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Abstract: Trajectory planning in cable-driven robots is more challenging than rigid-
link ones. To maintain the robot control, the cable tensions must be positive during 
motion. This paper presents a direct collocation approach to solve the optimal 
trajectory planning based on the minimization of a robot's tension and tension-rate 
objective functions. Besides, during robot motion, the cables must be tensile. The 
configuration of a cable parallel robot composed of a 3-cable and a prismatic 
actuator neutralizes the moving platform’s weight while improving tensionability. 
To generate smooth trajectories, the proposed method is compared with two standard 
approaches: GPOPS-II software package which uses Legendre-Gauss-Radu 
quadrature orthogonal collocation polynomials and direct collocation by using B-
spline interpolation curves. Despite the efficiency of using B-spline functions in 
trajectory planning, numerical simulations demonstrate that the Hermite-Simpson 
direct collocation approach has a substantial benefit in the computation cost and 
accuracy for trajectory planning of a cable-driven parallel robot. Also, by choosing 
appropriate constraints and cost functions, the cable forces in the parallel robot can 
be well managed. 
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1 INTRODUCTION 

In comparison with rigid links parallel robots, cable 

robots, have various profits such as low cost, low inertia, 

and friction, high payload-to-weight ratio, and large 

workspace toward serial robots[1-2]. Numerous Cable-

Driven Parallel Robots (CDPRs) that have the benefit of 

this characteristic were constructed. The NIST 

RoboCrane, the SkyCam movable camera system, the 

flight simulator, and the virtual reality simulator are 

some of the CDPR applications [3-4]. However, the 

cables are flexible, and they can only bear the tension. 

Thus, n-DOF CDPR should have minimum n+1 cables 

to preserve the cable tension and manipulate the robot 

[5]. Similarly, for CDPRs that have n-DOF and n cables, 

instead of one more cable, another actuator can be used. 

As a remarkable example, a prismatic actuator was 

utilized to retain tension in all cables [6]. Also, a 

pneumatic muscle could play as the spinal cord rule in 

the design of biological cable robots to imitate the 

human neck [7]. In this work, the central spine is used to 

keep all cables in tension.  

Optimal trajectory planning for the CDPR based on the 

definite cost functions provides a wide range of solutions 

[1], [8-11].  One of the best approaches to solving the 

problem of trajectory planning is optimal control theory. 

Two classes of direct and indirect approaches were 

considered for the optimal control problem (OCP) [12]. 

The indirect technique uses Pontryagin’s Minimum 

Principle. As an example, the time-energy optimal 

control problem for a CDPR with bounds on joint 

torques was solved by Bamdad [13].  

Besides the indirect method’s advantages, it has a major 

defect due to falling in a local minimum. The boundary 

value problem is solved challenging since the results are 

sensitive to the unknown initial conditions [12]. Thus, in 

this paper, the direct approach is selected.  

The direct method converts the trajectory planning to a 

parameter optimization problem. It uses discretizing the 

control and state variables. The key point about the 

direct method is that initial guesses have a low effect on 

the results. The integration process in the direct 

technique is essentially implicit. Compared to the 

indirect method, there is no need for analytical analysis 

and defining quasi-state variables. The key benefit of 

direct collocation is its directness. Also, the point and 

path constraints can be easily applied to the problem. 

Because of the discrete nature of the problem, there is no 

need for the shooting process, and high sensitivity to 

initial guess is removed. Thus, direct collocation is an 

influential nonlinear optimization technique that could 

be considered for systems with unstable dynamics and 

high nonlinearity. New research has established the 

potential of this approach [14-15]. In this article, an 

attempt is made to select a reliable direct method with 

minimum runtime to solve the trajectory optimization 

problem. On this basis, three direct methods of GPOPS-

II, B-spline curves, and Hermit-Simpson collocation are 

compared with each other. 

One of the direct approaches that convert the OCP to a 

discrete constrained minimization problem is the 

pseudo-spectral method. GPOPS-II uses the variable-

order Gaussian quadrature methods as a standard 

software package [16]. In this technique, the 

state/control variables are approximated by interpolating 

polynomials, where the nodes are the roots of orthogonal 

polynomials. An example of GPOPS-II is minimum jerk 

trajectory tracking for redundant robots [17]. Also, 

Campbell and Kunkel attend to solve the unstructured 

tracking problem for a robot arm that has a flexible joint 

[18]. 

