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Abstract 

Hub networks play a crucial role in optimizing transportation flow and reducing overall costs by 

efficiently connecting origins and destinations through strategically placed hub nodes. The 

decision of hub location carries significant long-term implications and necessitates consideration 

of various factors within an uncertain environment. This paper addresses the hub arc location 

problem in hub networks, considering setup costs, isolated hubs, and uncertain flows between 

nodes. To tackle this challenge, a two-stage stochastic programming model is formulated to 

incorporate the uncertainty in flow volumes. Additionally, a robust optimization approach is 

proposed to enhance the resilience of hub location decisions against uncertain scenarios. The 

problem is solved using a tailored Genetic algorithm, which achieves optimal solutions with high 

quality and reasonable computational time. The results demonstrate the effectiveness of the 

proposed methodology in handling the uncertain nature of the hub location problem, contributing 

to the advancement of transportation planning and logistics optimization. The findings provide 

valuable insights for practical applications in real-world scenarios, offering a framework for 

decision-makers to make informed choices regarding hub network design and location. By 

integrating uncertainty and robust optimization techniques, this paper offers a comprehensive 

approach to address complex transportation network problems and improve overall efficiency in 

transportation systems. 
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1. Introduction 

The transportation, logistics, and telecommunications industries grapple with the efficient 

movement of passengers, goods, and information from their origins to destinations (Farahani, 

Hekmatfar et al. 2013). To enhance this process and achieve economies of scale, hub networks play 

a crucial role by facilitating the transfer of flow and improving service levels. Traditional hub 

location problems assume a complete graph with discounted hub arcs, connecting all hub nodes 

(Campbell, Ernst et al. 2005). However, these assumptions often yield unrealistic outcomes, 

prompting the development of a new problem class referred to as Hub Arc Location problems 

(Campbell, Ernst et al. 2005). These problems aim to determine the ideal positioning of hub arcs and 

the allocation of non-hub nodes to hubs, thereby minimizing both the total transportation cost and 

deployment. 

Real-world problems often suffer from the limitation of assuming fixed input parameters, resulting 

in suboptimal and infeasible solutions (Alumur, Campbell et al. 2021). Parameters such as set-up 

cost, transportation cost, demand, distance, and density are prone to non-deterministic behavior, 

as they can change after decisions have been made. Traditional methods employ sensitivity 

analysis to account for minor uncertainties in data, but this approach falls short in producing robust 

results (Chou 2010). Hence, addressing the inherent uncertainty in hub arc location problems 

becomes necessary. This paper aims to introduce a novel approach to robust hub arc location 

problems, requiring a comprehensive exploration of the pertinent literature. 

When it comes to optimization under uncertainty, three research methods are commonly discussed: 

stochastic optimization, robust optimization, and fuzzy optimization (Contreras, Cordeau et al. 2011). 

Stochastic programming is often modeled through two-stage programming, where an initial 

decision is made, followed by the observation of random events and subsequent decisions to 

mitigate their effects or improve outcomes (Bashiri and Mehrabi 2010): In contrast, robust 

optimization considers indefinite possibilities through discrete scenarios or continuous intervals to 

estimate uncertain parameters (Hekmatfar and Pishvaee 2009). Discrete scenarios refer to different 

numbers suggested for each parameter based on past experiences or feasibility studies, while 

continuous intervals represent ranges within which uncertain parameters are defined (Chou 2010). 

These scenarios depict the most likely states that may arise in the future. 
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Our research addresses significant limitations in classical hub location problems related to the 

consideration of a standard discount factor for all hub arcs. This approach, commonly used to 

achieve cost savings and economies of scale for flows on hub arcs, tends to yield unrealistic 

outcomes. Optimal solutions may lead to disproportionately smaller flows on hub arcs when 

compared to non-hub arcs, especially as the discount factor is applied solely between hub points 

(Li, Bing et al. 2023). Moreover, the traditional assumption of complete connectivity among hub 

points in classical hub location problems can restrict model flexibility and realism. While this 

assumption may simplify network design and flow routing, it enforces specific cost structures and 

topologies that may not align well with practical scenarios (Rahmati, Neghabi et al. 2024). 

In contrast to air transport networks where direct flights between all hubs optimize passenger travel 

time, large transportation and long-haul communication networks typically deviate from this direct 

connectivity model. Consequently, actual hub networks often lack full interconnections between 

hub nodes, affecting the efficiency and dynamics of the network as a whole (Lasemi, Arabkoohsar 

et al. 2022). 

Recognizing that location decisions play a crucial role in strategic decision-making processes and 

demand substantial time investment for implementation, we have incorporated uncertainty into our 

hub location modeling. By relaxing the assumptions inherent in classical hub location problems, 

we have tailored our approach to address real-world complexity and optimize decision-making 

processes under uncertainty. 

The innovative application of hub location modeling in our research not only alleviates restrictive 

assumptions but also enhances the practical relevance and applicability of our findings in real-

world settings. By emphasizing the necessity and significance of our work in overcoming these 

research challenges and promoting innovation, our study contributes to advancing the field of hub 

location optimization and its practical implications. 

The structure of this paper is organized as follows: Section 2 involves literature review. Section 3 

provides the problem definition, assumptions, notations, and modeling approach. In Section 4, we 

present the solution methodology and computational results, including a comparison between 

traditional and novel approaches. Moreover, it consists of a sensitivity analysis to elucidate the 

underlying concepts. Finally, in Section 5, we summarize the results obtained from the preceding 

sections and propose directions for future research. 
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2. Literature Review 

In this section, the literature related to hub location problem considering uncertainty is reviewed. 

There are various methods to deal with this uncertainty. However, proper categorization of these 

methods is necessary for a better analysis. In order to tackle the uncertain hub arc location problem, 

two common approaches to ensure robustness in combinatorial optimization problems, particularly 

in location problems, are minimizing the maximum cost and minimizing the maximum regret 

(Klincewicz 1998). Regret refers to the difference between the quality of a given strategy and the 

quality that would have been chosen if the future were certain (Berman, Drezner et al. 2007).  

Minmax Regret models aim to minimize the maximum regret across all scenarios. This field of 

research finds applications in scheduling problems, production planning, location and allocation, 

resource allocation, and various other domains. (Klincewicz 1998) first applied the Minmax Regret 

model to the 1-median location problem on a tree.  O’Kelly and Bryan (1998) extended this approach 

to the weighted p-center facility location problem, incorporating uncertain interval weights. They 

also explored the formulation of Minmax Regret models for handling uncertainties in edge lengths 

and node weights in the 1-center location problem. Klincewicz (1998) further presented the 1-

median Minmax regret location problem by considering interval uncertainties in each node's 

demands, providing a polynomial algorithm to solve it.  

In the literature addressing hub location problems, Campbell, Ernst et al. (2005) introduced four types 

of Hub Arc Location Problems, defining and comparing these models against classic hub median 

problems. They also formulated related integer programming models and proposed an 

enumeration-based algorithm to solve them. (Campbell, Ernst et al. 2005). Campbell, Stiehr et al. 

(2003) applied the first type of problem to a cluster of workstations, considering service level 

constraints in formulating time-definite transportation problems (Campbell 2009). Subsequently, 

Sasaki, Campbell et al. (2009) explored hub arc location problems involving competitive conditions. 

Martins de Sá, Contreras et al. (2015) addressed a specific hub line location problem focused on 

minimizing total travel time from origin to destination and devised an exact algorithm to solve it. 

The research on isolated hubs was explored in the works of (Korani and Eydi 2021) and (Atay, Eroglu 

et al. 2023). Furthermore, a rigorous examination of a path-based formulation for the tree of hub 

location problem was conducted in the studies by (Fernández and Sgalambro 2020), (Bütün, Petrovic 

et al. 2021), (Espejo, Marín et al. 2023, Khaleghi and Eydi 2024) and , while introducing a valid 
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inequality in (Contreras, Fernández et al. 2010). Additionally, alternative modeling approaches 

utilizing a tree structure for hub location optimization were investigated and resolved using the 

minimum spanning tree method by (Mohajeri and Taghipourian 2011) and an enhanced Benders 

decomposition algorithm by  (Muffak and Arslan 2023) and (Ramamoorthy, Vidyarthi et al. 2024). 

In recent years, there has been a growing interest in addressing stochastic hub arc location 

problems. Several studies have been conducted by Hamid, Bastan et al. (2019), Shang, Yang et al. 

