming trapped in 

local optimal points. These algorithms can obtain 

various points from the set of optimal problem points 

in just one run. 

4. Numerical analysis 
 

4.1. Geometry of the model and the conditions 

created in the software 
 

Figure 2 illustrates the dimensions of the model, 

tunnel size, and meshing method used. The modeling 

dimensions were selected in a manner that places the 

bedrock at the bottom of the model, with a depth of 

30 meters from the ground surface. To ensure that the 

results obtained are not affected by lateral boundaries, 

the width of the model on both sides was supposed to 

be more than 5 times the diameter of the tunnel, 

including the tunnel itself. As a result, the percentage 

of error caused by stresses in the modeling results was 

reduced to 5%, and the effect of boundaries on the 

analyses could be disregarded. 

 

 
Fig 2. Modeling dimensions and meshing method 

 

The dimensions and size of the mesh used in the 

modeling should be small enough to allow for the 

propagation of shear waves. Lysmer and Kuhlemeyer 

have reported that the accuracy of wave propagation 

in numerical modeling is determined by the 

wavelength. The size of the wavelength, in turn, 

depends on the dimensions of the elements in the 

direction of wave propagation. It is necessary that the 

dimensions of the elements are smaller than 
1

8
 to 

1

10
 of 

the wavelength. All input stimulus frequencies 

utilized in the analysis were supposed to be above 25 

Hz [17]. To assess the liquefaction conditions, the soil 

must be completely saturated. Thus, the level of the 

underground water was supposed as the ground level. 
 

 

 

30m 

50m 20m 
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4.2. Soil Specifications 
 

Table 1 shows the parameters related to liquefiable 

sandy soil. The characteristics of liquefiable sandy 

soil were selected based on studies by Khoshnoudian 

and Shahrour [18], Liu and Song [2], Azadi and 

Hosseini [1], Shabani and Azadi [19], and the 

VELACS project [20] in the state of Nevada, USA. 

 
  

  Table 1 

  Behavioral Model and Soil Specifications 

Soil type 
Behavioral 

model 

Shear modulus 

(MPa) 

Bulk modulus 

(MPa) 

φ 

(0) 

C 

(kPa) 

γd 

(kN/m3) 

K 

(m/sec) 

Sand soil Finn 20 30 25 0 15 10-4 

 
The selected sandy soil was loose and liquefied under 

dynamic loading. Therefore, the effect of liquefaction of 

these soils on the tunnel lining and surrounding soil under 

different conditions and dynamic loading was assessed. To 

assess the effect of liquefaction on multi-objective 

optimization, the soil behavior modeling in FLAC software 

should be selected in a way that considers the increase in 

permeability pressure, the decrease in effective stress, and 

the volume changes of soil under dynamic loads during 

liquefaction. Therefore, Finn's behavioral model, which 

models soil liquefaction based on changes in strain rate, 

was used. This model, presented by Martin et al. (1975), 

describes the relationship between changes in volumetric 

strain (∆εvd) and cyclic shear strain amplitude (γ) 

according to equation (6)[21]:  

 

∆εvd = 𝐶1(𝛾 − 𝐶2𝜀𝑣𝑑) +
𝐶3𝜀𝑣𝑑

2

𝛾+𝐶4𝜀𝑣𝑑
                             (6)                                                               

                                                   
C1 through C4 are coefficients which are obtained 

from cyclical triaxial experiments. These coefficients 

were set to 0.76, 0.52, 0.2 and 0.5 respectively, based 

on the study by Pashangpishe [20]. 

4.3. Dynamic Loading Conditions and Methods 
 

Dynamic loading is a significant factor in creating 

liquefaction in sandy soils. The magnitude and 

characteristics of dynamic loading depend on various 

factors such as the type of load, damping, type of 

dynamic boundaries, duration of dynamic load, 

loading range, and frequency characteristics. To 

apply the load, a sinusoidal shear wave was supposed 

from the bedrock towards the ground surface 

according to equation (7). 

�̈�𝑔 = 𝐴𝑔sin (2𝜋𝑓𝑡)                                                 (7)                                                                  

 

 The study of Khoshnoudian [18] was used as a 

reference for selecting the loading range and the load 

duration, which were supposed to be 0.1 g and 10 

seconds, respectively. Additionally, the input 

frequency and damping rate were supposed to be 1 Hz 

and 5%, respectively. Free field conditions were used 

to design absorbent boundaries and prevent the 

reflection of waves in the model. The shear wave, 

selected based on the characteristics of the case study, 

soil type, and bedrock condition, was used in the 

analysis after modification. 