Also, trajectory planning has recently been mostly 

constructed by several interpolation functions such as 

polynomial, spline, and Bessel. Due to the main 

advantage of using spline curves on trajectory planning 

over polynomial and Bessel curves, several types of 

research based on B-spline curves could be found in 

prior literature. As an example, for a CDPR, a new pick-

and-place solution by using the B-splines curves is 

presented in [19]. Also, acceleration and jerk 

optimization during trajectory have been found for 

parallel robots by B-spline curves in [20]. 

Mainly on the CDPR trajectory planning, because of the 

physical characteristics of cables, the special properties 

of cables must be considered. A minimum cable force 

limit is required to maintain all the cables in tension. 

Also, the maximum tension that cables can bear safely 

must be declared. In this regard, a model predictive 

controller is presented by Santos et al. which handles the 

tension distribution of the cables [21]. Also in [22], by 

optimal force allocation control, differentiable 

continuous tensions are guaranteed in over-constrained 

CDPR. In this work, the tension management of the 

cables is considered. Thus, the main contribution of this 

paper is:  

1- A Hermite-Simpson fast-direct collocation method 

adapting to the dynamic model of a CDPR is introduced 

and employed to obtain the optimal trajectory in an off-

line mode. For this purpose, also Gaussian quadrature by 

GPOPS-II and B-spline interpolation function which are 

well-known algorithms are selected to compare the 

numerical results and show the superiority of the 

Hermit-Simpson method.  

2- Two practical cost functions are introduced regarding 

the management of cable tensions. The first scenario is 

the minimum tension trajectory planning and the second 

is the minimum tension rate. The problem constraints 

consist of tension limits so that the cables are always 

under control.  

3- A hybrid CDPR consisting of a spine that exerts the 

normal force on the end-effector is offered.  The normal 

force maintains all the cables tightened. 
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The remainder of this work is arranged as follows: 

Sections 2, 3, and 4 explain three well-known 

approaches of direct collocation scheme, Hermite-

Simpson direct collocation, GPOPS-II, and using B-

spline curves. Section 5 presents the CDPR, and the 

kinematics and dynamics are formulated. Section 6 

signifies the problem statement. The dynamic Equation 

and the objective functions are considered. Minimum 

tension and minimum tension rate are selected as cost 

functions. The discretized dynamic Equation of motion 

is stated as the equality constraints and, the boundary 

conditions are expressed. Additionally, the cable forces 

must be maintained tensile during CDPR motion. In 

section 7, the dynamic model is verified by the ADAMS 

model. Section 8 discusses the simulation results of 

trajectory planning by three techniques, and ultimately, 

in section 9, the paper's conclusion is presented.  

2 HERMITE-SIMPSON DIRECT COLLOCATION 

The goal of CDPR trajectory planning is to generate the 

optimum controls according to the given objective 

function along with the physical limits such as 

maintaining positive cable tension. Thus, in a direct 

method, the CDPR state and controls are discretized. 

Commonly, the dynamic modeling of the CDPR is 

( ) ( (t), (t))t x f x u , where x ∈ Rn and u ∈ Rm 

designate the vector of states and controls. The problem 

is to find u(t), ∀t ∈ [0, T], such that a given objective 

function J is minimized: 
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Φ is the objective function, and h and g are formulated 

as the list of constraints [12]. This continuous system is 

converted to a discretized system with a finite number of 

variables by direct collocation. All approaches in direct 

methods divide the phase duration (time) into N -1 

intervals, 0=t1<t2<…<tN=T where the points are denoted 

as a node. We use xk = x(tk). Let us indicate the control 

by uk = u(tk). Thus, a discrete-time dynamic is x (k+1) 

