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Abstract 

Hub networks play a crucial role in optimizing transportation flow and reducing overall costs by efficiently connecting origins and destinations 

through strategically placed hub nodes. The decision of hub location carries significant long-term implications and necessitates consideration of 

various factors within an uncertain environment. This paper addresses the hub arc location problem in hub networks, considering setup costs, 

isolated hubs, and uncertain flows between nodes. To tackle this challenge, a two-stage stochastic programming model is formulated to incorporate 

the uncertainty in flow volumes. Additionally, a robust optimization approach is proposed to enhance the resilience of hub location decisions 

against uncertain scenarios. The problem is solved using a tailored Genetic algorithm, which achieves optimal solutions with high quality and 

reasonable computational time. The results demonstrate the effectiveness of the proposed methodology in handling the uncertain nature of the 

hub location problem, contributing to the advancement of transportation planning and logistics optimization. The findings provide valuable 

insights for practical applications in real-world scenarios, offering a framework for decision-makers to make informed choices regarding hub 

network design and location. By integrating uncertainty and robust optimization techniques, this paper offers a comprehensive approach to address 

complex transportation network problems and improve overall efficiency in transportation systems. 
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1. Introduction 

The transportation, logistics, and telecommunications 

industries grapple with the efficient movement of passengers, 

goods, and information from their origins to destinations 

(Farahani, Hekmatfar et al. 2013). To enhance this process 

and achieve economies of scale, hub networks play a crucial 

role by facilitating the transfer of flow and improving service 

levels. Traditional hub location problems assume a complete 

graph with discounted hub arcs, connecting all hub nodes 

(Campbell, Ernst et al. 2005). However, these assumptions 

often yield unrealistic outcomes, prompting the development 

of a new problem class referred to as Hub Arc Location 

problems (Campbell, Ernst et al. 2005). These problems aim 

to determine the ideal positioning of hub arcs and the 

allocation of non-hub nodes to hubs, thereby minimizing both 

the total transportation cost and deployment. 

Real-world problems often suffer from the limitation of 

assuming fixed input parameters, resulting in suboptimal and 

infeasible solutions (Alumur, Campbell et al. 2021). 

Parameters such as set-up cost, transportation cost, demand, 

distance, and density are prone to non-deterministic behavior, 

as they can change after decisions have been made. 

Traditional methods employ sensitivity analysis to account 

for minor uncertainties in data, but this approach falls short 

in producing robust results (Chou 2010). Hence, addressing 

the inherent uncertainty in hub arc location problems 

becomes necessary. This paper aims to introduce a novel 

approach to robust hub arc location problems, requiring a 

comprehensive exploration of the pertinent literature. 

When it comes to optimization under uncertainty, three 

research methods are commonly discussed: stochastic 

optimization, robust optimization, and fuzzy optimization 

(Contreras, Cordeau et al. 2011). Stochastic programming is 

often modeled through two-stage programming, where an 

initial decision is made, followed by the observation of 

random events and subsequent decisions to mitigate their 

effects or improve outcomes (Bashiri and Mehrabi 2010): In 

contrast, robust optimization considers indefinite 

possibilities through discrete scenarios or continuous 

intervals to estimate uncertain parameters (Hekmatfar and 

Pishvaee 2009). Discrete scenarios refer to different numbers 

suggested for each parameter based on past experiences or 

feasibility studies, while continuous intervals represent 

ranges within which uncertain parameters are defined (Chou 

2010). These scenarios depict the most likely states that may 

arise in the future. 

Our research addresses significant limitations in classical hub 

location problems related to the consideration of a standard 

discount factor for all hub arcs. This approach, commonly 

used to achieve cost savings and economies of scale for flows 

on hub arcs, tends to yield unrealistic outcomes. Optimal 

solutions may lead to disproportionately smaller flows on 

hub arcs when compared to non-hub arcs, especially as the 

discount factor is applied solely between hub points (Li, Bing 

et al. 2023). Moreover, the traditional assumption of 

complete connectivity among hub points in classical hub *Corresponding author Email address:  sajadieh@aut.ac.ir 
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location problems can restrict model flexibility and realism. 

While this assumption may simplify network design and flow 

routing, it enforces specific cost structures and topologies 

that may not align well with practical scenarios (Rahmati, 

Neghabi et al. 2024). 

In contrast to air transport networks where direct flights 

between all hubs optimize passenger travel time, large 

transportation and long-haul communication networks 

typically deviate from this direct connectivity model. 

Consequently, actual hub networks often lack full 

interconnections between hub nodes, affecting the efficiency 

and dynamics of the network as a whole (Lasemi, 

Arabkoohsar et al. 2022). 

Recognizing that location decisions play a crucial role in 

strategic decision-making processes and demand substantial 

time investment for implementation, we have incorporated 

uncertainty into our hub location modeling. By relaxing the 

assumptions inherent in classical hub location problems, we 

have tailored our approach to address real-world complexity 

and optimize decision-making processes under uncertainty. 

The innovative application of hub location modeling in our 

research not only alleviates restrictive assumptions but also 

enhances the practical relevance and applicability of our 

findings in real-world settings. By emphasizing the necessity 

and significance of our work in overcoming these research 

challenges and promoting innovation, our study contributes 

to advancing the field of hub location optimization and its 

practical implications. 

The structure of this paper is organized as follows: Section 2 

involves literature review. Section 3 provides the problem 

definition, assumptions, notations, and modeling approach. 

In Section 4, we present the solution methodology and 

computational results, including a comparison between 

traditional and novel approaches. Moreover, it consists of a 

sensitivity analysis to elucidate the underlying concepts. 

Finally, in Section 5, we summarize the results obtained from 

the preceding sections and propose directions for future 

research. 

2. Literature Review 

In this section, the literature related to hub location problem 

considering uncertainty is reviewed. There are various 

methods to deal with this uncertainty. However, proper 

categorization of these methods is necessary for a better 

analysis. In order to tackle the uncertain hub arc location 

problem, two common approaches to ensure robustness in 

combinatorial optimization problems, particularly in location 

problems, are minimizing the maximum cost and minimizing 

the maximum regret (Klincewicz 1998). Regret refers to the 

difference between the quality of a given strategy and the 

quality that would have been chosen if the future were certain 

(Berman, Drezner et al. 2007).  

Minmax Regret models aim to minimize the maximum regret 

across all scenarios. This field of research finds applications 

in scheduling problems, production planning, location and 

allocation, resource allocation, and various other domains. 

(Klincewicz 1998) first applied the Minmax Regret model to 

the 1-median location problem on a tree.  O’Kelly and Bryan 

(1998) extended this approach to the weighted p-center 

facility location problem, incorporating uncertain interval 

weights. They also explored the formulation of Minmax 

Regret models for handling uncertainties in edge lengths and 

node weights in the 1-center location problem. Klincewicz 

(1998) further presented the 1-median Minmax regret 

location problem by considering interval uncertainties in 

each node's demands, providing a polynomial algorithm to 

solve it.  

In the literature addressing hub location problems, Campbell, 

Ernst et al. (2005) introduced four types of Hub Arc Location 

Problems, defining and comparing these models against 

classic hub median problems. They also formulated related 

integer programming models and proposed an enumeration-

based algorithm to solve them. (Campbell, Ernst et al. 2005). 

Campbell, Stiehr et al. (2003) applied the first type of 

problem to a cluster of workstations, considering service 

level constraints in formulating time-definite transportation 

problems (Campbell 2009). Subsequently, Sasaki, Campbell 

et al. (2009) explored hub arc location problems involving 

competitive conditions. Martins de Sá, Contreras et al. (2015) 

addressed a specific hub line location problem focused on 

minimizing total travel time from origin to destination and 

devised an exact algorithm to solve it. The research on 

isolated hubs was explored in the works of (Korani and Eydi 

2021) and (Atay, Eroglu et al. 2023). Furthermore, a rigorous 

examination of a path-based formulation for the tree of hub 

location problem was conducted in the studies by (Fernández 

and Sgalambro 2020), (Bütün, Petrovic et al. 2021), (Espejo, 

Marín et al. 2023, Khaleghi and Eydi 2024) and , while 

introducing a valid inequality in (Contreras, Fernández et al. 

2010). Additionally, alternative modeling approaches 

utilizing a tree structure for hub location optimization were 

investigated and resolved using the minimum spanning tree 

method by (Mohajeri and Taghipourian 2011) and an 

enhanced Benders decomposition algorithm by  (Muffak and 

Arslan 2023) and (Ramamoorthy, Vidyarthi et al. 2024). 