(2020), Wang, Chen et al. (2020), Hu, Hu et al. (2021), Rostami, Kämmerling et al. (2021), Taherkhani, 

Alumur et al. (2021), Ghaffarinasab and Kara (2022), Ghaffarinasab (2022), Rahmati, Neghabi et al. 

(2023)and Sener and Feyzioglu (2023). These studies proposed uncertain models and employed 

various approaches to mitigate uncertainties. They utilized both exact and heuristic algorithms to 

solve the proposed models, with details provided in Table 1. In Table 1, we provide a 

comprehensive review of articles that focus on the consideration of uncertainty in hub location 

problems. Additionally, we present the research gap investigated in this study in Table 2, 

highlighting the contributions of this paper in relation to the related and most similar papers.  

In our manuscript, we involve the complexities of hub facility location under uncertain parameters, 

especially focusing on arc hubs, which have been relatively understudied compared to traditional 

hub location models. We recognize that hub location decisions are crucial strategic choices with 

long-term implications, necessitating a comprehensive understanding of the impact of uncertainty 

on various parameters such as costs, demand, and distance. 

By incorporating uncertainty into our model, we aim to provide a more realistic and robust solution 

that can adapt to dynamic changes in the operating environment. Unlike classical models that treat 

data as certain and may lead to suboptimal outcomes when faced with uncertainty, our method 

accounts for the inherent uncertainties in hub location decisions, leading to more reliable and 

resilient solutions. 

Furthermore, our approach considers the uncertainties surrounding flow parameters between nodes 

and the implications of isolated hubs, offering a more comprehensive perspective on arc hub 

location problems. This novel approach not only fills an important research gap but also paves the 

way for future advancements in modeling and optimizing hub facilities under uncertain conditions. 

A key highlight of this research is the inclusion of isolated hubs alongside connected hub facilities. 

Isolated hubs, which operate independently without direct connections to hub arcs, play a vital role 
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in streamlining transportation and flow transfer processes. They facilitate the creation of more 

efficient origin-destination routes, thus elevating service standards significantly. 

Moreover, this paper introduces a metaheuristic algorithm, specifically a Genetic Algorithm, to 

address the hub arc location problem in high-dimensional sizes—a pioneering venture. Notably, 

this is the first instance in which this problem has been tackled under conditions of uncertainty. 

Leveraging minimax regret theory adds a robust layer to the proposed algorithm, which is validated 

by meticulous comparisons of solutions concerning accuracy and computational efficiency against 

exact solutions. Additionally, the development of a two-stage stochastic programming model, 

juxtaposed with a robust approach, accentuates the novelty and impact of this study. 

In essence, this work's innovations stem from its exploration of isolated hubs, the application of 

metaheuristic algorithms in complex dimensions, and the resolution of hub arc location 

considering uncertainty. These breakthroughs not only fill important research lacunae but also 

provide valuable insights for practical implementations, propelling the realms of transportation 

planning and logistics optimization forward. Now, a concise summary of the original contributions 

made by our research: 

▪ Integration of isolated hubs alongside connected hub facilities to enhance transportation 

efficiency and service quality. 

▪ Introduction of a Genetic Algorithm to solve the hub arc location problem in large-

dimensional spaces, marking a novel advancement in addressing complex logistics 

challenges. 

▪ Pioneering exploration of uncertainty in hub arc location problems, supported by minimax 

regret theory for algorithm robustness. 

▪ Innovation in developing a two-stage stochastic programming model with a robust 

methodology to deliver accurate and efficient solutions. 

Overall, our study breaks new ground by examining isolated hubs, applying metaheuristic 

algorithms to complex scenarios, and tackling uncertainty in hub arc location challenges. These 

advancements not only contribute to academic knowledge but also offer practical insights for 

improving transportation planning and logistics optimization strategies. 
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Makui, Rostami et al. (2002) 
 

  
 

   
 

   Robust programming 

Marianov and Serra (2003) 
 

  
 

      
 

Tabu search 

Ramos, Ramos et al. (2004) 
 

   
 

   
 

  Improved Lagrangian decomposition 

Yang (2009) 
 

  
 

    
 

  2-stage stochastic programming 

Bashiri and Mehrabi (2010) 
 

    
 

    
 

GA with Chance constraint 

Miranda Junior, Camargo et al. 

(2011)  
  

 
    

 
  Generalized Benders decomposition 

Contreras, Cordeau et al. (2011) 
 

  
 

  
 

 
 

  
Monte Carlo simulation-based algorithm 

with Benders’ algorithm 

Yang, Liu et al. (2011)  
 

   
 

     MILP programming 

Alumur, Nickel et al. (2012) 
 

  
 

  
 

    Robust and stochastic optimization 

Rostami, Farahani et al. (2012) 
 

  
 

       Robust optimization with goal programming  

Zhai, Liu et al. (2012) 
 

  
 

       
Minimum risk criteria  

2-stage stochastic optimization 

Mohammadi, Razmi et al. (2013) 
 

    
 

   
 

 Invasive weeds optimization 

Wang, Meng et al. (2013) 
 

  
 

       SAA chance constraint 

Mohammadi, Jolai et al. (2013) 
 

      
 

  
 

NSGA-11 and PAES 

Rahmaniani, Ghaderi et al. (2013) 
 

  
 

   
 

 
 

 
Neighborhood search with robust 

optimization 

Hult, Jiang et al. (2014)  
 

     
  

  
Exact solution algorithm based on 

separation 

Mohammadi, Torabi et al. (2014) 
 

  
 

      
 

SA, ICA, restrictions chance and fuzzy 

programming 
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Qin and Gao (2017) 
 

   
 

      GA with stochastic programming 

Habibzadeh Boukani, Farhang 

Moghaddam et al. (2016)  
     

  
   Robust optimization 

Shahabi and Unnikrishnan (2014) 
 

  
 

       Robust optimization 

Ghaffari-Nasab, Ghazanfari et al. 

(2015)  
  

 
       Robust optimization 

Ahmadi, Karimi et al. (2015)  
 

 
 

       Robust and stochastic programming 

Adibi and Razmi (2015) 
 

  
 

  
 

    Stochastic programming 

Ghaffari–Nasab, Ghazanfari et al. 

(2015)  
   

 
      Robust optimization 

Zhai, Liu et al. (2016) 
 

  
 

       Two-stage stochastic programming 

Gao and Qin (2016)  
 

     
 

   Chance constrained programming 

Meraklı and Yaman (2016)  
 

 
 

       Robust optimization 

Ghaderi and Rahmaniani (2016)  
 

 
 

   
 

  
 

Robust optimization 

Zetina, Contreras et al. (2017) 
 

  
 

    
 

  
Branch and cut algorithm with Robust 

Optimization 

Meraklı and Yaman (2016) 
 

  
 

    
 

  
Benders’ decomposition and Robust 

Optimization 

Talbi and Todosijević (2017)  
 

  
 

      Robust Optimization 

de Sá, Morabito et al. (2018) 
 

  
 

    
 

  
Benders’ decomposition and Robust 

Optimization  

Ghaffarinasab (2018)  
 

 
 

      
 

Tabu Search based metaheuristic with 

Robust Optimization 

Wang and Qin (2020) 
 

   
 

  
 

   Chance constrained programming 
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Hamid, Bastan et al. (2019)  
 

    
  

 
 

 
Heuristic solution with a single-scenario 

stochastic optimization 

Shang, Yang et al. (2020)       
  

  
 

Chance-constrained programming and 

expected-value, Memetic algorithm 

Wang, Chen et al. (2020) 
 

  
 

  
 

    Distributionally robust optimization 

Hu, Hu et al. (2021) 
 

  
 

    
 

  Chance constrained and Cone programming 

Taherkhani, Alumur et al. (2021) 
 

  
 

   
  

  
Benders’ decomposition and Robust 

Optimization 

Rostami, Kämmerling et al. (2021) 
 

  
 

    
 

  
L-shaped decomposition with Branch and 

cut and stochastic optimization 

Ghaffarinasab and Kara (2022)  
 

 
 

    
 

  
Benders’ decomposition and Stochastic 

programming  

Ghaffarinasab (2022) 
 

  
 

    
 

  

Benders’ decomposition, Lagrangian 

relaxation and 2-stage stochastic 

programming 

Rahmati, Neghabi et al. (2023) 
 

  
 

    
 

  
L-shaped and Benders’ decomposition with 

Two-stage stochastic programming 

Sener and Feyzioglu (2023) 
 

  
 

  
 

 
 

  
L-shaped decomposition and stochastic 

programming 

This paper   
 

 
 

 
 

 
  

 
Tailored GA with Min-max regret 

modelling in 2-stage programming 
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Table 2. Research gaps 

Uncertainty Solution approach Problem size 

Releasing full 

connectivity 

restriction 

Releasing 

discount factor 

restriction 

Other costs Hub Arc Location Problem Literature 

- - - 
  

- 
Hub Arc Location Problems:Part I—Introduction 

and Results (Campbell, Ernst et al. 2005) 

- Enumeration based algorithm Small 
  

- 

Hub Arc Location Problems:Part II—Formulations 

and Optimal Algorithms (Campbell, Ernst et al. 