=f (x (k), u (k), k). We can collocate dynamic modeling 

via different approaches such as trapezoidal, Hermite-

Simpson, etc. However, because of the adequate 

numerical accuracy, the Hermite-Simpson is applied for 

discretizing. 
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Where, h = (tN – t1) / (N -1) is the time between two 

nodes. Now, the optimal control problem converts to the 

optimization of an NLP problem. The optimization 

problem is defined in such a way that the state and 

control values, xk and uk are selected at each node in such 

a way that the dynamic Equations, boundary conditions, 

and all constraints are satisfied. In addition, the control 

values should be minimized according to the objective 

function simultaneously. The analytic Sequential 

quadratic programming, SQP solver is selected to solve 

this problem because it is faster and more precise rather 

than other algorithms, especially the evolutionary 

algorithm. In the optimization problem, selecting a 

reasonable initial guess can accelerate convergence and 

minimize the solution time. First, the optimization 

variables must be limited based on the physical nature of 

the joint variables and actuator forces. If it is considered 

yk=(xk,uk), it is supposed a lower bond lb and upper 

bound ub for each state and control variable yk as 

lb<yk<ub. In this paper, the linear initial guess between 

the boundary values of each state and control variable is 

considered in “Eq. (3)”.  
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Which yk
0 is the initial guess. Also, y1 and yN are initial 

and final values.  

3 GPOPS-II 

GPOPS-II is a MATLAB package offered for solving 

OCPs for nonlinear dynamics. GPOPS-II utilizes a direct 

collocation technique by the pseudospectral functions 

[16]. The continuous-time OCP is approximated using a 

new class of variable-order Legendre-Gauss-Radau 

quadrature orthogonal collocation polynomials resulting 

in an NLP. As stated, GPOPS-II approximates both 

states and controls that translate the OCP into an NLP 

for each (K=1, 2, …, N-1) interval. The critical points of 

a solution by GPOPS-II are [23]: 
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 The algebraic constraints can be used. 

 GPOPS-II can use automatic mesh refinement. 

 To develop the required gradients, hessian and 

Jacobian, automatic differentiation is accessible.  

4 B-SPLINE CURVES 

B-spline curves are an interconnected set of Bezier 

curves in the following general form [12]: 

 

, 1

1

( ) ( )
n

i k i N

i

x t B t C t t t


    (4) 

 

The Equations of B-spline curves consist of two parts, 

basic functions Bi,k, and control points Ci. To calculate 

Bi,k, one must first determine the number of Bezier 

curves and their degrees. Then, the time should be 

divided by the number of curves. Each point is called a 

node thus the time node vector is formed t= [t1, t2, …, 

tN]. A value of time may be repetitive numerous times in 

a node vector, named the number of repetitions. The 

difference between the order of the curve, ki, and the 

number of repetitions mi determines the degree of 

smoothness si.  

 

i i is k m   (5) 

 

si designates the level of continuity in the node, which is 

equal to the si -1 order of derivation. By these 

assumptions, the basic functions can be calculated using 

the following relations: 
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The control points organize the curve and produce a 

continuous concept. B-spline curves behave quite 

locally. By changing one of the control points, only the 

shape of the curve in the vicinity of the control point 

changes and the rest of the B-spline curve remains 

unchanged.  

5 CDPR MODELING  

A prismatic central linkage is used in this CDPR to 

supply structural stability. This central spine with wire 

actuation is utilized to obtain various important benefits 

while the advantages of a CDPR are needed. In “Fig. 1”, 

the CDPR CAD model is illustrated. This platform has 

3-DOF: pitch, roll, and heave. In this mechanism, the 

cylinder is fixed at point O to the base and attached to 

the EE at point Pm by a 2-DOF Cardan joint. Universal 

joint limits the platform’s rotation about the Z-axis as a 

single rotational DOF. Two other movements, moving 

forward/backward and moving left/right are also 

prevented.  

 

 

 

 

 

 
Fig. 1 CDPR CAD model. 

 

A prismatic actuator is used to eliminate the 

gravitational effects for any CDPR configuration. Thus, 

it makes the potential energy constant. The use of a 

prismatic joint has some advantages. The prismatic 

actuator supports the end-effector’s weight while 

improving the tensionability condition. Positive tension 

must be guaranteed during CDPR motion. The cylinder 

moves the moving platform up and down, and the cables 

are designed to direct the EE. Since the pneumatic 

cylinder tolerates the EE weight, to guide the EE, using 

powerful motors is not necessary.  