 

4.4. Characteristics of Tunnel Lining 
 

Figure 3 illustrates the method of modeling and the 

location of the tunnel in FLAC software. Based on the 

figure, a tunnel with an external diameter of 6.9 

meters, an elasticity modulus of E=2.236 ×107 kN/m2, 

and a tunnel lining thickness of 30 cm was chosen. 

These parameters were extracted from a case study 

conducted in the Isfahan-Iran metro. 

 

 
Fig 3. Tunnel Dimensions and Location 

 

20m 

10m 

6.9m 

50m 

30m 

20m 
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5. Model Validation 
 

The results of the present study were compared and 

validated with the results of the centrifuge test and 

numerical modeling. In the centrifuge test conducted 

by Chain et al. [22], the diameter of the tunnel was 5 

meters, and the buried depth was 7.5 meters. The 

modulus of elasticity and the thickness of the tunnel 

lining were E=3 ×107 kN/m2 and 0.35 meters, 

respectively. A sinusoidal wave was applied in the 

model, and the frequency, peak acceleration, and 

duration of the wave were chosen to be 0.75 Hz, 0.1 

g, and 10 seconds, respectively. It was reported that 

the uplift of the ground surface after the liquefaction 

of the soil in the centrifuge test was about 100mm. 

Additionally, Azadi et al. [9] reported that the amount 

of axial force and bending moment on the tunnel 

lining was 54.3 (ton) and 11 (ton-m) at a depth of 8 

meters, respectively. 

In the present study, it was found that the uplift of the 

ground surface at a depth of 8 meters was equal to 88 

mm, and the amount of axial force and bending 

moment on the tunnel lining was equal to 55.1 (ton) 

and 10.96 (ton-m), respectively. The results of the 

present study were found to be similar to those of 

other studies. 

 

6. Evaluation of the Inputs and Outputs of 

Modeling in Optimization 
 

6.1. Evaluation of the Depth of the Tunnel 
 

As the depth of underground structures increases, 

their safety also increases [2]. However, as the depth 

of the tunnel increases, the amount of bending 

moment and axial force on the tunnel lining increases 

due to the increase in overhead on the tunnel crown. 

On the other hand, as the depth of the tunnel 

decreases, the uplift rate of the ground surface 

increases due to the liquefaction effects. Therefore, 

determining the depth of the tunnel is essential in 

reducing the amount of force applied to the tunnel 

lining and the uplift of the ground surface. To achieve 

this, a method that can optimize the conflicting results 

obtained from the depth is necessary. For this reason, 

NSGA-II multi-objective optimization was used to 

optimize the results simultaneously. 

 

6.2 Evaluation of the Soil Cementation Around 

Tunnels 
 

Soil cementation is an effective parameter in reducing 

the effects of liquefaction. It is one of the methods 

used for strengthening and has a significant impact on 

the uplift of the ground surface, as well as the forces 

and moments applied to the tunnel lining. As the soil 

cementation around the tunnels increases, the axial 

force on the tunnel lining also increases. Conversely, 

if the cementation of the soil surrounding the tunnels 

decreases, the uplift rate of the ground surface and the 

amount of shearing force on the tunnel lining 

increase. Given these considerations, it becomes 

crucial to determine the optimal level of the soil 

cementation around tunnels, especially when the 

results obtained conflict or not aligned with each 

other. Therefore, NSGA-II multi-objective 

optimization was used for this purpose. 

7. Neural Network 
 

The objective of the present study is to determine the 

optimal depth of a tunnel in liquefiable soils within 

the minimum and maximum values, considering 

specific dimensions and geotechnical parameters. 

Another aim is to determine the optimal amount of the 

soil cementation surrounding the tunnel at the optimal 

depth. This factor requires significant modeling, 

which cannot be achieved using FLAC or any other 

software. 

The purpose of this study is not only to determine a 

value that meets geotechnical design parameters, but 

also to identify the optimal depth and the cementation 

of the soil surrounding the tunnel. Therefore, various 

models were created using a neural network. 