2005) 

- 
Parallel Implementation of 

enumeration-based algorithms 
Medium 

  
- 

Solving Hub Arc Location Problems on a Cluster of 

Workstations (Campbell, Stiehr et al. 2003) 

- 
Exact solution from GAMS 

optimization software 
Small 

  
- 

Hub location for Time Definite Transportation 

(Campbell 2009) 

- Exact solution Large 
  

- 
Hub Arc Location with Competition (Sasaki, 

Campbell et al. 2009) 

 
Heuristic solution Large 

   

Uncertain and sustainable hub location problem 

(Mohammadi, Torabi et al. 2014) 

 
Heuristic solution Small 

 
- - 

Stochastic uncapacitated P-hub median problem 

(Hamid, Bastan et al. 2019) 

 
Heuristic solution Large 

 
- - 

Stochastic hub profit maximization problem 

(Taherkhani, Alumur et al. 2021) 

 
Exact solution Large 

  
- 

Maximal covering, median and center P-hub 

location problem (Ghaffarinasab and Kara 2022) 

 
Exact solution Large 

 
- - 

 Stochastic and sustainable hub location problem 

(Rahmati, Neghabi et al. 2023) 

 
(flow) 

Exact solution 

Metaheuristic algorithm 

Small, Medium, 

Large   
Set-up cost This paper 
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3. Research Framework 

The objective of this study is to minimize the total transportation cost and deployment by 

determining the optimal location of hub arcs and allocating non-hub nodes to the hubs. Hub 

arcs are defined as arcs connecting two hub nodes and providing cost-efficient flow 

transportation through economies of scale. Unlike traditional hub location problems, this 

research departs from the assumption of full connectivity in the hub network and instead 

introduces a discount factor exclusively applied to hub arcs, aiming to align with real-world 

scenarios. Moreover, the focus is shifted towards locating hub arcs rather than hub nodes. 

To formulate a hub arc location problem under uncertainty, it is necessary to first discuss the 

deterministic problem. Consequently, this study proposes a mixed-integer linear formulation 

for hub arc location problems. In the formulation, the objective function incorporates set-up 

costs, and the hub network structure accounts for the presence of isolated hubs, facilitating a 

comprehensive analysis of the problem at hand. 

Consider a graph G = (V, E) with vertex set V = 1, ..., N. The demand or flow between node o 

and node d is Wod. The cost of traveling from node i to node j is disij and follows triangle 

inequality theorem. The hub arcs that connect hub nodes i and j have αdisij discounted costs 

per flow unit (0 <α<1). The number of hub arcs and the maximum number of hub nodes on the 

network are exogenous and hub node capacity is assumed unlimited. Also, the origin-

destination route contains at least one and at most two hub facilities. 

Assumptions and Notation 

Indices 

o Set of origin nodes 

d Set of destination nodes 

i Set of first hub nodes 

j Set of second hub nodes (if needed) 

Parameters 

Wod: The flow between origin o and destination d 

disij: The distance between node i and j 

fi: Set-up cost for hub i 

α: Discount factor between two hubs 

q: Number of hub arcs 

p: Maximum number of hubs 
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Decision variables 

Xijod: If the flow from origin i to destination j passes through hub i, 1; otherwise, 0. 

Yij: If there is a hub arc between hub i and hub j, 1; otherwise, 0. 

Zi: If node i is a hub node, 1; otherwise, 0. 

(1) 
𝑀𝑖𝑛 ∑ (𝑊𝑜𝑑 + 𝑊𝑑𝑜)(𝑑𝑖𝑠𝑜𝑖+∝ 𝑑𝑖𝑠𝑖𝑗 + 𝑑𝑖𝑠𝑗𝑑)𝑋𝑖𝑗𝑜𝑑

𝑜,𝑑,𝑖,𝑗
𝑜<𝑑

+ ∑ 𝑓𝑖𝑍𝑖

𝑖

 

 St. 

(2) ∑ ∑ 𝑋𝑖𝑗𝑜𝑑

𝑗𝑖

= 1,     ∀𝑜, 𝑑, 𝑜 < 𝑑 

(3) ∑ ∑ 𝑌𝑖𝑗

𝑗𝑖

= 𝑞 

(4) ∑ 𝑍𝑖

𝑖

≤ 𝑝 

(5) 
𝑋𝑖𝑖𝑜𝑑 + ∑(𝑋𝑖𝑗𝑜𝑑 + 𝑋𝑗𝑖𝑜𝑑)

𝑗
𝑗≠𝑖

≤ 𝑍𝑖 ,     ∀𝑖, 𝑜, 𝑑, 𝑜 < 𝑑 

(6) 𝑋𝑖𝑗𝑜𝑑 ≤ 𝑌𝑖𝑗 ,     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑖 ≠ 𝑗 

(7) 𝑌𝑖𝑗 ≤ 𝑍𝑖 ,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    

(8) 𝑌𝑖𝑗 ≤ 𝑍𝑗 ,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    

(9) 𝑋𝑖𝑗𝑜𝑑 ≥ 0 

(10) 𝑍𝑖 , 𝑌𝑖𝑗 ∈ {0,1} 

The objective of this paper is to minimize the total transportation and set-up costs. The 

constraints are designed to ensure specific conditions for the routing of flows through hub arcs. 

Constraint (2) guarantees that flow between any origin and destination must pass through a pair 

of hubs, or in some cases, a single hub Xiiod), disallowing direct paths between origins and 

destinations. Constraints (3) and (4) restrict the number of hub arcs and the maximum number 

of hub nodes, respectively. For each route that utilizes a specific hub, constraint (5) ensures 

that the corresponding hub is opened. Furthermore, constraint (6) ensures that a hub arc must 

be opened for each flow transmission routed through it. Constraints (7) and (8) stipulate that 

both ends of a hub arc must be hub nodes. Lastly, constraints (9) and (10) define the 

characteristics of the decision variables. 

It is important to clarify that although the routing decision variable Xijod is formulated as a 

continuous variable, it effectively takes binary values. When the active hub nodes and hub arcs 
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are known, the optimal route between each origin-destination pair is determined based on the 

path with the least transportation cost. As the hub facilities do not have capacity restrictions, 

only one path is selected for the current routing. Therefore, despite the variable being 

continuous in its formulation, the problem's formulation inherently forces it to take binary 

values. 

3.1.1 Flow Uncertainty 

To address the challenge of flow uncertainty in the hub arc location problem, two modeling 

approaches, namely min-max regret and two-stage stochastic programming, are employed. In 

addition to the previously mentioned assumptions, the following assumptions are introduced: 

1. Each pair of nodes is subject to uncertain flow. 

2. The flow uncertainty is represented by discrete scenarios. In the robust approach, the 

scenarios are considered based on an unknown probability distribution, while the stochastic 

approach assumes a uniform probability distribution with equal probability assigned to 

each scenario. 

3. In the robust approach, the objective function aims to minimize the maximum deviation 

between the proposed solution and the optimal solution under each scenario. 

4. In the stochastic approach, the objective function aims to minimize both the total cost of 

hub establishment and the expected value of the flow allocation cost. 

As stated earlier, location decisions regarding hub arcs are long-term strategic decisions, and 

one way to address the uncertainty of future events is by defining alternative future scenarios 

(Ravelo 2021). Since incorporating uncertainty in hub arc location problems is a novel area of 

study, there is currently no existing research in the literature that addresses this aspect. The 

introduction of modeling uncertain flows as limited discrete scenarios, using robust 

optimization and two-stage stochastic programming, represents a pioneering contribution in 

this regard. To this end, the previous deterministic model is expanded by introducing the 

following variables and parameters. 

Indices 

s: Set of scenarios S 

Parameters 

Wsod: Demand from origin o to destination d under scenario s 

C*(s): The optimal value related to scenario s 
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Ps: The probability of scenario s 

Decision variables 

Rs: The regret related to scenario s 

Xijod (s): If the flow under scenario s is transferred from origin o to destination d through hubs 

i and j, 1; otherwise, 0. 