For kinematic analysis, the reference frame [A: XYZ] is 

fixed at point O to the base, and the moving frame [B: 

xyz] is attached to the EE at point Pm, the EE center of 

mass. The EE coordinate x is expressed in [z, α, β] T. z 

denotes the height of the Pm, α denotes the EE pitch 

angle around the X-axis, and β denotes the EE roll angle 

around the Y-axis. In inverse kinematics, these 

coordinates are considered. The q = [l1, l2, l3, d] T is the 

joint coordinate. li is the cable length, and d is the 

cylinder position. Since the pneumatic cylinder is fixed 

to the base, z = d+d0, in which the fixed length of the 

pneumatic cylinder d0 is considered 0.5m. The angle 

between the right-hand side of the X-axis and OSi is θi 

(i=1,2,3). The schematic diagram of the mechanism is 

introduced in “Fig. 2”. To obtain the cable length, we 

form the following Equations: 

 

i i i i i i i i il  OS S P OP = S P = OP -OS  (7) 

 
OSi is a constant vector. Also, OPi = z + PmPi, in which 

z is known. For PmPi, we have PmPi =Rm
oPi. Rm

o 

Central spine 

End-effector 

Stepper 

motor 



15                                  Milad Badrikouhi et al. 

  

 

=RPR=Ry(β)Rx(α) is the rotation matrix of the EE. Also, 

Pi is the primary position of the vector PmPi relative to 

the frame [B]. Consequently, the inverse kinematic 

Equation is: 

 

0 , ( ) ( )i i iz d d l    y x= z + R R P -OS  (8) 

 

 

 
Fig. 2 CDPR kinematic and FBD diagram. 

 
By velocity loop closure, the Jacobian is calculated. I, J, 

K is the unit vector of a frame [A], and i, j, k is the unit 

vector of [B]. The relationship between the joint 

velocities and EE velocity is explained in the following 

Equation: 

 

xq J x  (9) 

In which Jx is the Jacobian, q  is the velocity vector of 

the joints, and x is the EE velocity. First, we notice the 

next Equation, which is established in every closure loop 

of the parallel platform. 

  

m m i i i iOP + P P = OS +S P  (10) 
 

In the next step, we differentiate from each term of Eq. 

(10). First, by considering prismatic joint, dOPm/dt= z K  

with pitch–roll rotation, we have: 

,m i
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Also, OSi is a constant vector. As a result, dOSi/dt=0. 

Also, li direction through a unit vector si is calculated as 

follows: 
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The angular velocity vector of the cables, Ωli is 

perpendicular to si, and cables do not rotate around 

themselves, as a result: 
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Therefore, the final Equation for velocity loop closure is 

rewritten as: 
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For calculating Jx, the cross product of the vector si 

satisfies the following Equation. 
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Considering PmPi = Ei, “Eq. (12)” simplifies to:  
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Rewriting “Eq. (13)” results in: 
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From “Eq. (5)”, z d , using “Eq. (14)” for i = 1, 2, 3, 

Jx is derived as: 
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The manipulator dynamic Equation of motion can be 

obtained from the Newton-Euler formulation. In this 

case, the cable mass and friction are neglected. Let Wenv 

= [Fz, Tx, Ty] T be the wrench applied on the EE center by 

the environment and τ=[T1, T2, T3, Fz] T is the actuator 

force where Ti is the tensions and Fzc is the cylinder 

force. The EE position/orientation relative to the world 
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coordinate systems is denoted by three variables in x=[z, 

α, β] T. After CDPR Jacobian Jx calculated from “Eq. 

(11)”, nonlinear differential Equations of motion for the 

CDPR is rewritten as: 

 

( ) T

x  D x x C(x,x) G(x) J τ  (16) 

 
In which D(x) signifies the CDPR mass matrix, C(x,x)

signifies the Coriolis and centrifugal matrix, and G(x) 

signifies the gravity effect, all will be presented in 

Appendix A. The CDPR Jacobian Jx is calculated from 

“Eq. (15)”. As a result, the state space can be developed 

as below: 

 

  

  

  

1 2

1 1

2 1
12

3 43

1

4 4 2
2

5
5 6

16
6 3

3

( )

( )

( )