In recent years, there has been a growing interest in 

addressing stochastic hub arc location problems. Several 

studies have been conducted by Hamid, Bastan et al. (2019), 

Shang, Yang et al. (2020), Wang, Chen et al. (2020), Hu, Hu 

et al. (2021), Rostami, Kämmerling et al. (2021), Taherkhani, 

Alumur et al. (2021), Ghaffarinasab and Kara (2022), 

Ghaffarinasab (2022), Rahmati, Neghabi et al. (2023)and 

Sener and Feyzioglu (2023). These studies proposed 

uncertain models and employed various approaches to 

mitigate uncertainties. They utilized both exact and heuristic 

algorithms to solve the proposed models, with details 

provided in Error! Reference source not found.. In Error! 

Reference source not found., we provide a comprehensive 

review of articles that focus on the consideration of 

uncertainty in hub location problems. Additionally, we 

present the research gap investigated in this study in Error! 
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Reference source not found., highlighting the contributions 

of this paper in relation to the related and most similar papers.  

In our manuscript, we involve the complexities of hub facility 

location under uncertain parameters, especially focusing on 

arc hubs, which have been relatively understudied compared 

to traditional hub location models. We recognize that hub 

location decisions are crucial strategic choices with long-

term implications, necessitating a comprehensive 

understanding of the impact of uncertainty on various 

parameters such as costs, demand, and distance. 

By incorporating uncertainty into our model, we aim to 

provide a more realistic and robust solution that can adapt to 

dynamic changes in the operating environment. Unlike 

classical models that treat data as certain and may lead to 

suboptimal outcomes when faced with uncertainty, our 

method accounts for the inherent uncertainties in hub 

location decisions, leading to more reliable and resilient 

solutions. 

Furthermore, our approach considers the uncertainties 

surrounding flow parameters between nodes and the 

implications of isolated hubs, offering a more comprehensive 

perspective on arc hub location problems. This novel 

approach not only fills an important research gap but also 

paves the way for future advancements in modeling and 

optimizing hub facilities under uncertain conditions. 

A key highlight of this research is the inclusion of isolated 

hubs alongside connected hub facilities. Isolated hubs, which 

operate independently without direct connections to hub arcs, 

play a vital role in streamlining transportation and flow 

transfer processes. They facilitate the creation of more 

efficient origin-destination routes, thus elevating service 

standards significantly. 

Moreover, this paper introduces a metaheuristic algorithm, 

specifically a Genetic Algorithm, to address the hub arc 

location problem in high-dimensional sizes—a pioneering 

venture. Notably, this is the first instance in which this 

problem has been tackled under conditions of uncertainty. 

Leveraging minimax regret theory adds a robust layer to the 

proposed algorithm, which is validated by meticulous 

comparisons of solutions concerning accuracy and 

computational efficiency against exact solutions. 

Additionally, the development of a two-stage stochastic 

programming model, juxtaposed with a robust approach, 

accentuates the novelty and impact of this study. 

In essence, this work's innovations stem from its exploration 

of isolated hubs, the application of metaheuristic algorithms 

in complex dimensions, and the resolution of hub arc location 

considering uncertainty. These breakthroughs not only fill 

important research lacunae but also provide valuable insights 

for practical implementations, propelling the realms of 

transportation planning and logistics optimization forward. 

Now, a concise summary of the original contributions made 

by our research: 

 Integration of isolated hubs alongside connected 

hub facilities to enhance transportation efficiency 

and service quality. 

 Introduction of a Genetic Algorithm to solve the hub 

arc location problem in large-dimensional spaces, 

marking a novel advancement in addressing 

complex logistics challenges. 

 Pioneering exploration of uncertainty in hub arc 

location problems, supported by minimax regret 

theory for algorithm robustness. 

 Innovation in developing a two-stage stochastic 

programming model with a robust methodology to 

deliver accurate and efficient solutions. 

Overall, our study breaks new ground by examining isolated 

hubs, applying metaheuristic algorithms to complex 

scenarios, and tackling uncertainty in hub arc location 

challenges. These advancements not only contribute to 

academic knowledge but also offer practical insights for 

improving transportation planning and logistics optimization 

strategies. 
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Makui, Rostami et al. (2002) 
 

  
 

   
 

   Robust programming 

Marianov and Serra (2003) 
 

  
 

      
 

Tabu search 



Marjan Gharavipour & et al. / A Robust Optimization Approach for the Hub Arc… 

38 
 

Ramos, Ramos et al. (2004) 
 

   
 

   
 

  
Improved Lagrangian 

decomposition 

Yang (2009) 
 

  
 

    
 

  
2-stage stochastic 

programming 

Bashiri and Mehrabi (2010) 
 

    
 

    
 

GA with Chance constraint 

Miranda Junior, Camargo et 

al. (2011)  
  

 
    

 
  

Generalized Benders 

decomposition 

Contreras, Cordeau et al. 

(2011)  
  

 
  

 
 

 
  

Monte Carlo simulation-

based algorithm with 

Benders’ algorithm 

Yang, Liu et al. (2011)  
 

   
 

     MILP programming 

Alumur, Nickel et al. (2012) 
 

  
 

  
 

    
Robust and stochastic 

optimization 

Rostami, Farahani et al. 

(2012)  
  

 
       

Robust optimization with 

goal programming  

Zhai, Liu et al. (2012) 
 

  
 

       
Minimum risk criteria  

2-stage stochastic 

optimization 

Mohammadi, Razmi et al. 

(2013)  
    

 
   

 
 Invasive weeds optimization 

Wang, Meng et al. (2013) 
 

  
 

       SAA chance constraint 

Mohammadi, Jolai et al. 

(2013)  
      

 
  

 
NSGA-11 and PAES 

Rahmaniani, Ghaderi et al. 

(2013)  
  

 
   

 
 

 
 

Neighborhood search with 

robust optimization 

Hult, Jiang et al. (2014)  
 

     
  

  
Exact solution algorithm 

based on separation 

Mohammadi, Torabi et al. 

(2014)  
  

 
      

 

SA, ICA, restrictions chance 

and fuzzy programming 

Qin and Gao (2017) 
 

   
 

      
GA with stochastic 

programming 

Habibzadeh Boukani, 

Farhang Moghaddam et al. 

(2016)  
     

  
   Robust optimization 

Shahabi and Unnikrishnan 

(2014)  
  

 
       Robust optimization 

Ghaffari-Nasab, Ghazanfari et 

al. (2015)  
  

 
       Robust optimization 

Ahmadi, Karimi et al. (2015)  
 

 
 

       
Robust and stochastic 

programming 

Adibi and Razmi (2015) 
 

  
 

  
 

    Stochastic programming 

Ghaffari–Nasab, Ghazanfari 

et al. (2015)  
   

 
      Robust optimization 

Zhai, Liu et al. (2016) 
 

  
 

       
Two-stage stochastic 

programming 
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Gao and Qin (2016)  
 

     
 

   
Chance constrained 

programming 

Meraklı and Yaman (2016)  
 

 
 

       Robust optimization 

Ghaderi and Rahmaniani 

(2016) 
 

 
 

 
   

 
  

 
Robust optimization 

Zetina, Contreras et al. (2017) 
 

  
 

    
 

  
Branch and cut algorithm 

with Robust Optimization 

Meraklı and Yaman (2016) 
 

  
 

    
 

  
Benders’ decomposition and 

Robust Optimization 

Talbi and Todosijević (2017)  
 

  
 

      Robust Optimization 

de Sá, Morabito et al. (2018) 
 

  
 

    
 

  
Benders’ decomposition and 

Robust Optimization  

Ghaffarinasab (2018)  
 

 
 

      
 

Tabu Search based 

metaheuristic with Robust 

Optimization 

Wang and Qin (2020) 
 

   
 

  
 

   
Chance constrained 

programming 

Hamid, Bastan et al. (2019)  
 

    
  

 
 

 

Heuristic solution with a 

single-scenario stochastic 

optimization 

Shang, Yang et al. (2020)       
  

  
 

Chance-constrained 

programming and expected-

value, Memetic algorithm 

Wang, Chen et al. (2020) 
 

  
 

  
 

    
Distributionally robust 

optimization 

Hu, Hu et al. (2021) 
 

  
 

    
 

  
Chance constrained and 

Cone programming 

Taherkhani, Alumur et al. 

(2021)  
  

 
   

  
  

Benders’ decomposition and 

Robust Optimization 

Rostami, Kämmerling et al. 

(2021)  
  

 
    

 
  

L-shaped decomposition 

with Branch and cut and 

stochastic optimization 

Ghaffarinasab and Kara 

(2022) 
 

 
 

 
    

 
  

Benders’ decomposition and 

Stochastic programming  

Ghaffarinasab (2022) 
 

  
 

    
 

  

Benders’ decomposition, 

Lagrangian relaxation and 2-

stage stochastic 

programming 

Rahmati, Neghabi et al. 