Yij (s): If under scenario s there is hub arc between i and j, 1; otherwise, 0. 

3.1.2 Min-max Regret Modeling 

As previously mentioned, the primary objective of a robust approach is to identify decisions 

that perform well across all possible scenarios. Regret refers to the disparity between the quality 

of a given strategy and the quality that would have been chosen if future events were certain 

(Berman, Drezner et al. 2007). A robust solution is one that minimizes the maximum regret 

among all scenarios. In other words, regret represents the difference between the output 

obtained under a given scenario and the optimal output under the same scenario (Hekmatfar and 

Pishvaee 2009). Minimizing the maximum regret is a common strategy for achieving robustness 

in combinatorial optimization problems, particularly in location problems. 

Models that minimize the maximum regret across all scenarios are known as Minmax Regret 

models. These models incorporate uncertainty into the objective function and are referred to as 

robust deviation because they minimize the deviation between the objective function of the 

best possible solution for a scenario and the objective function of the given solution. Instead of 

minimizing the worst performance of a solution, they focus on minimizing the difference in 

objective function values that can arise in different scenarios. 

(11) 𝑀𝑖𝑛𝑚𝑎𝑥
𝑠∈𝑆

𝑅𝑠 

 St. 

 Constraints (2 - 10) 

(12) 
𝑅𝑠 = [∑ (𝑊𝑜𝑑

𝑠 + 𝑊𝑑𝑜
𝑠 )(𝑑𝑖𝑠𝑜𝑖+∝ 𝑑𝑖𝑠𝑖𝑗 + 𝑑𝑖𝑠𝑗𝑑)𝑋𝑖𝑗𝑜𝑑𝑜,𝑑,𝑖,𝑗

𝑜<𝑑

+ ∑ 𝑓𝑖𝑍𝑖𝑖 ] −

𝐶∗(𝑠),     ∀𝑠 ∈ 𝑆 

Equation (11) represents minimizing maximum regret. Constraints (12) are related to each 

scenario’s regret. Constraints (2) to (10) are the same as the previous section. 

The above model linearization is as follows: 
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(13) Min R 

 St. 

 Constraints (2 − 10) 

(14) 𝑅 ≥ 𝑅𝑠 ,    ∀𝑠 ∈ 𝑆 

3.1.3 Two-stage Stochastic Programming 

In this section, we make the assumption that imprecise flows can be modeled by a discrete 

uniform probability distribution. This distribution is characterized by a restricted set of 

scenarios, each assigned a probability of Ps. We address the hub arc location problems in the 

context of uncertainty by employing a two-stage stochastic programming approach with 

recourse. The first stage involves determining the locations of hub facilities, while the second 

stage focuses on optimizing the allocation of non-hub nodes through hub nodes and hub arcs. 

A random variable ξ represents a scenario. This means that ξ∈S and Ps = P [ξ = s], s∈S. 

Besides, Wod (ξ) represents a random variable of flow from origin to destination. 

 First Stage: 

(15) 𝑀𝑖𝑛𝑍 ∑ 𝑓𝑖𝑍𝑖𝑖  + 𝐸𝜉[𝑄(𝑍, 𝜉)] 

 St. 

(4) ∑ 𝑍𝑖𝑖 ≤ p 

(16) 𝑍𝑖 ∈ {0,1} 

 Second Stage: 

(17) 

𝑄(𝑍, 𝜉) = 𝑀𝑖𝑛𝑋,𝑌 ∑ (𝑊𝑜𝑑(𝜉) + 𝑊𝑑𝑜(𝜉))(𝑑𝑖𝑠𝑜𝑖+∝ 𝑑𝑖𝑠𝑖𝑗 +𝑜,𝑑,𝑖,𝑗
𝑜<𝑑

𝑑𝑖𝑠𝑗𝑑)𝑋𝑖𝑗𝑜𝑑 

(2) ∑ ∑ 𝑋𝑖𝑗𝑜𝑑𝑗𝑖 = 1,     ∀𝑜, 𝑑, 𝑜 < 𝑑,                                   

(3) 
∑ ∑ 𝑌𝑖𝑗

𝑗𝑖

= 𝑞 

(5) 
𝑋𝑖𝑖𝑜𝑑 + ∑(𝑋𝑖𝑗𝑜𝑑 + 𝑋𝑗𝑖𝑜𝑑)

𝑗
𝑗≠𝑖

≤ 𝑍𝑖 ,     ∀𝑖, 𝑜, 𝑑, 𝑜 < 𝑑 

(6) 𝑋𝑖𝑗𝑜𝑑 ≤ 𝑌𝑖𝑗 ,     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑖 ≠ 𝑗 

(7) 𝑌𝑖𝑗 ≤ 𝑍𝑖 ,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    
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(8) 𝑌𝑖𝑗 ≤ 𝑍𝑗 ,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    

(9) 𝑋𝑖𝑗𝑜𝑑 ≥ 0,     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑 

(18) 𝑌𝑖𝑗 ∈ {0,1},     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    

Equation (15) represents the total cost of setting up a hub facility plus the expected cost of 

allocation and routing between the origin-destination pairs. In the second stage, Equation (17) 

variables Zi are fixed and Wod (ξ) are random variables for all i and j. Xijod variables are recourse 

variables because the accurate routing through the network is determined only after specifying 

the flows. Moreover, Equation (16) assures 𝑍𝑖 to be binary. 

Because there is no capacity constraint in the model, for each feasible solution of the first stage 

(network configuration), there is at least a feasible solution for the second stage. Since the 

optimal routing between the origin-destination is determined after the possible occurrence of 

scenario s, their values must be determined under each scenario. The decision variables Yij (s) 

and Xijod (s) are used as variables related to the arc between hub i and hub j and the route 

between o and d via hub i and hub j under scenario s, respectively. Now we can provide a 

certain equivalent of hub arc location problem with uncertain flows. 

(19) 

𝑀𝑖𝑛 ∑ 𝑃𝑠
𝑠∈𝑆

∑ (𝑊𝑜𝑑(𝑠) + 𝑊𝑑𝑜(𝑠))(𝑑𝑖𝑠𝑜𝑖+∝ 𝑑𝑖𝑠𝑖𝑗 + 𝑑𝑖𝑠𝑗𝑑)𝑋𝑖𝑗𝑜𝑑(𝑠)
𝑜,𝑑,𝑖,𝑗
𝑜<𝑑

+ ∑ 𝑓𝑖𝑍𝑖

𝑖

 

(4) ∑ 𝑍𝑖𝑖 ≤ p 

(16) 𝑍𝑖 ∈ {0,1} 

(20) ∑ ∑ 𝑋𝑖𝑗𝑜𝑑(𝑠)𝑗𝑖 = 1,     ∀𝑜, 𝑑, 𝑜 < 𝑑, 𝑠 ∈ 𝑆 

(21) ∑ ∑ 𝑌𝑖𝑗(𝑠)

𝑗𝑖

= 𝑞 

(22) 
𝑋𝑖𝑖𝑜𝑑(𝑠) + ∑ (𝑋𝑖𝑗𝑜𝑑(𝑠) + 𝑋𝑗𝑖𝑜𝑑(𝑠))

𝑗
𝑗≠𝑖

≤ 𝑍𝑖 ,     ∀𝑖, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑠 ∈ 𝑆 

(23) 𝑋𝑖𝑗𝑜𝑑(𝑠) ≤ 𝑌𝑖𝑗(𝑠),     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑖 ≠ 𝑗, 𝑠 ∈ 𝑆 

(24) 𝑌𝑖𝑗(𝑠) ≤ 𝑍𝑖 ,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑠 ∈ 𝑆    
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(25) 𝑌𝑖𝑗(𝑠) ≤ 𝑍𝑗 ,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑠 ∈ 𝑆    

(26) 𝑋𝑖𝑗𝑜𝑑(𝑠) ≥ 0,     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑠 ∈ 𝑆 

(27) 𝑌𝑖𝑗(𝑠) ∈ {0,1}, ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑠 ∈ 𝑆 

The objective function (19) represents minimizing the total set-up cost of hub facilities and the 

expected value of transportation and allocation costs. Constraints (20-27) are similar to 

constraints of the main model that are explained in the previous section, except that these are 

considered under scenario s. Moreover, equation (16) assures 𝑍𝑖 to be binary. 