T

x

T

x

T

x

x x
x z

x A
x z

x xx

x x A

x x x

x
x A
















 

    
 

   
 

     
   

     

D x J τ G(x) C(x,x)

D x J τ G(x) C(x,x)

D x J τ G(x) C(x,x)

  

                                                                                  (17) 

6 PROBLEM STATEMENT 

Due to trajectory planning, the direct collocation method 

should be adapted with CDPR modeling. First, from the 

dynamics, the states are the joint position and velocity, 

and the controls are the actuator. Thus, the optimization 

variables are: 

 

[ , , , , , , , , , ]
k k k kk k k k k k k 1 2 3 zz z F F F F   y  (18) 

 

In which k = 1, 2, …, N. The NLP variables that should 

be optimized based on the cost function are y= (y1, y2, 

…, yN)T. The trajectory planning problem is to detect y 

in all nodes considering boundary conditions and 

constraints. This problem is prescribed with cable force 

and force rate in the objective functions. The inequality 

constraints include positive force in the cables. “Table 

1” explains the objective function. From “Eq. (17)” and 

using “Eq. (3)”, the dynamic constraint is established as 

the equality constraint: Minimize J 
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The boundary conditions are the second list of 

constraints. 
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N N

N N

N N

z z z z

   

   

   

   

   

 (20) 

 
For cable constraints, it must be considered positive 

tension otherwise, the CDPR performance will be 

troubled.  

 

( 1,2,3)

(k 1,2,..., )ki allow

i
F F

N


 



 (21) 

 
At time tk, Fik= Fi(tk) represents the tension (i=1,2,3). 

Fallow is the minimum cable force and is 10N. The CDPR 

parameters are denoted in “Table 2”. SQP by the 

suggested procedure in “Fig. 3” solves this trajectory 

planning problem. 

 
Table 2 The cable robot parameters 

Parameters Value Unit 

Angle 

=0 1θ 

=120 2θ 

=240 3θ 

degree 

Base radius =0.8 br m 

EE radius =0.2 er m 

EE mass m=100 Kg 

EE moment of inertia I=1 2Kg.m 

Initial time =0 1t s 

Final time =2 Nt s 

 



17                                  Milad Badrikouhi et al. 

  

 

Algorithm Direct collocation trajectory planning of a 

CDPR 

Input:  

1: Get the parameters: θi, rb, re, m, I, t1, tN. 

2: Define lower bond lb and upper bond ub. 

3: Define the boundary values by Eq. (20). 

4: Define the linear initial guess matrix 0

ky  (“Eq. (3)”). 

5: Consider the NLP variables y= 0

ky . 

Constraint function.  

6: For k=1 to N -1 do 

7: Consider dynamics constraints (“Eq. (19)”). 

8: End for 

9: Set the boundary conditions (“Eq. (20)”) and positive 

tensions (“Eq. (21)”). 

Objective function.  

10: For k=1 to N -1 do 

11: Define the objective function (“Table 1”). 

12: End for 

Direct collocation method: 

13: While the optimality condition is satisfied do 

14: Call the Objective function and Constraint function.             

15: Compute new trajectory y by NLP iterative search 

algorithm. 

16: End while 

Output: 

17: Report optimal trajectory ys = y. 

Fig. 3 The proposed algorithm. 

7 DYNAMIC MODEL VERIFICATION 

To verify the dynamic modeling, a model is 

implemented through ADAMS software. As shown in 

“Fig. 4”, this model includes complete details of the 

CDPR. To verify, nonlinear actuator controls are 

considered.  

1

2

3

2sin( ), unit :N
2

2 2sin( ), unit :N
2

2sin( ), unit :N
2

980.6 10sin( ), unit :N
2

z

t
T

t
T

t
T

t
F













  


 


  


 (22) 

 

 
Fig. 4 ADAMS model. 

The simulation results of both methods are quite similar. 