MATLAB software was used to process the data in 

matrix form consisting of numbers. The number of 

hidden layers in the network and the number of 

internal neurons in each layer are significant factors 

affecting the accuracy of the neural network. A 

feedforward neural network was trained using 

different objective functions, and different layers in 

the neural network program were trained based on the 

input and output data in the software [23]. In the 

present study, a neural network program with two 

layers and six hidden neurons was used for training 

and learning the relationship between the inputs and 

outputs of FLAC software. 

 

7.1. Input and Output Vectors for Tunnel Depth 

and the Soil Cementation Rate in the Neural 

Network 
 

The tunnel was modeled at different depths using 

FLAC software, and each model was subjected to a 

dynamic force Table 2. The tunnel depth (x1) was 



M. Shabani Soltan Moradi, M Azadi, H. jahanian 

42 

 

chosen as the input for the neural network. The range 

of tunnel depth supposed was between 8 and 20 

meters. Depths lower or higher than this range were 

not selected due to the lack of implementation and 

reduced liquefaction effects, respectively. The rest of 

the specifications and parameters related to the design 

were supposed fixed. Based on the analysis of the 

models, three outputs in the FLAC software, 

including the maximum bending moment (f1), the 

maximum axial force (f2) applied to the tunnel lining, 

and the uplift of the ground surface (f3), were selected 

as objective functions in the neural network. To train 

the neural network, the input and output vectors were 

randomly arranged. This approach prevented the 

neural network from memorizing them and instead 

allowed it to learn and adapt to them.  

 

 
 Table 2 

 The input and output vectors of the objective function in the neural network program 

 

 
Different models of the cementation of soil 

surrounding the tunnels were performed in FLAC 

software Table 3. The cementation rate was selected 

as the input (x2) for the neural network program. The 

Target function in the Neural Network 
Neural Network 

Input 
Number 

ground level uplifting (f3) 

(mm) 

Maximum axial force (f2) 

(ton) 

Maximum bending moment (f1) 

(ton-m) 

Tunnel 

depth (x1)(m) 
 

76 59.1 11.02 8.5 1 

30.97 94.5 14.51 12.5 2 

41.57 81.9 12.46 11 3 

25.42 100.45 15.62 13.5 4 

66 63.9 11.04 9 5 

19.16 106.08 17.03 15 6 

13.3 117.82 20.22 17 7 

10.85 124.65 22.08 18.5 8 

15.65 111.46 18.56 16 9 

10 127.2 25.5 20 10 

22.92 102 16.04 14 11 

57 68.7 11.08 9.5 12 

88 55.1 10.96 8 13 

10.45 125.1 23.7 19 14 

12.3 121 21.05 17.5 15 

37.14 86.1 13.15 11.5 16 

50 74.1 11.3 10 17 

28.14 99.1 15.26 13 18 

17.3 108.28 17.73 15.5 19 

11.45 123.4 21.7 18 20 

45 77.7 11.78 10.5 21 

20.9 103.55 16.46 14.5 22 

33.93 90.3 13.83 12 23 

14.41 114.64 19.39 16.5 24 

10.2 125.55 24.6 19.5 25 
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depth of the tunnel was fixed at 12 meters in this 

modeling. The design range for the input part (x2) was 

selected between 0 and 30 kPa. Intervals outside this  

range were not supposed due to the lack of 

implementation in underground structures. Three 

outputs, including the maximum shear force (f1), the 

uplift of the ground surface (f2), and the maximum 

axial force on the tunnel lining (f3) were selected as 

objective functions in the neural network.  

 

 
     Table 3 

     The input and output vectors the cementation rate of the soil surrounding the tunnels in the neural network 

Target function in the Neural Network Neural Network input Number 

Maximum axial force 

(f3) (ton) 
ground level uplifting 

 (f2)(mm) 

maximum shear force 

 (f1)(ton) 

Cementation (x2) 

(kPa) 
 