4. Research Methodology 

The hub arc location problem addressed in this article is known to be NP-Hard, as highlighted 

by (Campbell, Ernst et al. 2005). Moreover, considering the vast search space involved, the 

problem becomes even more complex when uncertainties are taken into account. To overcome 

these challenges within a reasonable timeframe and on a large scale, employing a metaheuristic 

method is a suitable choice. Among the various metaheuristics utilized in hub location 

literature, the genetic algorithm (GA) has gained significant popularity and achieved favorable 

results in terms of solution quality. The GA algorithm initiates with an initial population 

comprising randomly generated answers, referred to as chromosomes. Each chromosome 

represents a potential solution to the problem, whether feasible or infeasible. These 

chromosomes are composed of a fixed number of genes, which encapsulate the information 

contained within each answer. Illustrated in Fig 1,  each chromosome undergoes flourishing 

processes to form subsequent generations. Within each generation, chromosomes are assessed 

based on a fitness measure, enabling the preservation and progression of better solutions to the 

next generation. Regarding the representation of solutions, since there can be a maximum of 

two hub nodes and at least one hub node for each origin-destination route, the solution 

representation takes the form of a 2*q matrix. The first row corresponds to the first hub, the 

second row represents the second hub (if non-repetitive), and the number of columns aligns 

with the required hub arcs in the problem. 

 1 2 ... Q 

First Hub          

Second Hub          
 

Fig 1. The structure of a chromosome 
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Initial population: the first generation of genetic algorithm is created randomly. First, p number 

of hub nodes are chosen and non-repetitive different pairwise states of them are formed to 

obtain possible hub arcs. Then q numbers of these non-repetitive binary combinations will be 

chosen randomly as hub arcs. 

Fitness function: fitness function is used as an evaluation function for each chromosome. All 

of the obtained results for each origin-destination pair are stored in an auxiliary variable called 

X that is a matrix of 4 rows and (
𝑁
2

) columns. Each chromosome that has a better objective 

function value will have more utility and is more likely to be transmitted to the next generation. 

Selection operator: This operator is the selection process of two qualified parents of the 

population to lead to the procreation of children with high fitness. Each member with a 

probability proportional to its utility, or its fitness function value, has the chance of being 

selected. We use the Roulette Wheel method in the way that the wheel is partitioned to the 

number of the population members and the surface of each section is proportional to the fitness 

value of each chromosome. Then the wheel is rotated to stop somewhere randomly. This point 

identifies the selected chromosome. 

Crossover operator: Crossover is a process of producing new children from parents. In this 

paper, the Single-Point Crossover method is used in the way that two chromosomes randomly 

break from a point and both parts are displaced with each other from the fracture point. (See 

Fig 2) 

Mutation operator: Using this operator leads to releasing from local optimum, improving the 

probability of finding the global optimum responses and maintaining diversity. In this method, 

a single parent is selected, and then one of the hubs is randomly selected and replaced with a 

non-hub node. Then each arc that is connected to the replaced hub will be updated to the new 

hub. (See Fig 3) 

Stopping criterion: Genetic algorithm stops when the specified number of generations 

occurred. 

Parameter calibration: Inexact algorithms result in a variety of answers, so an acceptable 

algorithm is an algorithm that its solutions converge to the global optimal solution. For this 

purpose, we use the Taguchi method to calibrate the algorithm parameters. The Taguchi 

method seeks to minimize the effect of noise factors and find the optimal level of control factors 

using the S/N ratio. The goal is to maximize this ratio. 
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𝑆

𝑁
ratio = −10 log (

1

𝑛
∑ 𝜏𝑖

𝑛

𝑖=1

)

2

 (27) 

 Crossover point    

  

3 1 2 2 1 
Parent 1 

5 4 5 3 3 

 Crossover point    

  

2 3 1 1 1 
Parent 2 

4 4 3 2 6 

 Crossover point    

  

2 3 2 2 1 
Offspring 1 

4 4 5 3 3 

 Crossover point    

  

3 1 1 1 1 
Offspring 2 

5 4 3 2 6 

  

Fig 2. The structure of crossover operation 
 

 

3 1 2 2 1 
Parent 

5 4 5 3 3 

3 1 2 2 1 
offspring 

6 4 6 3 3 

Fig 3. The structure of mutation operation 

The complete form of the Genetic algorithm is showed in the Fig 4. The controllable factors of 

this model include population size, the maximum number of iterations, crossover probability 

and mutation probability. The first group with index S is related to a small scale with a 

maximum of 20 nodes, and the second group with index L is related to a large scale with more 

than 20 nodes. Different factors are defined in four levels and are provided in Table 3. 
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Start

Taking input data of the problem

Creating the initial population

Allocation based on nearest hub and evaluating the results

Has the 

stopping 

condition been 

set?

Finish

Deriving best results

Selecting parents based on Roulette wheel

Cross-over for generating off-springs

Mutation on off-springs

Evaluating the results
 

Fig 4. The proposed Genetic algorithm flowchart 

Table 3.  Proposed Factors and levels 

Factor 4 Factor 3 Factor 2 Factor 1 

Mutation 

Probability 

(D) 

Crossover 

Probability 

(C) 

Maximum Number Of 

Repetitions (B) 

Population Size (A) 

BL BS AL AS 

D(1): 0.9 

D(2): 0.8 

D(3): 0.7 

D(4): 0.6 

C(1): 0.8 

C(2): 0.6 

C(3): 0.4 

C(4): 0.2 

BL(1): 150 

BL(2): 200 

BL(3): 300 

BL(4): 400 

Bs(1): 100 

Bs(2): 150 

Bs(3): 200 

Bs(4): 250 

AL(1): 100 

AL(2): 130 

AL(3): 170 

AL(4): 230 

AS(1): 50 

AS(2): 70 

AS(3): 100 

AS(4): 150 

The S/N ratio is used to determine the appropriate levels of controllable factors as the main 

priority. The average value of the objective function and average runtime is used as the second 

and third priority respectively to strengthen the assessment. The more the S/N ratio and the less 

the average runtime and the objective function, the more appropriate is the parameter. Table 4 
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and Fig 5 - Fig 10 are obtained from Minitab software for small and medium/large scale 

problems. 

Table 4. Taguchi experimental design 

Factors 

Experiment 
Population Size Maximum Number 

Of Repetitions 

Crossover 

Probability 

Mutation 

Probability 

A(1) B(1) C(1) D(1) 1 

A(1) B(2) C(2) D(2) 2 

A(1) B(3) C(3) D(3) 3 

A(1) B(4) C(4) D(4) 4 

A(2) B(1) C(2) D(3) 5 

A(2) B(2) C(1) D(4) 6 

A(2) B(3) C(4) D(1) 7 

A(2) B(4) C(3) D(2) 8 

A(3) B(1) C(3) D(4) 9 

A(3) B(2) C(4) D(3) 10 

A(3) B(3) C(1) D(2) 11 

A(3) B(4) C(2) D(1) 12 

A(4) B(1) C(4) D(2) 13 

A(4) B(2) C(3) D(1) 14 

A(4) B(3) C(2) D(4) 15 

A(4) B(4) C(1) D(3) 16 
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Fig 5. Mean of S/N ratio for small size Fig 6. Average response variable for small size 
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Fig 7. Mean of runtime for small size Fig 8. Mean of S/N ratio for large size 
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Fig 9. Average response variable for large size Fig 10. Mean of runtime for large size 

The appropriate parameters for the small and medium/large scale problems are shown in Table 

5. 

Table 5. Optimum level for proposed GA controllable factors 

Optimum Level for 

Small Size 

Optimum Level 

for Large Size 
Symbol Factors 

A(4) = 150 A(4) = 230 A Population Size 

B(3) = 200 B(4) = 400 B Maximum Number of Repetitions 

C(4) = 0.2 C(4) = 0.2 C Crossover Probability 

D(2) = 0.8 D(1) = 0.9 D Mutation Probability 

5. Result 

The hub arc location problem under uncertainty will be solved by applying the proposed 

genetic algorithm to the robust model. To validate the meta-heuristic methods, the obtained 

results are compared to the exact optimal solution from GAMS optimization software in terms 

of average and worst error and mean run time. 
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To evaluate the proposed solution method, it is necessary to test their performance in different 

sample problems. We use four sample problems that are taken from data sets AP (Ernst and 

Krishnamoorthy 1996). The proposed heuristic and meta-heuristic algorithms are implemented 

in Matlab software R2014b and exact solutions are obtained from GAMS software 24.1.2 Cplex 

solver. All calculations related to the sample problems have been done on a computer with 

specs Intel Core i7-2670 QM 2.2 GHz Memory 8 GB. 