(2023)  
  

 
    

 
  

L-shaped and Benders’ 

decomposition with Two-

stage stochastic 

programming 

Sener and Feyzioglu (2023) 
 

  
 

  
 

 
 

  
L-shaped decomposition and 

stochastic programming 

This paper 

 
  

 
 

 
 

 
 

  
 

Tailored GA with Min-max 

regret modelling in 2-stage 

programming 
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Table 2 

Research gaps 

Uncertainty 
Solution 

approach 

Problem 

size 

Releasing full 

connectivity 

restriction 

Releasing 

discount 

factor 

restriction 

Other 

costs 

Hub Arc Location Problem 

Literature 

- - - 
  

- 

Hub Arc Location Problems:Part 

I—Introduction and Results 

(Campbell, Ernst et al. 2005) 

- 
Enumeration 

based algorithm 
Small 

  
- 

Hub Arc Location Problems:Part 

II—Formulations and Optimal 

Algorithms (Campbell, Ernst et 

al. 2005) 

- 

Parallel 

Implementation of 

enumeration-

based algorithms 

Medium 
  

- 

Solving Hub Arc Location 

Problems on a Cluster of 

Workstations (Campbell, Stiehr 

et al. 2003) 

- 

Exact solution 

from GAMS 

optimization 

software 

Small 
  

- 
Hub location for Time Definite 

Transportation (Campbell 2009) 

- Exact solution Large 
  

- 

Hub Arc Location with 

Competition (Sasaki, Campbell 

et al. 2009) 

 
Heuristic solution Large 

   

Uncertain and sustainable hub 

location problem (Mohammadi, 

Torabi et al. 2014) 

 
Heuristic solution Small 

 
- - 

Stochastic uncapacitated P-hub 

median problem (Hamid, Bastan 

et al. 2019) 

 
Heuristic solution Large 

 
- - 

Stochastic hub profit 

maximization problem 

(Taherkhani, Alumur et al. 2021) 

 
Exact solution Large 

  
- 

Maximal covering, median and 

center P-hub location problem 

(Ghaffarinasab and Kara 2022) 

 
Exact solution Large 

 
- - 

 Stochastic and sustainable hub 

location problem (Rahmati, 

Neghabi et al. 2023) 

 
(flow) 

Exact solution 

Metaheuristic 

algorithm 

Small, 

Medium, 

Large   

Set-up 

cost 
This paper 
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3. Research Framework 

The objective of this study is to minimize the total 

transportation cost and deployment by determining the 

optimal location of hub arcs and allocating non-hub nodes 

to the hubs. Hub arcs are defined as arcs connecting two 

hub nodes and providing cost-efficient flow transportation 

through economies of scale. Unlike traditional hub location 

problems, this research departs from the assumption of full 

connectivity in the hub network and instead introduces a 

discount factor exclusively applied to hub arcs, aiming to 

align with real-world scenarios. Moreover, the focus is 

shifted towards locating hub arcs rather than hub nodes. 

To formulate a hub arc location problem under uncertainty, 

it is necessary to first discuss the deterministic problem. 

Consequently, this study proposes a mixed-integer linear 

formulation for hub arc location problems. In the 

formulation, the objective function incorporates set-up 

costs, and the hub network structure accounts for the 

presence of isolated hubs, facilitating a comprehensive 

analysis of the problem at hand. 

Consider a graph G = (V, E) with vertex set V = 1, ..., N. 

The demand or flow between node o and node d is Wod. The 

cost of traveling from node i to node j is disij and follows 

triangle inequality theorem. The hub arcs that connect hub 

nodes i and j have αdisij discounted costs per flow unit (0 

<α<1). The number of hub arcs and the maximum number 

of hub nodes on the network are exogenous and hub node 

capacity is assumed unlimited. Also, the origin-destination 

route contains at least one and at most two hub facilities. 

Assumptions and Notation 

Indices 

o Set of origin nodes 

d Set of destination nodes 

i Set of first hub nodes 

j Set of second hub nodes (if needed) 

Parameters 

Wod: The flow between origin o and destination d 

disij: The distance between node i and j 

fi: Set-up cost for hub i 

α: Discount factor between two hubs 

q: Number of hub arcs 

p: Maximum number of hubs 

Decision variables 

Xijod: If the flow from origin i to destination j passes through 

hub i, 1; otherwise, 0. 

Yij: If there is a hub arc between hub i and hub j, 1; 

otherwise, 0. 

Zi: If node i is a hub node, 1; otherwise, 0.

 

(1) 
𝑀𝑖𝑛 ∑ (𝑊𝑜𝑑 + 𝑊𝑑𝑜)(𝑑𝑖𝑠𝑜𝑖+∝ 𝑑𝑖𝑠𝑖𝑗 + 𝑑𝑖𝑠𝑗𝑑)𝑋𝑖𝑗𝑜𝑑

𝑜,𝑑,𝑖,𝑗
𝑜<𝑑

+ ∑ 𝑓𝑖𝑍𝑖

𝑖

 

 St. 

(2) ∑ ∑ 𝑋𝑖𝑗𝑜𝑑

𝑗𝑖

= 1,     ∀𝑜, 𝑑, 𝑜 < 𝑑 

(3) ∑ ∑ 𝑌𝑖𝑗

𝑗𝑖

= 𝑞 

(4) ∑ 𝑍𝑖

𝑖

≤ 𝑝 

(5) 
𝑋𝑖𝑖𝑜𝑑 + ∑(𝑋𝑖𝑗𝑜𝑑 + 𝑋𝑗𝑖𝑜𝑑)

𝑗
𝑗≠𝑖

≤ 𝑍𝑖 ,     ∀𝑖, 𝑜, 𝑑, 𝑜 < 𝑑 

(6) 𝑋𝑖𝑗𝑜𝑑 ≤ 𝑌𝑖𝑗 ,     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑖 ≠ 𝑗 

(7) 𝑌𝑖𝑗 ≤ 𝑍𝑖,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    

(8) 𝑌𝑖𝑗 ≤ 𝑍𝑗,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    

(9) 𝑋𝑖𝑗𝑜𝑑 ≥ 0 

(10) 𝑍𝑖 , 𝑌𝑖𝑗 ∈ {0,1} 

The objective of this paper is to minimize the total 

transportation and set-up costs. The constraints are 

designed to ensure specific conditions for the routing of 

flows through hub arcs. Constraint (2) guarantees that flow 

between any origin and destination must pass through a 

pair of hubs, or in some cases, a single hub Xiiod), 

disallowing direct paths between origins and destinations. 

Constraints (3) and (4) restrict the number of hub arcs and 

the maximum number of hub nodes, respectively. For each 

route that utilizes a specific hub, constraint (5) ensures that 

the corresponding hub is opened. Furthermore, constraint 

(6) ensures that a hub arc must be opened for each flow 

transmission routed through it. Constraints (7) and (8) 

stipulate that both ends of a hub arc must be hub nodes. 

Lastly, constraints (9) and (10) define the characteristics of 

the decision variables. 

It is important to clarify that although the routing decision 

variable Xijod is formulated as a continuous variable, it 

effectively takes binary values. When the active hub nodes 
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and hub arcs are known, the optimal route between each 

origin-destination pair is determined based on the path with 

the least transportation cost. As the hub facilities do not 

have capacity restrictions, only one path is selected for the 

current routing. Therefore, despite the variable being 

continuous in its formulation, the problem's formulation 

inherently forces it to take binary values. 

2.1.1 Flow Uncertainty 
 

To address the challenge of flow uncertainty in the hub arc 

location problem, two modeling approaches, namely min-

max regret and two-stage stochastic programming, are 

employed. In addition to the previously mentioned 

assumptions, the following assumptions are introduced: 

1. Each pair of nodes is subject to uncertain flow. 

2. The flow uncertainty is represented by discrete 

scenarios. In the robust approach, the scenarios are 

considered based on an unknown probability 

distribution, while the stochastic approach assumes a 

uniform probability distribution with equal probability 

assigned to each scenario. 

3. In the robust approach, the objective function 

aims to minimize the maximum deviation between the 

proposed solution and the optimal solution under each 

scenario. 

4. In the stochastic approach, the objective function 

aims to minimize both the total cost of hub 

establishment and the expected value of the flow 

allocation cost. 

As stated earlier, location decisions regarding hub arcs are 

long-term strategic decisions, and one way to address the 

uncertainty of future events is by defining alternative future 

scenarios (Ravelo 2021). Since incorporating uncertainty 

in hub arc location problems is a novel area of study, there 

is currently no existing research in the literature that 

addresses this aspect. The introduction of modeling 

uncertain flows as limited discrete scenarios, using robust 

optimization and two-stage stochastic programming, 

represents a pioneering contribution in this regard. To this 

end, the previous deterministic model is expanded by 

introducing the following variables and parameters. 

Indices 
s: Set of scenarios S 

Parameters 
Wsod: Demand from origin o to destination d under scenario 

s 

C*(s): The optimal value related to scenario s 

Ps: The probability of scenario s 

Decision variables 

Rs: The regret related to scenario s 

Xijod (s): If the flow under scenario s is transferred from 

origin o to destination d through hubs i and j, 1; otherwise, 

0. 