76.57 9.16 9.14 11 1 

77 5.02 5.7 20 2 

77.65 2.98 4.61 28 3 

76.2 12.3 9.56 8 4 

77.8 2.57 4.48 30 5 

76.79 6.76 7.56 15 6 

75.65 15 9.73 6 7 

77.27 3.92 5.01 24 8 

74.55 19.82 9.91 3 9 

76.2 12.3 10 0 10 

76.94 5.64 6.23 18 11 

77.44 3.43 4.78 26 12 

76.69 7.79 8.54 13 13 

73.58 23.5 9.98 1 14 

77.73 2.77 4.54 29 15 

76.38 11.1 9.46 9 16 

76.84 6.34 7.02 16 17 

77.15 4.45 5.31 22 18 

74.95 18.11 9.86 4 19 

77.58 3.2 4.69 27 20 

77.36 3.67 4.89 25 21 

75.3 16.51 9.8 5 22 

74.1 21.6 9.95 2 23 

76.7 5.32 5.93 19 24 

75.95 13.61 9.65 7 25 

77.2 4.18 5.15 23 26 

76.5 10 9.32 10 27 

76.87 5.97 6.58 17 28 

76.63 8.42 8.89 12 29 

77.07 4.73 5.49 21 30 

76.74 7.24 8.12 14 31 
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7.2. Error Rate of the Neural Network 
 

The neural network was utilized to establish a 

relationship between the inputs and outputs of the 

system based on the depth of the tunnel and the 

cementation rate of the soil surrounding the tunnel 

(Tables 2 and 3). With the training received, it could 

consider all the desired ranges in the design. To 

control the training process of the neural network, a 

portion of the modeling was selected for testing, and 

another part was selected for validation. The 

correlation ratio between the objective functions and 

the outputs in the neural network program is 

presented in Figures 6 and 7. 

 
 

 

 
8. Results 
 

8.1. Multi-objective Optimization using NSGA-II 
 

After training the neural network, the modified 

NSGA-II algorithm was used for multi-objective  

optimization of the problem explained in the previous 

section. In these types of problems, unlike single-

objective problems where there is  

only one extremum point for the problem, a set of 

design graphs called Pareto charts is obtained based 

on the defined objective functions. Pareto charts 

optimize conflicting objective functions 

simultaneously. The output of these charts is a set of 

optimal points, and the designer chooses them based 

on their needs. These points do not prevail over each 

other. 
 

8.2. Pareto Responses Resulting from Tunnel 

Depth Optimization in Liquefiable Soils 
 

After determining the optimal tunnel depth using 

NSGAII, the Pareto results were presented in three 

dimensions, as described in Figure 8. Figures 9 and 

10 were presented in two dimensions to better show 

the Pareto results. However, the results obtained 

conflict with each other in terms of the three objective 

functions. The reduced an objective function, such as 

changes in the uplift of the ground surface (f3), led to 

an increase in other objective functions, such as 

bending moment (f1) and axial force (f2) on the 

tunnel lining. As the objective functions f1 and f2 

decrease, it also leads to the increase of the objective 

function f3. Therefore, it can be concluded that as one 

objective function decreases, one or more other 

objective functions in geotechnical design increase. 

Hence, it is crucial to find a certain point in the Pareto 

chart that can simultaneously optimize all the 

functions supposed in the design.  

Based on Figure 8, points A, B, and C are essential 

Pareto points, and from the perspective of minimizing 

all objective functions in the design relative to each 

other, the optimal point A was chosen. Table 4 shows 

all the design variables and the results obtained from 

the objective functions related to point A, which is the 

most optimal location of the tunnel versus the depth 

in liquefiable sandy soils. 
 

Fig 6. The Correlation ratio between the three 

objective functions and the output of the neural 

network in the depth of the tunnel 

 

Fig 7. The Correlation ratio between the three 

objective functions and the neural network output 

in cementation rate of the soil around the tunnel 
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Fig 8. Pareto responses in terms of the three objective functions related to the maximum bending moment, the axial force on the tunnel 

lining, and the uplift of the ground surface in the liquefiable sandy soil 

 

  
             Table 4 

             Results of objective functions related to point A 
Optimal tunnel depth (x3) F3(mm) F2(ton) F1(ton-m) Point 

12.43(m) 31.20 94.68 14.95 A 

 

 

 
 

 

 

 
8.3. Pareto Responses Obtained from the 

Optimization of the Cementation of Soil 

Surrounding Tunnels 

 

The results showed that the optimum depth of the 

tunnel in liquefiable soils was 12.43 meters. Based on 

the input and output vectors presented in Table 4, 

multi-objective optimization of the cementation of 

soil surrounding the tunnels was performed using 

NSGAII. The Pareto responses from the perspective 

of the three objective functions were presented in 

three dimensions according to Figure 11. Figures 12 

and 13 were presented in two dimensions to better 

show the Pareto results. However, the Pareto 

responses obtained from the perspective of the three  

objective functions conflicted with each other. As the 

shear force applied to the tunnel lining (f1) and the 

uplift of the ground surface (f2) decreases, the axial 

 