As the genetic algorithm starts with a random initial solution, we repeat the algorithm three 

times for each sample problem and each size and report the average results. We show the 

uncertainty with five different discrete scenarios. According to (Gelareh and Nickel 2007), to 

create series of different flow scenarios, for each pair of i, j∈N nodes, five random values 

between interval [0.01wij, 10wij] is produced, such that wij is the available flow between nodes 

in the standard data set AP. To reduce the symmetry around the generated scenario’s mean, the 

flow range is split into two parts [0.01wij, 5wij] and [5wij, 10wij]. In each scenario, for each pair 

of i, j∈N nodes, flow is a random value with the probability of 2/3 from the first interval and 

with the probability of 1/3 from the second interval (Gelareh and Nickel 2007). 

 

Fig 11. GA error 

To solve the problem under uncertainty, each scenario is solved as a deterministic problem in 

GAMS optimization software, and then their optimal values are entered into the Minmax Regret 

model. According to Table 6 and Fig 11 by increasing the size of the problem, the optimal 

solution’s runtime increases exponentially and Fig 12 presents that average and worst error of 
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the proposed Genetic algorithm increases as the size the problem rises. Moreover, the proposed 

genetic algorithm average error of 2.44% and the maximum error of 6% represent an acceptable 

solution quality in reasonable run time . 

 

Fig 12. Comparing run times 

Table 6. Average error and runtime 

Genetic Algorithm Solution Gams Solution 

α =0.2 Average CPU 

Time (s) 

% Gap Average CPU 

Time (s) Worst Average 

0.35 7.36 2.55 1.19 q=1, p=2 N=5 

15.68 0 0 7.80 q=2, p=4 N=10 

39.05 0 0 15.42 q=3, p=6 N=15 

41.04 10.23 4.46 35.85 q=4, p=8 N=20 

74.44 12.43 5.21 179.20 q=5, p=10 N=25 

34.11 6.00 2.44 47.89 Average 

 

In this part, an equivalent expected value of the scenarios, named Base case problem, is defined 

by replacing the average value of the parameters with the inexact parameter. The resulting 

solution of the Base case problem is compared with the Minmax Regret model results. 
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Table 7. Comparing results 

Best Hub Arcs Best Hubs Best Cost α=0.2 
Problem 

Size 

2-3 2, 3 8300731 Scenario 1 

N = 5 

Q = 1 

P = 2 

2-3 2, 3 23910042 Scenario 2 

2-3 2, 3 42866688 Scenario 3 

1-3 1, 3 42380636 Scenario 4 

2-3 2, 3 40615964 Scenario 5 

2-3 2, 3 32356591 Base Case 

2-3 2, 3 GAMS Solution Minmax Regret 

7-1, 7-4 1, 4, 7, 8 43297891 Scenario 1 

N = 10 

Q = 2 

P = 4 

2-8, 3-7 2, 3, 7, 8 206248180 Scenario 2 

2-7, 3-7 2, 3, 7, 8 245296135 Scenario 3 

1-8, 4-7 1, 4, 7, 8 172996832 Scenario 4 

2-8, 3-7 2, 3, 7, 8 202295798 Scenario 5 

2-8, 3-7 2, 3, 7, 8 174745740 Base Case 

2-8, 3-7 2, 3, 7, 8 GAMS Solution Minmax Regret 

2-14, 6-14, 8-14 2, 6, 8, 9, 10, 14 28491846 Scenario 1 

N = 15 

Q = 3 

P = 6 

2-14, 4-14, 11-14 2, 4, 6, 9, 11, 14 167581080 Scenario 2 

2-14, 6-14, 8-14 2, 3, 6, 8, 9, 14 145085099 Scenario 3 

2-14, 4-11, 13-14 2, 4, 6, 11, 13, 14 146273345 Scenario 4 

2-10, 6-14, 8-14 2, 6, 8, 9, 10, 14 136570832 Scenario 5 

2-14, 6-14, 8-14 2, 6, 8, 9, 10, 14 126474449 Base Case 

2-14, 6-14, 8-14 2, 5, 6, 8, 10, 14 GAMS Solution Minmax Regret 

2-14, 4-11, 6-14, 14-16 2, 4, 6, 11, 13, 14, 15, 16 214460233 Scenario 1 

N = 20 

Q = 4 

P = 8 

2-14, 4-14, 9-14, 12-14 2, 4, 7, 9, 12, 13, 14, 15 225702878 Scenario 2 

2-14, 4-15, 6-14, 15-16 2, 4, 6, 7, 9, 14, 15, 16 208691489 Scenario 3 

2-14, 4-11, 6-14, 12-15 2, 4, 6, 11, 12, 13, 14, 15 208699272 Scenario 4 

4-14, 6-14, 12-14, 13-14 2, 4, 6, 11, 12, 13, 14, 20 220534032 Scenario 5 

2-14, 4-11, 6-14, 12-14 2, 4, 6, 11, 12, 13, 14, 20 217147998 Base Case 

4-14, 6-14, 12-14, 13-14 2, 4, 6, 11, 12, 13, 14, 20 GAMS Solution Minmax Regret 

2-18, 5-13, 8-18, 17-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 42575653 Scenario 1 

N = 25 

Q = 5 

P = 10 

2-18, 5-13, 8-18, 17-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 172223571 Scenario 2 

2-18, 5-13, 8-18, 16-18, 

18-20 
2, 5, 7, 8, 9, 13, 16, 17, 18, 20 178572808 Scenario 3 

2-18, 5-13, 8-18, 17-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 172554879 Scenario 4 

2-18, 5-13, 8-18, 17-18, 

18-20 

2, 5, 6, 8, 13, 16, 17, 18, 20, 

25 
173923241 Scenario 5 
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Table 7. Comparing results 

Best Hub Arcs Best Hubs Best Cost α=0.2 
Problem 

Size 

2-18, 5-13, 8-18, 16-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 148100336 Base Case 

2-18, 5-13, 8-18, 16-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 GAMS Solution Minmax Regret 

3-28, 4-12, 8-20, 13-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 13, 18, 20, 

23, 26, 28 
27596542 Scenario 1 

N = 30 

Q = 6 

P = 12 

3-28, 4-12, 8-20, 13-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 13, 18, 20, 

23, 26, 28 
115002418 Scenario 2 

3-28, 4-12, 8-20, 14-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 14, 18, 20, 

23, 26, 28 
113368312 Scenario 3 

3-28, 4-12, 8-13, 13-28, 

23-28, 26-28 

3, 4, 7, 8, 10, 12, 13, 17, 20, 

23, 26, 28 
114104418 Scenario 4 

3-28, 4-12, 8-13, 13-28, 

23-28, 26-28 

3, 4, 7, 8, 10, 12, 13, 17, 20, 

23, 26, 28 
113843763 Scenario 5 

3-28, 4-12, 8-20, 13-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 13, 18, 20, 

23, 26, 28 
96883012 Base Case 

3-28, 4-12, 8-20, 13-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 13, 18, 20, 

23, 26, 28 
GAMS Solution Minmax Regret 

 

In the min-max regret models, it's important to note that the transportation costs and 

consequently the total cost vary across different scenarios. However, Table 7, fails to reflect 

these variations. In the AP standard data set, a significant portion of the demand originates 

from a small number of nodes. As a result, the range associated with these nodes, which is used 

to generate random scenarios, is considerably wide. Accordingly, these nodes frequently 

emerge as potential hub facilities in the majority of scenarios. For instance, Nodes #7 and #8 

consistently handle substantial flow volumes and are often selected as hub nodes. 

The results indicate that the optimal network structure, including the locations of hubs and hub 

arcs, differs among scenarios, as well as in comparison to the Base Case problem and the 

optimal solutions obtained from the robust models. Consequently, it becomes imperative to 

carefully consider the most effective approach for locating hubs and hub arcs in order to 

minimize future costs in the face of uncertainties. The solutions obtained through the robust 

model adopt a pessimistic perspective by minimizing the regret associated with the worst-case 

scenario. This implies that the results achieved are deemed satisfactory for each individual 

scenario. 

To provide a comprehensive summary of the conducted analyses, it is essential to emphasize, 

as previously mentioned in this article, that in order to solve the problem under conditions of 

uncertainty, the flow parameter has been considered in the form of limited discrete scenarios, 
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and we have utilized three solution approaches. The primary approach under investigation is a 

robust approach using the minimax regret model, which we have solved using a Genetic 

algorithm. By comparing the solution time and the errors of the obtained solutions with respect 

to the exact solution, we have successfully validated the proposed solution method. The results 

indicate a satisfactory quality of the obtained solutions and a reasonable solution time. 