The model simplification causes small inaccuracies 

between the MATLAB and ADAMS models. It is 

considered the ideal universal joint in MATLAB. Thus, 

the EE gravitational force has no torque around the 

center of the U-joint, but in ADAMS there is. Also, in 

the MATLAB model, it is considered that the moving 

platform has no thickness. Some minor errors may be 

caused by the numerical errors of the ordinary 

differential Equation solver in ADAMS, which are 

reasonable in a sense. Therefore, the accuracy of the 

dynamic model is verified (“Fig. 5”). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 Results of the MATLAB and ADAMS simulation: 

(a): EE center of mass z position, (b): roll angle, and (c): pitch 

angle. 
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8 TRAJECTORY PLANNING WITH HERMITE-

SIMPSON, GPOPS-II, AND B-SPLINE CURVES 

METHODS  

For simulation, the computer specification is Windows 

7 Pro, Intel (R) Core (TM) i5 CPU M-480 @ 2.67GHz 

and 4GB RAM. MATLAB has been used for simulation. 

We can compare GPOPS-II, Hermite-Simpson, and B-

spline methods corresponding to the minimization of the 

cost function. Solving the trajectory planning problem 

by minimizing tension and tension rate is summarized in 

“Table 3”. The runtime is divided into ten nodes.  

Also, three stopping criteria for SQP solver are defined. 

Generally, the stopping criteria are thresholds that, if 

crossed, stop the iterations. TolX is the minimum size of 

a step. If the solver takes a step tinier than TolX, the 

iterations finish. TolFun is a minimum change in the cost 

function value during a step. The process will be 

completed when |J (xk) – J (xk+1)| < TolFun. At last, 

MaxIter is the number of solver iterations. If the number 

of iterations exceeds the MaxIter, the simulation is 

ended. The stopping criteria for the three methods are 

considered the same, TolX = TolFun = 10-3, and MaxIter 

= 30000. First, solving the trajectory planning problem 

through minimizing tension is considered. The results 

for direct collocation, GPOPS-II, and B-spline are 

illustrated in “Fig. 6”. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

Fig. 6 Results through minimizing cable’s tension.  

 
Table 3 Results for the minimum-tension cost function 

Methods Runtime (s) Cost function value 

Hermite-

Simpson 
0.86 399 

GPOPS-II 10.31 385 

B-spline 7.73 427 

 

The results show that Hermit-Simpson's method is 

superior to other methods in terms of problem-solving 

time. Also, in the GPOPS-II method, there are drastic 

changes in increasing or decreasing the force of the 

pneumatic cylinder, which is not desirable at all. 

Therefore, as two reliable methods, the results related to 

the Hermit-Simpson method and B-splines function are 

proposed. From the viewpoint of the cost function, the 

results of the Hermit-Simpson method are superior to the 

B-spline technique. It can also be seen that the changes 

related to the cable forces in terms of time are less in the 

case of the B-spline method, and smoother forces have 

been obtained. Second, the problem is considered by 

minimizing the tension rate of the cables. The results are 

shown in “Fig. 7”. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

Fig. 7 Results through minimizing cable’s tension rate.  

 

The results show that the B-Spline method is the most 

time-consuming in terms of runtime. In the GPOPS-II 

method, there are severe changes in the tension of the 

cables and the pneumatic cylinder force, which proves 

that this method is not desirable for meeting the control 

demands. It is clear from the value of the objective 

function in “Table 4” that this method could not 

minimize the value of the cost function. From the 

viewpoint of minimizing the objective function, the 

results of the Hermite-Simpson method are significantly 

superior to the B-spline method. 

 
Table 4 Results for the minimum-tension-rate cost function. 

Methods runtime (s) Cost function value 

Hermite-

Simpson 
1.16 0.95 

GPOPS-II 1.08 272640 

B-spline 7.11 10.61 

 

Finally, the cable tensions obtained from two objective 

functions, minimum-tension and minimum-tension-rate 

by Hermit-Simpson direct collocation are compared in 

“Fig. 8”.  

 

 
(a) 

 

 
(b)  
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(c) 

Fig. 8 Comparing results through minimizing cable’s 

tension and cable’s tension-rate.  

 
From “Table 5” and “Fig. 8”, it can be seen that if the 

designer wants the changes in cable forces to be 

minimal, the function of minimum-tension-rate can be 

used. However, using this function increases the amount 

of cable forces. Otherwise, the forces obtained from the 

simulation with the objective function of minimum-

tension give acceptable results. 