 

Fig 9. Pareto responses in terms of two objective 

functions related to the maximum bending moment 

applied to the tunnel lining versus the uplift of the ground 

surface 

 

 

Fig 10. Pareto responses in terms of two objective 

functions related to the maximum axial force applied to 

the tunnel lining versus the uplift of the ground surface 



M. Shabani Soltan Moradi, M Azadi, H. jahanian 

46 

 

force applied to the tunnel lining (f3) increases, and 

vice versa. Therefore, according to Figure 11, point D 

is the most optimal state from the perspective of 

minimizing all objective functions compared to other 

points such as E and F. Point D shows the most 

optimal the cementation rate of liquefiable soil 

surrounding the tunnels based on the lowest uplift of 

the ground surface, shear force, and axial force 

applied to the tunnel lining. Consequently, Table 5 

was presented based on the design variables and the 

values obtained from the objective functions.  

 
Fig 11. Pareto responses from the perspective of three objective functions related to the 

 cementation rate of the liquefiable soil around the tunnels. 

 
               Table 5 

               Results of design variables related to point D 

Optimal cementation (x4) F3(ton) F2(mm) F1(ton) Point 

10.77 (kPa) 76.56 9.29 9.13 D 

 

 
 
 

 

 

 

 

Fig 12. Pareto results pertaining to two target functions 

related to the maximum shear force and maximum axial 

force exerted on the tunnel lining 

 

 

 

 

 

Fig 13. Pareto results pertaining to two target functions 

related to the uplift of the ground surface and maximum axial 

force exerted on the tunnel lining 
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9. Conclusion 
 

The present study aimed to perform multi-objective 

optimization of tunnels embedded in liquefiable 

sandy soil. Therefore, several models were created 

based on changes in tunnel depth using FLAC 

software. The effect of these changes on the uplift of 

the ground surface, the maximum axial force, and the 

maximum bending moment applied to the tunnel 

lining was investigated. To reduce the damage caused 

by soil liquefaction, the cementation rate of the soil 

surrounding the tunnels was assessed. The effect of 

the cementation rate of the soil on the uplift of the 

ground surface, the maximum shear force, and the 

maximum axial force applied to the tunnel lining was 

also investigated. 

Through the artificial neural network program, 

communication was established between the inputs 

and outputs of the modeling software. Based on the 

training received by the network, the results were 

obtained. This network was used as the objective 

function to determine the optimal values in the 

NSGA-II method. The general conclusions based on 

the analysis are as follows: 

1- The soil liquefaction effects decrease by 

increasing the depth of the tunnel. As the 

depth of the tunnel increased from 8 to 20 

meters in liquefied sandy soils, the uplift of 

the ground surface decreased by 7.8 times. 

However, since the overhead on the tunnel 

crown increased by increasing the depth, the 

value of the maximum bending moment and 

the maximum axial force on the tunnel lining 

increased by 1.32 and 1.3 times, respectively. 

2- The soil liquefaction effects decrease by 

increasing the cementation rate of the soil 

surrounding the tunnels. As the cementation 

rate of athe soil surrounding the tunnels 

increased from 0 to 30 kPa, the uplift of the 

ground surface and the maximum shear force 

on the tunnel lining decreased by 8.8 and 1.23 

times, respectively. Since increasing the 

cementation rate of the soil caused a decrease 

in the uplift of the earth's surface and the 

displacement of the tunnel, but an increase in 

the axial force on the tunnel lining, the 

maximum axial force on the tunnel lining 

increased by 6.6%. 

3- The results obtained from the tunnel depth 

(result 1) were such that the Decreasing the 

uplift of the ground surface led to an increase 

in the bending moment and axial force on the 

tunnel lining, and vice versa. According to 

the results of the cementation rate (result 2), 

it can be concluded that the reduced two 

target functions (uplift and shear force) led to 

an increase in the other target function such 

as axial force, and vice versa. Therefore, to 

simultaneously optimize conflicting results, 

the NSGA-II optimization was used, and 

Pareto diagrams were obtained. Finally, 

based on the Pareto diagrams, can select the 

optimal position for the tunnel in terms of 

depth 12.43 m and the optimal rate of the 

cementation of the soil surrounding the 

tunnel 10.77 kPa by choosing a single point 

on the diagram that meets the minimum 

values. 
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