Furthermore, for the analysis of the primary solution approach under conditions of uncertainty, 

we have employed a two-stage stochastic programming and assumed that the uncertain 

parameter follows a discrete uniform probability distribution. We have solved the problem and 

compared both the robust and probabilistic approaches with the solution obtained from the 

expected value problem. The results demonstrate that the optimal solutions of the problem vary 

when confronted with inaccurate parameters. Therefore, it can be stated that the optimal 

solutions are sensitive to flow values. Consequently, in situations with high uncertainty 

regarding these parameters and lack of knowledge about the distribution information of the 

inaccurate parameter, the utilization of the robust approach is advisable. However, when the 

probability distribution information of the inaccurate parameter is known, the probabilistic 

programming approach is highly preferable to inaccurate parameter estimation or utilization of 

mean values. This is because using deterministic values in uncertain conditions leads to 

suboptimal solutions that impose additional costs on the system in the long run. 

6. Conclusion and Discussion 

In this paper, we have developed a hub arc location problem considering flow uncertainty, 

isolated hubs, and setup costs. Our model allows for a flexible hub network structure, where 

the presence of isolated or individual hubs is permitted. Additionally, we have incorporated a 

discount factor exclusively on hub arcs. To tackle the problem under uncertainty, we have 

considered discrete limited scenarios for the flow parameters and employed three approaches 

to solve it. 

The primary method employed is a robust model utilizing the min-max regret approach, which 

we have solved using a genetic algorithm. To validate the solution, we have compared the 

runtime and errors against the exact solution. The obtained results demonstrate the satisfactory 

quality of the answers and reasonable runtimes achieved.  

Based on our findings, several future research directions have been proposed. Firstly, 

incorporating additional parameters such as cost and distance between origin-destination pairs, 

or their combinations, under uncertain conditions should be explored. Representing inexact 



 

28 

 

parameters using continuous or interval scenarios can provide more realistic models. 

Additionally, investigating exact solution methods like branch and bound, cutting branches, 

and branch and price techniques can offer more precise solutions. Furthermore, optimizing 

alternative methods such as a fuzzy optimization approach can be explored to solve the problem 

under uncertainty. 

Expanding our understanding of modeling under uncertainty and enhancing the effectiveness 

of solution approaches will contribute to the advancement of transportation planning and 

logistics optimization. By addressing these avenues of investigation, practical applications in 

real-world scenarios can benefit from improved decision-making and cost minimization in hub 

arc location problems. 

References 

Adibi, A. and J. Razmi (2015). "2-Stage stochastic programming approach for hub location 

problem under uncertainty: A case study of air network of Iran." Journal of Air Transport 

Management 47: 172-178. 

Ahmadi, T., H. Karimi, H. Davoudpour and S. A. Hosseinijou (2015). "A robust decision-

making approach for p-hub median location problems based on two-stage stochastic 

programming and mean-variance theory: a real case study." The International Journal of 

Advanced Manufacturing Technology 77: 1943-1953. 

Alumur, S. A., J. F. Campbell, I. Contreras, B. Y. Kara, V. Marianov and M. E. O’Kelly (2021). 

"Perspectives on modeling hub location problems." European Journal of Operational 

Research 291(1): 1-17. 

Alumur, S. A., S. Nickel and F. Saldanha-da-Gama (2012). "Hub location under uncertainty." 

Transportation Research Part B: Methodological 46(4): 529-543. 

Atay, M., Y. Eroglu and S. U. Seckıner (2023). "Domestic flight network hub location problem 

under traffic disruption with sustainability provision." Case Studies on Transport Policy 

12: 101011. 

Bashiri, M. and S. Mehrabi (2010). Stochastic p-hub center covering problem with delivery 

time constraint. 2010 IEEE International Conference on Industrial Engineering and 

Engineering Management, IEEE. 

Berman, O., Z. Drezner and G. O. Wesolowsky (2007). "The transfer point location problem." 

European journal of operational research 179(3): 978-989. 

Bütün, C., S. Petrovic and L. Muyldermans (2021). "The capacitated directed cycle hub 

location and routing problem under congestion." European journal of operational research 

292(2): 714-734. 

Campbell, J. F. (2009). "Hub location for time definite transportation." Computers & 

Operations Research 36(12): 3107-3116. 

Campbell, J. F., A. T. Ernst and M. Krishnamoorthy (2005). "Hub arc location problems: part 

I—introduction and results." Management Science 51(10): 1540-1555. 

Campbell, J. F., A. T. Ernst and M. Krishnamoorthy (2005). "Hub arc location problems: part 

II—formulations and optimal algorithms." Management Science 51(10): 1556-1571. 

Campbell, J. F., G. Stiehr, A. T. Ernst and M. Krishnamoorthy (2003). "Solving hub arc 

location problems on a cluster of workstations." Parallel Computing 29(5): 555-574. 



 

29 

 

Chou, C.-C. (2010). "Application of FMCDM model to selecting the hub location in the marine 

transportation: A case study in southeastern Asia." Mathematical and computer modelling 

51(5-6): 791-801. 

Contreras, I., J.-F. Cordeau and G. Laporte (2011). "Stochastic uncapacitated hub location." 

European Journal of Operational Research 212(3): 518-528. 

Contreras, I., E. Fernández and A. Marín (2010). "The tree of hubs location problem." 

European Journal of Operational Research 202(2): 390-400. 

de Sá, E. M., R. Morabito and R. S. de Camargo (2018). "Benders decomposition applied to a 

robust multiple allocation incomplete hub location problem." Computers & Operations 

Research 89: 31-50. 

Ernst, A. T. and M. Krishnamoorthy (1996). "Efficient algorithms for the uncapacitated single 

allocation p-hub median problem." Location science 4(3): 139-154. 

Espejo, I., A. Marín, J. M. Muñoz-Ocaña and A. M. Rodríguez-Chía (2023). "A new 

formulation and branch-and-cut method for single-allocation hub location problems." 

Computers & Operations Research 155: 106241. 

Farahani, R. Z., M. Hekmatfar, A. B. Arabani and E. Nikbakhsh (2013). "Hub location 

problems: A review of models, classification, solution techniques, and applications." 

Computers & industrial engineering 64(4): 1096-1109. 

Fernández, E. and A. Sgalambro (2020). "On carriers collaboration in hub location problems." 

European Journal of Operational Research 283(2): 476-490. 

Gao, Y. and Z. Qin (2016). "A chance constrained programming approach for uncertain p-hub 

center location problem." Computers & Industrial Engineering 102: 10-20. 

Gelareh, S. and S. Nickel (2007). "A benders decomposition algorithm for single allocation 

hub location problem." Proceeding of GOR2007. 

Ghaderi, A. and R. Rahmaniani (2016). "Meta-heuristic solution approaches for robust single 

allocation p-hub median problem with stochastic demands and travel times." The 

International Journal of Advanced Manufacturing Technology 82: 1627-1647. 

Ghaffari-Nasab, N., M. Ghazanfari and E. Teimoury (2015). "Robust optimization approach to 

the design of hub-and-spoke networks." The International Journal of Advanced 

Manufacturing Technology 76: 1091-1110. 

Ghaffari–Nasab, N., M. Ghazanfari, A. Saboury and M. Fathollah (2015). "The single 

allocation hub location problem: a robust optimisation approach." European Journal of 

Industrial Engineering 9(2): 147-170. 

Ghaffarinasab, N. (2018). "An efficient matheuristic for the robust multiple allocation p-hub 

median problem under polyhedral demand uncertainty." Computers & Operations Research 

97: 31-47. 

Ghaffarinasab, N. (2022). "Stochastic hub location problems with Bernoulli demands." 

Computers & Operations Research 145: 105851. 

Ghaffarinasab, N. and B. Y. Kara (2022). "A conditional β-mean approach to risk-averse 

stochastic multiple allocation hub location problems." Transportation Research Part E: 

Logistics and Transportation Review 158: 102602. 

Habibzadeh Boukani, F., B. Farhang Moghaddam and M. S. Pishvaee (2016). "Robust 

optimization approach to capacitated single and multiple allocation hub location problems." 

Computational and Applied Mathematics 35: 45-60. 

Hamid, M., M. Bastan, M. Hamid and F. Sheikhahmadi (2019). "Solving a stochastic multi-

objective and multi-period hub location problem considering economic aspects by meta-

heuristics: application in public transportation." International Journal of Computer 

Applications in Technology 60(3): 183-202. 

Hekmatfar, M. and M. Pishvaee (2009). "Hub location problem." Facility location: concepts, 

models, algorithms and case studies: 243-270. 