 
Table 5 Results of the Hermit-Simpson direct collocation for 

the minimum-tension (J1) and minimum-tension-rate (J2) 

objective function 

Cost function selection 1J 2J 

1J 

2J 

399 105 

2123 0.95 

9 CONCLUSIONS 

The development of optimal trajectory planning 

algorithms is a main issue in efficiently performing 

cable-driven parallel robot tasks. Direct collocation 

schemes are considered in this paper to solve the 

trajectory planning problem for CDPRs. First, the 

optimization problem and direct schemes were 

introduced. Then the CDPR kinematics and dynamics 

are obtained. Next, the problem statement of the 

trajectory planning is expressed in detail. The trajectory 

planning's key emphasis was on the cable tensions in the 

cable robot with the prismatic actuator considering the 

boundary conditions and positive cable tension 

constraints. Before the trajectory planning, the 

MATLAB model is verified by an ADAMS model. The 

two models have a good agreement in the results of 

motion parameters to the nonlinear input forces and thus, 

the CDPR dynamics is correct (“Fig. 5”). Direct 

collocation approaches in trajectory planning including 

Hermite-Simpson, GPOPS-II, and B-spline method are 

compared in “Tables 3 and 4”. The results from the 

minimum-tension objective function from “Table 3 and 

Fig. 6” in this simulation show that using the Hermite-

Simpson and B-spline methods has good performance in 

minimizing the cost function rather than GPOPS-II. But 

the Hermite-Simpson is the most accurate and fast 

among the methods. The results obtained from the 

minimum-tension-rate objective function from “Table 4 

and Fig. 7” show that GPOPS-II is not desirable in 

satisfying the control demands and could not minimize 

the value of the objective function. Also, the Hermite-

Simpson has a better performance and less runtime 

rather than B-spline. Thus, this shows that the Hermite-

Simpson direct collocation technique is an appropriate 

method for this trajectory planning problem. 

Furthermore, this technique can be simply formulated 

and proposed for other case studies. Also, by comparing 

the cable tensions in “Table 5 and Fig. 8”, the role of cost 

functions in cable tension management is determined. In 

the case where minimum-tension-rate is used, the 

changes in tensions will be less, but the value of cable 

tensions and consequently the energy consumed is more. 

As in research [14] and [15], the use of the direct 

collocation method has brought reliable results. In 

various research, indirect methods [8],  polynomial and 

harmonic functions [24], and other basic functions have 

been used for trajectory planning. This issue may be 

directly related to the unfamiliarity of the direct 

collocation method. Also, due to the existence of ready 

toolboxes such as GPOPS-II and default MATLAB 

software commands, researchers have usually used these 

toolboxes and commands or previously known methods. 

Apparently, there are some limitations in this research. 

In dynamic modeling, the ideal universal joint is 

considered. Also, friction between the CDPR elements, 

cable mass, and the moving platform thickness are 

neglected. But despite this, the presented model has a 

good match with the Adams model. On the other hand, 

the mathematical complexities of modeling have been 

avoided. Also, due to the time limit, three direct methods 

were compared in solving the trajectory optimization 

problem, and in future research, other methods can be 

used in solving the trajectory planning problem. 

10 APPENDIX OR NOMENCLATURE 

Ei is the vector from the EE center to the attachment 

point of the cables after pitch-roll rotation. Hence: 

 

 i ifix movPRE = R E  

 

In which RPR is the pitch-roll rotation matrix. i mov
E is 

calculated as: 
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1        0       ] [ 0 T

emov
rE  

2 3 / 2   [ 0/ 2   ]     T

v e emo
r r E  

3 3 / 2    [ / 2    0]  T

mo e ev
r r  E  

 

Hence, i fix
E is obtained as follows: 

 

1          0      [  ]T

e er cos r sin  E  

2        
2 2

3

2  2

3 3
]

2
[ Te e e e er sin sin r cos r cos r sin r cos sin      

  E

3

3
       

2 2
[ ]

2

3

2

3

2

Te e e e er cos r sin sin r cos r sin r cos sin       
  E  

 

Also, the elements of “Eq. (16)” are presented as 

follows: 

0 0

0 0 , 0, [ 0 0]

0 0

T

m

I mg

I

 
 
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 
 

D(x) C(x,x) G(x)
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