
Journal of Artificial Intelligence in Electrical Engineering, Vol.13, No.50, July 2024

1

Enhancing Software Quality Assessment:
 Classifier-Based Reduction of Mutation Test Generation

Zeinab Asghari 1, Bahman Arasteh 2, Abbas Koochari 3

1 Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

3 Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Email: asghari1677@gmail.com , bahman.arasteh@istinye.edu.tr (Corresponding author)

,koochari@gmail.com
Receive Date: 07 January 2024 Revise Date: 05 March 2024 Accept Date: 13 March 2024

Abstract
Mutation testing could be a capable procedure to assess the quality of test suites. The method
of creating mutation testing includes creating a huge number of test cases, which can be
computationally costly and time-consuming. This consider proposes a classifier-based
approach to diminish the number of created mutation tests that includes preparing a classifier
on a set of instruction highlights to decide which ones are error-prone. The classifier is
prepared on a dataset of instruction characteristics for identifying the foremost compelling
informational for infusing mutants Mutation score is calculated to decide the foremost viable
enlightening. The ponder assesses the adequacy of the approach through tests on a few open-
source ventures. The comes about appear that the approach is able to decrease the number of
produced mutants whereas keeping up high mutation score. This approach has the potential to
essentially diminish the computational burden of change testing and make strides the
effectiveness of program testing.

Keywords: error propagation, instruction classification, machine learning, software mutation testing

1. Introduction
Software testing is considered an impartible

part of the software development process. If
the software that is delivered to the customer
has an acceptable level of quality, appropriate
tests are needed. Software testing will be
successful when it can find many errors in the
program [1]. To improve the software quality,
it is necessary to pay special attention to the
software testing step. The effectiveness of a
software testing is determined based on the
ability of the test case to find faults in a
program. If the effectiveness of test cases is
higher, the software will be of higher quality
[2]. It is noteworthy that the cost of software
testing is about 50% of the total cost of the
software development process. Therefore,

cost and time consumption is two main
challenges of this research.

The method to evaluate the effective quality
of a test suite is the mutation testing. The
underlying idea of the mutation testing is to
inject bugs, namely mutants, into the source
code of the program. The program containing
the injected bugs is called mutant which
actually encompass faulty versions of the
original program. These syntax changes are
usually minor and are designed to reflect
common faults that may be present in the
original program. A mutant is said to be killed
if a test case is found that discriminates
between the mutant and the original program.
Test suites that kill a large number of
mutations are of higher quality than those that
kill a small number[3].

mailto:asghari1677@gmail.com
mailto:bahman.arasteh@istinye.edu.tr
mailto:,koochari@gmail.com

Zeinab Asghari et al : Enhancing Software Quality Assessment: Classifier-Based…

2

These mutants are generated using a
mutation tool, which implements mutation
operators; rules for how a mutant should be
generated from an input program. Table 1
contains only one example of a mutation
operator; there are many others.

Mutation testing is empirically more
robust than testing metrics such as control-
flow-based testing and data-flow-based
testing[4]. Despite its effectiveness, several
factors make mutation testing expensive
and difficult to use experimentally: large
sets of mutants that must be run, sometimes
many times; creating test cases to kill
mutants; number of required tests and
equivalent mutants are examples of these
factors[5], [6].

Table 1. A Example of Mutating Operation

For a given program p, m signifies a mutant
of program p. Review that m is an equivalent
mutant on the off chance that m is
grammatically diverse from p, but has the
same conduct with p. Table 1 appears an case
of equivalent mutant produced by changing
the operator < of the initial program into the
operator ! =. In the event that the statements
inside the circle don't alter the value of i,
program p and mutant m will deliver
indistinguishable yield.

Table 2. A Example of Equivalent Mutation

Program P Equivalent Mutant m
for (in t i = 0 ; i !<
10; i + +)
{ (the value of i
i s not changed)}

for (in t i = 0 ; i ! =
10; i + +)
{ (the value of i
i s not changed)}

Mutations operators adjust the program
beneath test to form mutants. For case, an
arithmetic operator would alter the expression

(a + b) to (a ∗b), (a −b), and (a / b). Mutation
operators utilize fault scientific
classifications that are ordinarily based on
ponders of issues in genuine programs.
Change operators are applied to a program P
to form a set of mutants M . Each test t in a
test set T is run against each mutant m,, m ∈
M . If m (t) _ = P (t) for some t , then we
say that t has killed m . If not, the tester
should find a test that kills m . If m and P are
equivalent, then P (t) = m (t) for all possible
test cases.[7] .
 An equivalent mutant plays the role of a
parasite in the testing process. Indeed, while
it is expected to be killable, it remains always
live even worse, a tedious effort could be
uselessly dedicated to improving tests with
no hope of killing it Consequently, mutation
testing should be able to detect and exclude
these mutations. However, the issue of
functional equivalence of programs is
undecidable [8]. If the analysis is done
manually, it will be very tedious. It has been
found empirically that the identification of an
equivalent mutation in a real-world
application takes approximately 15 minutes.
[9]. Because there are many equivalent
mutations in real applications, the cost of
mutation application will be high.