Yij (s): If under scenario s there is hub arc between i and j, 

1; otherwise, 0. 

2.1.2 Min-max Regret Modeling 

As previously mentioned, the primary objective of a robust 

approach is to identify decisions that perform well across 

all possible scenarios. Regret refers to the disparity 

between the quality of a given strategy and the quality that 

would have been chosen if future events were certain 

(Berman, Drezner et al. 2007). A robust solution is one that 

minimizes the maximum regret among all scenarios. In 

other words, regret represents the difference between the 

output obtained under a given scenario and the optimal 

output under the same scenario (Hekmatfar and Pishvaee 

2009). Minimizing the maximum regret is a common 

strategy for achieving robustness in combinatorial 

optimization problems, particularly in location problems. 

Models that minimize the maximum regret across all 

scenarios are known as Minmax Regret models. These 

models incorporate uncertainty into the objective function 

and are referred to as robust deviation because they 

minimize the deviation between the objective function of 

the best possible solution for a scenario and the objective 

function of the given solution. Instead of minimizing the 

worst performance of a solution, they focus on minimizing 

the difference in objective function values that can arise in 

different scenarios. 

(11) 𝑀𝑖𝑛𝑚𝑎𝑥
𝑠∈𝑆

𝑅𝑠 

 St. 

 Constraints (2 - 10) 

(12) 𝑅𝑠 = [∑ (𝑊𝑜𝑑
𝑠 + 𝑊𝑑𝑜

𝑠 )(𝑑𝑖𝑠𝑜𝑖+∝ 𝑑𝑖𝑠𝑖𝑗 + 𝑑𝑖𝑠𝑗𝑑)𝑋𝑖𝑗𝑜𝑑𝑜,𝑑,𝑖,𝑗
𝑜<𝑑

+ ∑ 𝑓𝑖𝑍𝑖𝑖 ] − 𝐶∗(𝑠),     ∀𝑠 ∈

𝑆 

Equation (11) represents minimizing maximum regret. 

Constraints (12) are related to each scenario’s regret. 

Constraints (2) to (10) are the same as the previous section. 

The above model linearization is as follows: 

 

(13) Min R 

 St. 

 Constraints (2 − 10) 

(14) 𝑅 ≥ 𝑅𝑠 ,    ∀𝑠 ∈ 𝑆 
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2.1.3 Two-stage Stochastic Programming 

In this section, we make the assumption that imprecise 

flows can be modeled by a discrete uniform probability 

distribution. This distribution is characterized by a 

restricted set of scenarios, each assigned a probability of 

Ps. We address the hub arc location problems in the context 

of uncertainty by employing a two-stage stochastic 

programming approach with recourse. The first stage 

involves determining the locations of hub facilities, while 

the second stage focuses on optimizing the allocation of 

non-hub nodes through hub nodes and hub arcs. 

A random variable ξ represents a scenario. This means that 

ξ∈S and Ps = P [ξ = s], s∈S. Besides, Wod (ξ) represents a 

random variable of flow from origin to destination

. 

 First Stage: 

(15) 𝑀𝑖𝑛𝑍 ∑ 𝑓𝑖𝑍𝑖𝑖  + 𝐸𝜉[𝑄(𝑍, 𝜉)] 

 St. 

(4) ∑ 𝑍𝑖𝑖 ≤ p 

(16) 𝑍𝑖 ∈ {0,1} 

 Second Stage: 

(17) 𝑄(𝑍, 𝜉)= 𝑀𝑖𝑛𝑋,𝑌 ∑ (𝑊𝑜𝑑(𝜉) + 𝑊𝑑𝑜(𝜉))(𝑑𝑖𝑠𝑜𝑖+∝ 𝑑𝑖𝑠𝑖𝑗 + 𝑑𝑖𝑠𝑗𝑑)𝑋𝑖𝑗𝑜𝑑𝑜,𝑑,𝑖,𝑗
𝑜<𝑑

 

(2) ∑ ∑ 𝑋𝑖𝑗𝑜𝑑𝑗𝑖 = 1,     ∀𝑜, 𝑑, 𝑜 < 𝑑,                                   

(3) 
∑ ∑ 𝑌𝑖𝑗

𝑗𝑖

= 𝑞 

(5) 
𝑋𝑖𝑖𝑜𝑑 + ∑(𝑋𝑖𝑗𝑜𝑑 + 𝑋𝑗𝑖𝑜𝑑)

𝑗
𝑗≠𝑖

≤ 𝑍𝑖 ,     ∀𝑖, 𝑜, 𝑑, 𝑜 < 𝑑 

(6) 𝑋𝑖𝑗𝑜𝑑 ≤ 𝑌𝑖𝑗 ,     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑖 ≠ 𝑗 

(7) 𝑌𝑖𝑗 ≤ 𝑍𝑖,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    

(8) 𝑌𝑖𝑗 ≤ 𝑍𝑗,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    

(9) 𝑋𝑖𝑗𝑜𝑑 ≥ 0,     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑 

(18) 𝑌𝑖𝑗 ∈ {0,1},     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗    

 
Equation (15) represents the total cost of setting up a hub 

facility plus the expected cost of allocation and routing 

between the origin-destination pairs. In the second stage, 

Equation (17) variables Zi are fixed and Wod (ξ) are random 

variables for all i and j. Xijod variables are recourse variables 

because the accurate routing through the network is 

determined only after specifying the flows. Moreover, 

Equation (16) assures 𝑍𝑖 to be binary. 

Because there is no capacity constraint in the model, for 

each feasible solution of the first stage (network 

configuration), there is at least a feasible solution for the 

second stage. Since the optimal routing between the origin-

destination is determined after the possible occurrence of 

scenario s, their values must be determined under each 

scenario. The decision variables Yij (s) and Xijod (s) are used 

as variables related to the arc between hub i and hub j and 

the route between o and d via hub i and hub j under scenario 

s, respectively. Now we can provide a certain equivalent of 

hub arc location problem with uncertain flows. 

(19) 𝑀𝑖𝑛 ∑ 𝑃𝑠
𝑠∈𝑆

∑ (𝑊𝑜𝑑(𝑠) + 𝑊𝑑𝑜(𝑠))(𝑑𝑖𝑠𝑜𝑖+∝ 𝑑𝑖𝑠𝑖𝑗 + 𝑑𝑖𝑠𝑗𝑑)𝑋𝑖𝑗𝑜𝑑(𝑠)
𝑜,𝑑,𝑖,𝑗
𝑜<𝑑

+ ∑ 𝑓𝑖𝑍𝑖

𝑖

 

(4) ∑ 𝑍𝑖𝑖 ≤ p 

(16) 𝑍𝑖 ∈ {0,1} 

(20) ∑ ∑ 𝑋𝑖𝑗𝑜𝑑(𝑠)𝑗𝑖 = 1,     ∀𝑜, 𝑑, 𝑜 < 𝑑, 𝑠 ∈ 𝑆 

(21) ∑ ∑ 𝑌𝑖𝑗(𝑠)

𝑗𝑖

= 𝑞 

(22) 
𝑋𝑖𝑖𝑜𝑑(𝑠) + ∑ (𝑋𝑖𝑗𝑜𝑑(𝑠) + 𝑋𝑗𝑖𝑜𝑑(𝑠))

𝑗
𝑗≠𝑖

≤ 𝑍𝑖 ,     ∀𝑖, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑠 ∈ 𝑆 

(23) 𝑋𝑖𝑗𝑜𝑑(𝑠) ≤ 𝑌𝑖𝑗(𝑠),     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑖 ≠ 𝑗, 𝑠 ∈ 𝑆 
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(24) 𝑌𝑖𝑗(𝑠) ≤ 𝑍𝑖 ,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑠 ∈ 𝑆    

(25) 𝑌𝑖𝑗(𝑠) ≤ 𝑍𝑗 ,     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑠 ∈ 𝑆    

(26) 𝑋𝑖𝑗𝑜𝑑(𝑠) ≥ 0,     ∀𝑖, 𝑗, 𝑜, 𝑑, 𝑜 < 𝑑, 𝑠 ∈ 𝑆 

(27) 𝑌𝑖𝑗(𝑠) ∈ {0,1}, ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑠 ∈ 𝑆 

The objective function (19) represents minimizing the total 

set-up cost of hub facilities and the expected value of 

transportation and allocation costs. Constraints (20-27) are 

similar to constraints of the main model that are explained 

in the previous section, except that these are considered 

under scenario s. Moreover, equation (16) assures 𝑍𝑖 to be 

binary. 