 

30 

 

Hu, Q.-M., S. Hu, J. Wang and X. Li (2021). "Stochastic single allocation hub location 

problems with balanced utilization of hub capacities." Transportation Research Part B: 

Methodological 153: 204-227. 

Hult, E., H. Jiang and D. Ralph (2014). "Exact computational approaches to a stochastic 

uncapacitated single allocation p-hub center problem." Computational Optimization and 

Applications 59: 185-200. 

Khaleghi, A. and A. Eydi (2024). "Hybrid solution methods for a continuous-time multi-period 

hub location problem with time-dependent demand and sustainability considerations." 

Journal of Ambient Intelligence and Humanized Computing 15(1): 115-155. 

Klincewicz, J. G. (1998). "Hub location in backbone/tributary network design: a review." 

Location Science 6(1-4): 307-335. 

Korani, E. and A. Eydi (2021). "Bi-level programming model and KKT penalty function 

solution approach for reliable hub location problem." Expert systems with applications 184: 

115505. 

Lasemi, M. A., A. Arabkoohsar, A. Hajizadeh and B. Mohammadi-Ivatloo (2022). "A 

comprehensive review on optimization challenges of smart energy hubs under uncertainty 

factors." Renewable and Sustainable Energy Reviews 160: 112320. 

Li, Z.-C., X. Bing and X. Fu (2023). "A hierarchical hub location model for the integrated 

design of urban and rural logistics networks under demand uncertainty." Annals of 

Operations Research: 1-22. 

Makui, A., M. Rostami, E. Jahani and A. Nikui (2002). "A multi-objective robust optimization 

model for the capacitated P-hub location problem under uncertainty." Management Science 

Letters 2(2): 525-534. 

Marianov, V. and D. Serra (2003). "Location models for airline hubs behaving as M/D/c 

queues." Computers & Operations Research 30(7): 983-1003. 

Martins de Sá, E., I. Contreras, J.-F. Cordeau, R. Saraiva de Camargo and G. de Miranda 

(2015). "The hub line location problem." Transportation Science 49(3): 500-518. 

Meraklı, M. and H. Yaman (2016). "Robust intermodal hub location under polyhedral demand 

uncertainty." Transportation Research Part B: Methodological 86: 66-85. 

Miranda Junior, G. d., R. S. d. Camargo, L. R. Pinto, S. V. Conceição and R. P. M. Ferreira 

(2011). "Hub location under hub congestion and demand uncertainty: the Brazilian case 

study." Pesquisa Operacional 31: 319-349. 

Mohajeri, A. and F. Taghipourian (2011). A mathematical programming approach for bi-levels 

tree hub location network. 2011 IEEE 18th International Conference on Industrial 

Engineering and Engineering Management, IEEE. 

Mohammadi, M., F. Jolai and R. Tavakkoli-Moghaddam (2013). "Solving a new stochastic 

multi-mode p-hub covering location problem considering risk by a novel multi-objective 

algorithm." Applied Mathematical Modelling 37(24): 10053-10073. 

Mohammadi, M., J. Razmi and R. Tavakkoli-Moghaddam (2013). "MULTI-OBJECTIVE 

INVASIVE WEED OPTIMIZATION FOR STOCHASTIC GREEN HUB LOCATION 

ROUTING PROBLEM WITH SIMULTANEOUS PICK-UPS AND DELIVERIES." 

Economic Computation & Economic Cybernetics Studies & Research 47(3). 

Mohammadi, M., S. Torabi and R. Tavakkoli-Moghaddam (2014). "Sustainable hub location 

under mixed uncertainty." Transportation Research Part E: Logistics and Transportation 

Review 62: 89-115. 

Muffak, A. and O. Arslan (2023). "A Benders decomposition algorithm for the maximum 

availability service facility location problem." Computers & Operations Research 149: 

106030. 

O’Kelly, M. E. and D. Bryan (1998). "Hub location with flow economies of scale." 

Transportation research part B: Methodological 32(8): 605-616. 



 

31 

 

Qin, Z. and Y. Gao (2017). "Uncapacitated p-hub location problem with fixed costs and 

uncertain flows." Journal of Intelligent Manufacturing 28(3): 705-716. 

Rahmaniani, R., A. Ghaderi, N. Mahmoudi and F. Barzinepour (2013). "Stochastic p-robust 

uncapacitated multiple allocation p-hub location problem." International Journal of 

Industrial and Systems Engineering 14(3): 296-314. 

Rahmati, R., H. Neghabi, M. Bashiri and M. Salari (2023). "Stochastic regional-based profit-

maximizing hub location problem: a sustainable overview." Omega: 102921. 

Rahmati, R., H. Neghabi, M. Bashiri and M. Salari (2024). "Stochastic green profit-maximizing 

hub location problem." Journal of the Operational Research Society 75(1): 99-121. 

Ramamoorthy, P., N. Vidyarthi and M. Verma (2024). "Efficient solution approaches for the 

bi-criteria p-hub median and dispersion problem." European Journal of Operational 

Research 314(1): 79-93. 

Ramos, C., R. Ramos and T. Ramos (2004). Solving a stochastic model for the hub location 

problem. Proceedings of the 4th WSEAS International Conference on Applied Informatics 

and Communications. 

Ravelo, S. V. (2021). "Minimum constellation covers: hardness, approximability and 

polynomial cases." Journal of Combinatorial Optimization 41: 603-624. 

Rostami, B., N. Kämmerling, J. Naoum-Sawaya, C. Buchheim and U. Clausen (2021). 

"Stochastic single-allocation hub location." European Journal of Operational Research 

289(3): 1087-1106. 

Rostami, M., E. Farahani and D. Moradinezhad (2012). "A stochastic capacitated p-hub 

location problem: A case study of iran." Journal of American Science 8(11): 620-628. 

Sasaki, M., J. F. Campbell, A. T. Ernst and M. Krishnamoorthy (2009). Hub arc location with 

competition. Technical Report. 

Sener, N. and O. Feyzioglu (2023). "Multiple allocation hub covering flow problem under 

uncertainty." Annals of Operations Research 320(2): 975-997. 

Shahabi, M. and A. Unnikrishnan (2014). "Robust hub network design problem." 

Transportation Research Part E: Logistics and Transportation Review 70: 356-373. 

Shang, X., K. Yang, W. Wang, W. Wang, H. Zhang and S. Celic (2020). "Stochastic 

hierarchical multimodal hub location problem for cargo delivery systems: Formulation and 

algorithm." IEEE Access 8: 55076-55090. 

Taherkhani, G., S. A. Alumur and M. Hosseini (2021). "Robust stochastic models for profit-

maximizing hub location problems." Transportation science 55(6): 1322-1350. 

Talbi, E.-G. and R. Todosijević (2017). "The robust uncapacitated multiple allocation p-hub 

median problem." Computers & Industrial Engineering 110: 322-332. 

Wang, J. and Z. Qin (2020). "Chance constrained programming models for uncertain hub 

covering location problems." Soft Computing 24(4): 2781-2791. 

Wang, S., Z. Chen and T. Liu (2020). "Distributionally robust hub location." Transportation 

Science 54(5): 1189-1210. 

Wang, T., Q. Meng, B. Niu and Z. Tan (2013). Hub-and-Spoke Liner Shipping Network Design 

with Demand Uncertainty. International Forum on Shipping, Ports and Airports (IFSPA) 

2013: Trade, Supply Chain Activities and Transport: Contemporary Logistics and Maritime 

IssuesHong Kong Polytechnic University. 

Yang, K., Y. Liu and X. Zhang (2011). Stochastic p-hub center problem with discrete time 

distributions. Advances in Neural Networks–ISNN 2011: 8th International Symposium on 

Neural Networks, ISNN 2011, Guilin, China, May 29–June 1, 2011, Proceedings, Part II 

8, Springer. 

Yang, T.-H. (2009). "Stochastic air freight hub location and flight routes planning." Applied 

Mathematical Modelling 33(12): 4424-4430. 

Zetina, C. A., I. Contreras, J.-F. Cordeau and E. Nikbakhsh (2017). "Robust uncapacitated hub 

location." Transportation Research Part B: Methodological 106: 393-410. 



 

32 

 

Zhai, H., Y.-K. Liu and K. Yang (2016). "Modeling two-stage UHL problem with uncertain 

demands." Applied Mathematical Modelling 40(4): 3029-3048. 

Zhai, H., Y. Liu and W. Chen (2012). "Applying minimum-risk criterion to stochastic hub 

location problems." Procedia Engineering 29: 2313-2321. 

 