3. Research Methodology 

The hub arc location problem addressed in this article is 

known to be NP-Hard, as highlighted by (Campbell, Ernst 

et al. 2005). Moreover, considering the vast search space 

involved, the problem becomes even more complex when 

uncertainties are taken into account. To overcome these 

challenges within a reasonable timeframe and on a large 

scale, employing a metaheuristic method is a suitable 

choice. Among the various metaheuristics utilized in hub 

location literature, the genetic algorithm (GA) has gained 

significant popularity and achieved favorable results in 

terms of solution quality. The GA algorithm initiates with 

an initial population comprising randomly generated 

answers, referred to as chromosomes. Each chromosome 

represents a potential solution to the problem, whether 

feasible or infeasible. These chromosomes are composed 

of a fixed number of genes, which encapsulate the 

information contained within each answer. Illustrated in 

Fig 1,  each chromosome undergoes flourishing processes 

to form subsequent generations. Within each generation, 

chromosomes are assessed based on a fitness measure, 

enabling the preservation and progression of better 

solutions to the next generation. Regarding the 

representation of solutions, since there can be a maximum 

of two hub nodes and at least one hub node for each origin-

destination route, the solution representation takes the form 

of a 2*q matrix. The first row corresponds to the first hub, 

the second row represents the second hub (if non-

repetitive), and the number of columns aligns with the 

required hub arcs in the problem

. 
 1 2 ... Q 

First Hub          

Second Hub          
 

Fig 1. The structure of a chromosome 

Initial population: the first generation of genetic algorithm 

is created randomly. First, p number of hub nodes are 

chosen and non-repetitive different pairwise states of them 

are formed to obtain possible hub arcs. Then q numbers of 

these non-repetitive binary combinations will be chosen 

randomly as hub arcs. 

Fitness function: fitness function is used as an evaluation 

function for each chromosome. All of the obtained results 

for each origin-destination pair are stored in an auxiliary 

variable called X that is a matrix of 4 rows and (
𝑁
2

) 

columns. Each chromosome that has a better objective 

function value will have more utility and is more likely to 

be transmitted to the next generation. 

Selection operator: This operator is the selection process 

of two qualified parents of the population to lead to the 

procreation of children with high fitness. Each member 

with a probability proportional to its utility, or its fitness 

function value, has the chance of being selected. We use 

the Roulette Wheel method in the way that the wheel is 

partitioned to the number of the population members and 

the surface of each section is proportional to the fitness 

value of each chromosome. Then the wheel is rotated to 

stop somewhere randomly. This point identifies the 

selected chromosome. 

Crossover operator: Crossover is a process of producing 

new children from parents. In this paper, the Single-Point 

Crossover method is used in the way that two 

chromosomes randomly break from a point and both parts 

are displaced with each other from the fracture point. (See 

Fig 2) 

Mutation operator: Using this operator leads to releasing 

from local optimum, improving the probability of finding 

the global optimum responses and maintaining diversity. In 

this method, a single parent is selected, and then one of the 

hubs is randomly selected and replaced with a non-hub 

node. Then each arc that is connected to the replaced hub 

will be updated to the new hub. (See Fig 3) 

Stopping criterion: Genetic algorithm stops when the 

specified number of generations occurred. 

Parameter calibration: Inexact algorithms result in a 

variety of answers, so an acceptable algorithm is an 

algorithm that its solutions converge to the global optimal 

solution. For this purpose, we use the Taguchi method to 

calibrate the algorithm parameters. The Taguchi method 

seeks to minimize the effect of noise factors and find the 

optimal level of control factors using the S/N ratio. The 

goal is to maximize this ratio. 

 

𝑆

𝑁
ratio = −10 log (

1

𝑛
∑ 𝜏𝑖

𝑛

𝑖=1

)

2

 (28) 
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 Crossover point    

  

3 1 2 2 1 
Parent 1 

5 4 5 3 3 

 Crossover point    

  

2 3 1 1 1 
Parent 2 

4 4 3 2 6 

 Crossover point    

  

2 3 2 2 1 
Offspring 1 

4 4 5 3 3 

 Crossover point    

  

3 1 1 1 1 
Offspring 2 

5 4 3 2 6 

  
Fig 2. The structure of crossover operation 

 

3 1 2 2 1 
Parent 

5 4 5 3 3 

3 1 2 2 1 
offspring 

6 4 6 3 3 

Fig 3. The structure of mutation operation 

The complete form of the Genetic algorithm is showed in 

the Fig 4. The controllable factors of this model include 

population size, the maximum number of iterations, 

crossover probability and mutation probability. The first 

group with index S is related to a small scale with a 

maximum of 20 nodes, and the second group with index L 

is related to a large scale with more than 20 nodes. 

Different factors are defined in four levels and are provided 

in Table 3. 

Start

Taking input data of the problem

Creating the initial population

Allocation based on nearest hub and evaluating the results

Has the 

stopping 

condition been 

set?

Finish

Deriving best results

Selecting parents based on Roulette wheel

Cross-over for generating off-springs

Mutation on off-springs

Evaluating the results
 

Fig 4. The proposed Genetic algorithm flowchart 
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Table 3 

Proposed Factors and levels 

Factor 4 Factor 3 Factor 2 Factor 1 

Mutation 

Probability 

(D) 

Crossover 

Probability 

(C) 

Maximum Number Of 

Repetitions (B) 

Population Size (A) 

BL BS AL AS 

D(1): 0.9 

D(2): 0.8 

D(3): 0.7 

D(4): 0.6 

C(1): 0.8 

C(2): 0.6 

C(3): 0.4 

C(4): 0.2 

BL(1): 150 

BL(2): 200 

BL(3): 300 

BL(4): 400 

Bs(1): 100 

Bs(2): 150 

Bs(3): 200 

Bs(4): 250 

AL(1): 100 

AL(2): 130 

AL(3): 170 

AL(4): 230 

AS(1): 50 

AS(2): 70 

AS(3): 100 

AS(4): 150 

The S/N ratio is used to determine the appropriate levels of 

controllable factors as the main priority. The average value 

of the objective function and average runtime is used as the 

second and third priority respectively to strengthen the 

assessment. The more the S/N ratio and the less the average 

runtime and the objective function, the more appropriate is 

the parameter. Table 4 and Fig 5 - Fig. 10 are obtained 

from Minitab software for small and medium/large scale 

problems. 

 

Table 4 

Taguchi experimental design 

Factors 

Experiment Population Size Maximum Number 

Of Repetitions 

Crossover 

Probability 

Mutation 

Probability 

A(1) B(1) C(1) D(1) 1 

A(1) B(2) C(2) D(2) 2 

A(1) B(3) C(3) D(3) 3 

A(1) B(4) C(4) D(4) 4 

A(2) B(1) C(2) D(3) 5 

A(2) B(2) C(1) D(4) 6 

A(2) B(3) C(4) D(1) 7 

A(2) B(4) C(3) D(2) 8 

A(3) B(1) C(3) D(4) 9 

A(3) B(2) C(4) D(3) 10 

A(3) B(3) C(1) D(2) 11 

A(3) B(4) C(2) D(1) 12 

A(4) B(1) C(4) D(2) 13 

A(4) B(2) C(3) D(1) 14 

A(4) B(3) C(2) D(4) 15 

A(4) B(4) C(1) D(3) 16 
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Fig 5. Mean of S/N ratio for small size Fig 6. Average response variable for small size 
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Fig. 7. Mean of runtime for small size Fig. 8. Mean of S/N ratio for large size 
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Fig. 9. Average response variable for large size Fig. 10. Mean of runtime for large size 

The appropriate parameters for the small and medium/large scale problems are shown in Table 5. 
 

Table 5 

Optimum level for proposed GA controllable factors 

Optimum Level for Small 

Size 

Optimum Level for 

Large Size 
Symbol Factors 

A(4) = 150 A(4) = 230 A Population Size 

B(3) = 200 B(4) = 400 B Maximum Number of Repetitions 

C(4) = 0.2 C(4) = 0.2 C Crossover Probability 

D(2) = 0.8 D(1) = 0.9 D Mutation Probability 

4. Result 

The hub arc location problem under uncertainty will be 

solved by applying the proposed genetic algorithm to the 

robust model. To validate the meta-heuristic methods, the 

obtained results are compared to the exact optimal solution 

from GAMS optimization software in terms of average and 

worst error and mean run time. 

To evaluate the proposed solution method, it is necessary 

to test their performance in different sample problems. We 

use four sample problems that are taken from data sets AP 

(Ernst and Krishnamoorthy 1996). The proposed heuristic 

and meta-heuristic algorithms are implemented in Matlab 

software R2014b and exact solutions are obtained from 

GAMS software 24.1.2 Cplex solver. All calculations 

related to the sample problems have been done on a 

computer with specs Intel Core i7-2670 QM 2.2 GHz 

Memory 8 GB. 

As the genetic algorithm starts with a random initial 

solution, we repeat the algorithm three times for each 

sample problem and each size and report the average 

results. We show the uncertainty with five different 

discrete scenarios. According to (Gelareh and Nickel 

2007), to create series of different flow scenarios, for each 

pair of i, j∈N nodes, five random values between interval 

[0.01wij, 10wij] is produced, such that wij is the available 

flow between nodes in the standard data set AP. To reduce 

the symmetry around the generated scenario’s mean, the 

flow range is split into two parts [0.01wij, 5wij] and [5wij, 

10wij]. In each scenario, for each pair of i, j∈N nodes, flow 

is a random value with the probability of 2/3 from the first 

interval and with the probability of 1/3 from the second 

interval (Gelareh and Nickel 2007). 
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Fig. 11. GA error 

To solve the problem under uncertainty, each scenario is 

solved as a deterministic problem in GAMS optimization 

software, and then their optimal values are entered into the 

Minmax Regret model. According to Table 6 and Fig. 11 

by increasing the size of the problem, the optimal 

solution’s runtime increases exponentially and Fig. 12 

presents that average and worst error of the proposed 

Genetic algorithm increases as the size the problem rises. 

Moreover, the proposed genetic algorithm average error of 

2.44% and the maximum error of 6% represent an 

acceptable solution quality in reasonable run time. 

 
Fig. 12. Comparing run times 
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Table 6 

Average error and runtime 

Genetic Algorithm Solution Gams Solution 

α =0.2 Average CPU 

Time (s) 

% Gap Average CPU 

Time (s) Worst Average 

0.35 7.36 2.55 1.19 q=1, p=2 N=5 

15.68 0 0 7.80 q=2, p=4 N=10 

39.05 0 0 15.42 q=3, p=6 N=15 

41.04 10.23 4.46 35.85 q=4, p=8 N=20 

74.44 12.43 5.21 179.20 q=5, p=10 N=25 

34.11 6.00 2.44 47.89 Average 

In this part, an equivalent expected value of the scenarios, 

named Base case problem, is defined by replacing the 

average value of the parameters with the inexact parameter. 

The resulting solution of the Base case problem is 

compared with the Minmax Regret model results. 

 

 

Table 7 

 Comparing results 

Best Hub Arcs Best Hubs Best Cost α=0.2 
Problem 

Size 

2-3 2, 3 8300731 Scenario 1 

N = 5 

Q = 1 

P = 2 

2-3 2, 3 23910042 Scenario 2 

2-3 2, 3 42866688 Scenario 3 

1-3 1, 3 42380636 Scenario 4 

2-3 2, 3 40615964 Scenario 5 

2-3 2, 3 32356591 Base Case 

2-3 2, 3 GAMS Solution Minmax Regret 

7-1, 7-4 1, 4, 7, 8 43297891 Scenario 1 

N = 10 

Q = 2 

P = 4 

2-8, 3-7 2, 3, 7, 8 206248180 Scenario 2 

2-7, 3-7 2, 3, 7, 8 245296135 Scenario 3 

1-8, 4-7 1, 4, 7, 8 172996832 Scenario 4 

2-8, 3-7 2, 3, 7, 8 202295798 Scenario 5 

2-8, 3-7 2, 3, 7, 8 174745740 Base Case 

2-8, 3-7 2, 3, 7, 8 GAMS Solution Minmax Regret 

2-14, 6-14, 8-14 2, 6, 8, 9, 10, 14 28491846 Scenario 1 

N = 15 

Q = 3 

P = 6 

2-14, 4-14, 11-14 2, 4, 6, 9, 11, 14 167581080 Scenario 2 

2-14, 6-14, 8-14 2, 3, 6, 8, 9, 14 145085099 Scenario 3 

2-14, 4-11, 13-14 2, 4, 6, 11, 13, 14 146273345 Scenario 4 

2-10, 6-14, 8-14 2, 6, 8, 9, 10, 14 136570832 Scenario 5 

2-14, 6-14, 8-14 2, 6, 8, 9, 10, 14 126474449 Base Case 

2-14, 6-14, 8-14 2, 5, 6, 8, 10, 14 GAMS Solution Minmax Regret 

2-14, 4-11, 6-14, 14-16 2, 4, 6, 11, 13, 14, 15, 16 214460233 Scenario 1 
N = 20 

Q = 4 

P = 8 

2-14, 4-14, 9-14, 12-14 2, 4, 7, 9, 12, 13, 14, 15 225702878 Scenario 2 

2-14, 4-15, 6-14, 15-16 2, 4, 6, 7, 9, 14, 15, 16 208691489 Scenario 3 

2-14, 4-11, 6-14, 12-15 2, 4, 6, 11, 12, 13, 14, 15 208699272 Scenario 4 
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Table 7 

 Comparing results 

Best Hub Arcs Best Hubs Best Cost α=0.2 
Problem 

Size 

4-14, 6-14, 12-14, 13-14 2, 4, 6, 11, 12, 13, 14, 20 220534032 Scenario 5 

2-14, 4-11, 6-14, 12-14 2, 4, 6, 11, 12, 13, 14, 20 217147998 Base Case 

4-14, 6-14, 12-14, 13-14 2, 4, 6, 11, 12, 13, 14, 20 GAMS Solution Minmax Regret 

2-18, 5-13, 8-18, 17-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 42575653 Scenario 1 

N = 25 

Q = 5 

P = 10 

2-18, 5-13, 8-18, 17-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 172223571 Scenario 2 

2-18, 5-13, 8-18, 16-18, 

18-20 
2, 5, 7, 8, 9, 13, 16, 17, 18, 20 178572808 Scenario 3 

2-18, 5-13, 8-18, 17-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 172554879 Scenario 4 

2-18, 5-13, 8-18, 17-18, 

18-20 

2, 5, 6, 8, 13, 16, 17, 18, 20, 

25 
173923241 Scenario 5 

2-18, 5-13, 8-18, 16-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 148100336 Base Case 

2-18, 5-13, 8-18, 16-18, 

18-20 
2, 5, 6, 8, 9, 13, 16, 17, 18, 20 GAMS Solution Minmax Regret 

3-28, 4-12, 8-20, 13-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 13, 18, 20, 

23, 26, 28 
27596542 Scenario 1 

N = 30 

Q = 6 

P = 12 

3-28, 4-12, 8-20, 13-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 13, 18, 20, 

23, 26, 28 
115002418 Scenario 2 

3-28, 4-12, 8-20, 14-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 14, 18, 20, 

23, 26, 28 
113368312 Scenario 3 

3-28, 4-12, 8-13, 13-28, 

23-28, 26-28 

3, 4, 7, 8, 10, 12, 13, 17, 20, 

23, 26, 28 
114104418 Scenario 4 

3-28, 4-12, 8-13, 13-28, 

23-28, 26-28 

3, 4, 7, 8, 10, 12, 13, 17, 20, 

23, 26, 28 
113843763 Scenario 5 

3-28, 4-12, 8-20, 13-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 13, 18, 20, 

23, 26, 28 
96883012 Base Case 

3-28, 4-12, 8-20, 13-28, 

18-28, 23-28 

3, 4, 7, 8, 10, 12, 13, 18, 20, 

23, 26, 28 
GAMS Solution Minmax Regret 

 

In the min-max regret models, it's important to note that the 

transportation costs and consequently the total cost vary 

across different scenarios. However,  
 

Table 7 

 Comparing results 

, fails to reflect these variations. In the AP standard data 

set, a significant portion of the demand originates from a 

small number of nodes. As a result, the range associated 

with these nodes, which is used to generate random 

scenarios, is considerably wide. Accordingly, these nodes 

frequently emerge as potential hub facilities in the majority 

of scenarios. For instance, Nodes #7 and #8 consistently 

handle substantial flow volumes and are often selected as 

hub nodes. 

The results indicate that the optimal network structure, 

including the locations of hubs and hub arcs, differs among 

scenarios, as well as in comparison to the Base Case 

problem and the optimal solutions obtained from the robust 

models. Consequently, it becomes imperative to carefully 

consider the most effective approach for locating hubs and 

hub arcs in order to minimize future costs in the face of 

uncertainties. The solutions obtained through the robust 
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model adopt a pessimistic perspective by minimizing the 

regret associated with the worst-case scenario. This implies 

that the results achieved are deemed satisfactory for each 

individual scenario. 

To provide a comprehensive summary of the conducted 

analyses, it is essential to emphasize, as previously 

mentioned in this article, that in order to solve the problem 

under conditions of uncertainty, the flow parameter has 

been considered in the form of limited discrete scenarios, 

and we have utilized three solution approaches. The 

primary approach under investigation is a robust approach 

using the minimax regret model, which we have solved 

using a Genetic algorithm. By comparing the solution time 

and the errors of the obtained solutions with respect to the 

exact solution, we have successfully validated the proposed 

solution method. The results indicate a satisfactory quality 

of the obtained solutions and a reasonable solution time. 

Furthermore, for the analysis of the primary solution 

approach under conditions of uncertainty, we have 

employed a two-stage stochastic programming and 

assumed that the uncertain parameter follows a discrete 

uniform probability distribution. We have solved the 

problem and compared both the robust and probabilistic 

approaches with the solution obtained from the expected 

value problem. The results demonstrate that the optimal 

solutions of the problem vary when confronted with 

inaccurate parameters. Therefore, it can be stated that the 

optimal solutions are sensitive to flow values. 

Consequently, in situations with high uncertainty regarding 

these parameters and lack of knowledge about the 

distribution information of the inaccurate parameter, the 

utilization of the robust approach is advisable. However, 

when the probability distribution information of the 

inaccurate parameter is known, the probabilistic 

programming approach is highly preferable to inaccurate 

parameter estimation or utilization of mean values. This is 

because using deterministic values in uncertain conditions 

leads to suboptimal solutions that impose additional costs 

on the system in the long run. 

5. Conclusion and Discussion 

In this paper, we have developed a hub arc location 

problem considering flow uncertainty, isolated hubs, and 

setup costs. Our model allows for a flexible hub network 

structure, where the presence of isolated or individual hubs 

is permitted. Additionally, we have incorporated a discount 

factor exclusively on hub arcs. To tackle the problem under 

uncertainty, we have considered discrete limited scenarios 

for the flow parameters and employed three approaches to 

solve it. 

The primary method employed is a robust model utilizing 

the min-max regret approach, which we have solved using 

a genetic algorithm. To validate the solution, we have 

compared the runtime and errors against the exact solution. 

The obtained results demonstrate the satisfactory quality of 

the answers and reasonable runtimes achieved.  

Based on our findings, several future research directions 

have been proposed. Firstly, incorporating additional 

parameters such as cost and distance between origin-

destination pairs, or their combinations, under uncertain 

conditions should be explored. Representing inexact 

parameters using continuous or interval scenarios can 

provide more realistic models. Additionally, investigating 

exact solution methods like branch and bound, cutting 

branches, and branch and price techniques can offer more 

precise solutions. Furthermore, optimizing alternative 

methods such as a fuzzy optimization approach can be 

explored to solve the problem under uncertainty. 

Expanding our understanding of modeling under 

uncertainty and enhancing the effectiveness of solution 

approaches will contribute to the advancement of 

transportation planning and logistics optimization. By 

addressing these avenues of investigation, practical 

applications in real-world scenarios can benefit from 

improved decision-making and cost minimization in hub 

arc location problems. 

References 

Adibi, A. and J. Razmi (2015). "2-Stage stochastic 

programming approach for hub location problem 

under uncertainty: A case study of air network of 

Iran." Journal of Air Transport Management 47: 172-

178. 

Ahmadi, T., H. Karimi, H. Davoudpour and S. A. 

Hosseinijou (2015). "A robust decision-making 

approach for p-hub median location problems based 

on two-stage stochastic programming and mean-

variance theory: a real case study." The International 

Journal of Advanced Manufacturing Technology 77: 

1943-1953. 

Alumur, S. A., J. F. Campbell, I. Contreras, B. Y. Kara, V. 

Marianov and M. E. O’Kelly (2021). "Perspectives on 

modeling hub location problems." European Journal 

of Operational Research 291(1): 1-17. 

Alumur, S. A., S. Nickel and F. Saldanha-da-Gama (2012). 

"Hub location under uncertainty." Transportation 

Research Part B: Methodological 46(4): 529-543. 

Atay, M., Y. Eroglu and S. U. Seckıner (2023). "Domestic 

flight network hub location problem under traffic 

disruption with sustainability provision." Case 

Studies on Transport Policy 12: 101011. 

Bashiri, M. and S. Mehrabi (2010). Stochastic p-hub center 

covering problem with delivery time constraint. 2010 

IEEE International Conference on Industrial 

Engineering and Engineering Management, IEEE. 

Berman, O., Z. Drezner and G. O. Wesolowsky (2007). 

"The transfer point location problem." European 

journal of operational research 179(3): 978-989. 

Bütün, C., S. Petrovic and L. Muyldermans (2021). "The 

capacitated directed cycle hub location and routing 

problem under congestion." European journal of 

operational research 292(2): 714-734. 

Campbell, J. F. (2009). "Hub location for time definite 

transportation." Computers & Operations Research 

36(12): 3107-3116. 

Campbell, J. F., A. T. Ernst and M. Krishnamoorthy 

(2005). "Hub arc location problems: part I—

introduction and results." Management Science 

51(10): 1540-1555. 



Marjan Gharavipour & et al. / A Robust Optimization Approach for the Hub Arc… 

52 
 

Campbell, J. F., A. T. Ernst and M. Krishnamoorthy 

(2005). "Hub arc location problems: part II—

formulations and optimal algorithms." Management 

Science 51(10): 1556-1571. 

Campbell, J. F., G. Stiehr, A. T. Ernst and M. 

Krishnamoorthy (2003). "Solving hub arc location 

problems on a cluster of workstations." Parallel 

Computing 29(5): 555-574. 

Chou, C.-C. (2010). "Application of FMCDM model to 

selecting the hub location in the marine 

transportation: A case study in southeastern Asia." 

Mathematical and computer modelling 51(5-6): 791-

801. 

Contreras, I., J.-F. Cordeau and G. Laporte (2011). 

"Stochastic uncapacitated hub location." European 

Journal of Operational Research 212(3): 518-528. 

Contreras, I., E. Fernández and A. Marín (2010). "The tree 

of hubs location problem." European Journal of 

Operational Research 202(2): 390-400. 

de Sá, E. M., R. Morabito and R. S. de Camargo (2018). 

"Benders decomposition applied to a robust multiple 

allocation incomplete hub location problem." 

Computers & Operations Research 89: 31-50. 

Ernst, A. T. and M. Krishnamoorthy (1996). "Efficient 

algorithms for the uncapacitated single allocation p-

hub median problem." Location science 4(3): 139-

154. 

Espejo, I., A. Marín, J. M. Muñoz-Ocaña and A. M. 

Rodríguez-Chía (2023). "A new formulation and 

branch-and-cut method for single-allocation hub 

location problems." Computers & Operations 

Research 155: 106241. 

Farahani, R. Z., M. Hekmatfar, A. B. Arabani and E. 

Nikbakhsh (2013). "Hub location problems: A review 

of models, classification, solution techniques, and 

applications." Computers & industrial engineering 

64(4): 1096-1109. 

Fernández, E. and A. Sgalambro (2020). "On carriers 

collaboration in hub location problems." European 

Journal of Operational Research 283(2): 476-490. 

Gao, Y. and Z. Qin (2016). "A chance constrained 

programming approach for uncertain p-hub center 

location problem." Computers & Industrial 

Engineering 102: 10-20. 

Gelareh, S. and S. Nickel (2007). "A benders 

decomposition algorithm for single allocation hub 

location problem." Proceeding of GOR2007. 

Ghaderi, A. and R. Rahmaniani (2016). "Meta-heuristic 

solution approaches for robust single allocation p-hub 

median problem with stochastic demands and travel 

times." The International Journal of Advanced 

Manufacturing Technology 82: 1627-1647. 

Ghaffari-Nasab, N., M. Ghazanfari and E. Teimoury 

(2015). "Robust optimization approach to the design 

of hub-and-spoke networks." The International 

Journal of Advanced Manufacturing Technology 76: 

1091-1110. 

Ghaffari–Nasab, N., M. Ghazanfari, A. Saboury and M. 

Fathollah (2015). "The single allocation hub location 

problem: a robust optimisation approach." European 

Journal of Industrial Engineering 9(2): 147-170. 

Ghaffarinasab, N. (2018). "An efficient matheuristic for 

the robust multiple allocation p-hub median problem 

under polyhedral demand uncertainty." Computers & 

Operations Research 97: 31-47. 

Ghaffarinasab, N. (2022). "Stochastic hub location 

problems with Bernoulli demands." Computers & 

Operations Research 145: 105851. 

Ghaffarinasab, N. and B. Y. Kara (2022). "A conditional 

β-mean approach to risk-averse stochastic multiple 

allocation hub location problems." Transportation 

Research Part E: Logistics and Transportation 

Review 158: 102602. 

Habibzadeh Boukani, F., B. Farhang Moghaddam and M. 

S. Pishvaee (2016). "Robust optimization approach to 

capacitated single and multiple allocation hub 

location problems." Computational and Applied 

Mathematics 35: 45-60. 

Hamid, M., M. Bastan, M. Hamid and F. Sheikhahmadi 

(2019). "Solving a stochastic multi-objective and 

multi-period hub location problem considering 

economic aspects by meta-heuristics: application in 

public transportation." International Journal of 

Computer Applications in Technology 60(3): 183-

202. 

Hekmatfar, M. and M. Pishvaee (2009). "Hub location 

problem." Facility location: concepts, models, 

algorithms and case studies: 243-270. 

Hu, Q.-M., S. Hu, J. Wang and X. Li (2021). "Stochastic 

single allocation hub location problems with balanced 

utilization of hub capacities." Transportation 

Research Part B: Methodological 153: 204-227. 

Hult, E., H. Jiang and D. Ralph (2014). "Exact 

computational approaches to a stochastic 

uncapacitated single allocation p-hub center 

problem." Computational Optimization and 

Applications 59: 185-200. 

Khaleghi, A. and A. Eydi (2024). "Hybrid solution 

methods for a continuous-time multi-period hub 

location problem with time-dependent demand and 

sustainability considerations." Journal of Ambient 

Intelligence and Humanized Computing 15(1): 115-

155. 

Klincewicz, J. G. (1998). "Hub location in 

backbone/tributary network design: a review." 

Location Science 6(1-4): 307-335. 

Korani, E. and A. Eydi (2021). "Bi-level programming 

model and KKT penalty function solution approach 

for reliable hub location problem." Expert systems 

with applications 184: 115505. 

Lasemi, M. A., A. Arabkoohsar, A. Hajizadeh and B. 

Mohammadi-Ivatloo (2022). "A comprehensive 

review on optimization challenges of smart energy 

hubs under uncertainty factors." Renewable and 

Sustainable Energy Reviews 160: 112320. 

Li, Z.-C., X. Bing and X. Fu (2023). "A hierarchical hub 

location model for the integrated design of urban and 

rural logistics networks under demand uncertainty." 

Annals of Operations Research: 1-22. 



 

53 

 

Makui, A., M. Rostami, E. Jahani and A. Nikui (2002). "A 

multi-objective robust optimization model for the 

capacitated P-hub location problem under 

uncertainty." Management Science Letters 2(2): 525-

534. 

Marianov, V. and D. Serra (2003). "Location models for 

airline hubs behaving as M/D/c queues." Computers 

& Operations Research 30(7): 983-1003. 

Martins de Sá, E., I. Contreras, J.-F. Cordeau, R. Saraiva 

de Camargo and G. de Miranda (2015). "The hub line 

location problem." Transportation Science 49(3): 

500-518. 

Meraklı, M. and H. Yaman (2016). "Robust intermodal 

hub location under polyhedral demand uncertainty." 

Transportation Research Part B: Methodological 86: 

66-85. 

Miranda Junior, G. d., R. S. d. Camargo, L. R. Pinto, S. V. 

Conceição and R. P. M. Ferreira (2011). "Hub 

location under hub congestion and demand 

uncertainty: the Brazilian case study." Pesquisa 

Operacional 31: 319-349. 

Mohajeri, A. and F. Taghipourian (2011). A mathematical 

programming approach for bi-levels tree hub location 

network. 2011 IEEE 18th International Conference 

on Industrial Engineering and Engineering 

Management, IEEE. 

Mohammadi, M., F. Jolai and R. Tavakkoli-Moghaddam 

(2013). "Solving a new stochastic multi-mode p-hub 

covering location problem considering risk by a novel 

multi-objective algorithm." Applied Mathematical 

Modelling 37(24): 10053-10073. 

Mohammadi, M., J. Razmi and R. Tavakkoli-Moghaddam 

(2013). "MULTI-OBJECTIVE INVASIVE WEED 

OPTIMIZATION FOR STOCHASTIC GREEN 

HUB LOCATION ROUTING PROBLEM WITH 

SIMULTANEOUS PICK-UPS AND 

DELIVERIES." Economic Computation & Economic 

Cybernetics Studies & Research 47(3). 

Mohammadi, M., S. Torabi and R. Tavakkoli-Moghaddam 

(2014). "Sustainable hub location under mixed 

uncertainty." Transportation Research Part E: 

Logistics and Transportation Review 62: 89-115. 

Muffak, A. and O. Arslan (2023). "A Benders 

decomposition algorithm for the maximum 

availability service facility location problem." 

Computers & Operations Research 149: 106030. 

O’Kelly, M. E. and D. Bryan (1998). "Hub location with 

flow economies of scale." Transportation research 

part B: Methodological 32(8): 605-616. 

Qin, Z. and Y. Gao (2017). "Uncapacitated p-hub location 

problem with fixed costs and uncertain flows." 

Journal of Intelligent Manufacturing 28(3): 705-716. 

Rahmaniani, R., A. Ghaderi, N. Mahmoudi and F. 

Barzinepour (2013). "Stochastic p-robust 

uncapacitated multiple allocation p-hub location 

problem." International Journal of Industrial and 

Systems Engineering 14(3): 296-314. 

Rahmati, R., H. Neghabi, M. Bashiri and M. Salari (2023). 

"Stochastic regional-based profit-maximizing hub 

location problem: a sustainable overview." Omega: 

102921. 

Rahmati, R., H. Neghabi, M. Bashiri and M. Salari (2024). 

"Stochastic green profit-maximizing hub location 

problem." Journal of the Operational Research 

Society 75(1): 99-121. 

Ramamoorthy, P., N. Vidyarthi and M. Verma (2024). 

"Efficient solution approaches for the bi-criteria p-

hub median and dispersion problem." European 

Journal of Operational Research 314(1): 79-93. 

Ramos, C., R. Ramos and T. Ramos (2004). Solving a 

stochastic model for the hub location problem. 

Proceedings of the 4th WSEAS International 

Conference on Applied Informatics and 

Communications. 

Ravelo, S. V. (2021). "Minimum constellation covers: 

hardness, approximability and polynomial cases." 

Journal of Combinatorial Optimization 41: 603-624. 

Rostami, B., N. Kämmerling, J. Naoum-Sawaya, C. 

Buchheim and U. Clausen (2021). "Stochastic single-

allocation hub location." European Journal of 

Operational Research 289(3): 1087-1106. 

Rostami, M., E. Farahani and D. Moradinezhad (2012). "A 

stochastic capacitated p-hub location problem: A case 

study of iran." Journal of American Science 8(11): 

620-628. 

Sasaki, M., J. F. Campbell, A. T. Ernst and M. 

Krishnamoorthy (2009). Hub arc location with 

competition. Technical Report. 

Sener, N. and O. Feyzioglu (2023). "Multiple allocation 

hub covering flow problem under uncertainty." 

Annals of Operations Research 320(2): 975-997. 

Shahabi, M. and A. Unnikrishnan (2014). "Robust hub 

network design problem." Transportation Research 

Part E: Logistics and Transportation Review 70: 356-

373. 

Shang, X., K. Yang, W. Wang, W. Wang, H. Zhang and S. 

Celic (2020). "Stochastic hierarchical multimodal 

hub location problem for cargo delivery systems: 

Formulation and algorithm." IEEE Access 8: 55076-

55090. 

Taherkhani, G., S. A. Alumur and M. Hosseini (2021). 

"Robust stochastic models for profit-maximizing hub 

location problems." Transportation science 55(6): 

1322-1350. 

Talbi, E.-G. and R. Todosijević (2017). "The robust 

uncapacitated multiple allocation p-hub median 

problem." Computers & Industrial Engineering 110: 

322-332. 

Wang, J. and Z. Qin (2020). "Chance constrained 

programming models for uncertain hub covering 

location problems." Soft Computing 24(4): 2781-

2791. 

Wang, S., Z. Chen and T. Liu (2020). "Distributionally 

robust hub location." Transportation Science 54(5): 

1189-1210. 

Wang, T., Q. Meng, B. Niu and Z. Tan (2013). Hub-and-

Spoke Liner Shipping Network Design with Demand 

Uncertainty. International Forum on Shipping, Ports 

and Airports (IFSPA) 2013: Trade, Supply Chain 



Marjan Gharavipour & et al. / A Robust Optimization Approach for the Hub Arc… 

54 
 

Activities and Transport: Contemporary Logistics 

and Maritime IssuesHong Kong Polytechnic 

University. 

Yang, K., Y. Liu and X. Zhang (2011). Stochastic p-hub 

center problem with discrete time distributions. 

Advances in Neural Networks–ISNN 2011: 8th 

International Symposium on Neural Networks, ISNN 

2011, Guilin, China, May 29–June 1, 2011, 

Proceedings, Part II 8, Springer. 

Yang, T.-H. (2009). "Stochastic air freight hub location 

and flight routes planning." Applied Mathematical 

Modelling 33(12): 4424-4430. 

Zetina, C. A., I. Contreras, J.-F. Cordeau and E. Nikbakhsh 

(2017). "Robust uncapacitated hub location." 

Transportation Research Part B: Methodological 106: 

393-410. 

Zhai, H., Y.-K. Liu and K. Yang (2016). "Modeling two-

stage UHL problem with uncertain demands." 

Applied Mathematical Modelling 40(4): 3029-3048. 

Zhai, H., Y. Liu and W. Chen (2012). "Applying 

minimum-risk criterion to stochastic hub location 

problems." Procedia Engineering 29: 2313-2321. 

 