In this paper, all program instructions are
analyzed and a set of program code level
characteristics that contribute to error
propagation rate are listed. The instructions
with low rate are assigned to the supervised
machine-learning algorithm for classification.
Finally, based on classification, instructions
with low efficiency are removed from the
program so that the amount of mutations
generated is minimized. Classification is one
of the ways to increase the accuracy of
classification, which can be effective in
improving the classification process.

Program p Mutant p’

if (a > 0 && b > 0)
return 1;

if (a > 0 || b > 0)
return 1;

Journal of Artificial Intelligence in Electrical Engineering, Vol.13, No.50, July 2024

3

2. Related Works

 Computation costs of mutation testing are
one of the challenging research problems in
this field of study. Researchers have
proposed different techniques for solving this
problem. In the following some of the key
techniques and methods are discussed:
Authors in [10] investigated the idea of
selective mutation, which uses only the most
critical mutation operators. in fact this
method selects a subset of the mutation
operators[11]. Offutt and Zapf [12] extended
the selective mutation idea, which allows
testers to perform approximate mutation
testing. They demonstrated that reducing the
number of mutants decreases the testing costs
while providing coverage that is almost as
strong as non-selective mutation. The
selective set of mutation operators
(appropriately modified for Java) were
implemented for Java in muJava [13].
Kaminski and others[14] further showed that
only three mutants out of the seven created by
the relational operator replacement operator
(ROR) are needed. Mutant sampling is on of
the most straightforward strategies which
selects a subset of the mutants randomly.
Mutant random sampling was one of the first
attempts to mutant reduction. Higher order
mutants (HOMs) first introduced by Jia &
Harman [15], combine the changes from
multiple first-order mutants (FOMs), i.e. single
statement mutants, into one mutant [16]. It is
also possible to generate HOMs that are
subsuming; the test cases that kill a
subsuming HOM also kill every FOM that it is
generated from. Consequently, using HOMs

also allows for the execution time of mutation
testing and analysis to be reduced, since if a
subsuming HOM is killed, each of its
constituent FOMs are as well. Antonio and
vergilio [9] display comes about of a

mapp ing cons ider , b y synt hesiz ing
characteristics of the HOM Testing
approaches, HOM generation techniques,
assessment viewpoints, patterns and
investigate openings. Strong Mutation is
regularly alluded as conventional Mutation
Testing. That's , it is the detailing initially
proposed by DeMillo et al. [17]. In Strong
Mutation, for a given program p, a mutant m of
program p is said to be murdered as it were on
the off chance that mutant m gives a different
output from the initial program p. To optimize
the execution of the Strong Mutation, Howden
[8] proposed Weak Mutation. In Weak
Mutation, a program p is expected to be built
from a set of components C = {c1, ..., cn}.
Assume mutant m is made by changing
component cm, mutant m is said to be killed
on the off chance that any execution of
component cm is diverse from mutant m.
Firm Mutation was to begin with proposed by
Woodward and Halewood [18]. The thought
of Firm Mutation is to overcome the
impediments of both weak and strong
mutations by giving a continuum of middle
conceivable outcomes. The thought of
Mutant Clustering was first proposed in
Hussain's ace proposal [19]. Rather than
selecting mutants randomly, Mutant
Clustering chooses a subset of mutants
utilizing clustering calculations. The method
of Mutation Clustering starts from creating
all to begin with arrange mutants. A
clustering calculation is at that point
connected to classify the primary arrange
mutants into diverse clusters based on the
killable test cases. Each mutant within the
same cluster is ensured to be killed by a
comparable set of test cases. Combefis and
Schils has benefited unsupervised clustering to
aid the assessment of large quantities of
solution programs [20].

Zeinab Asghari et al : Enhancing Software Quality Assessment: Classifier-Based…

4

3. Propsed MethodE

There are a series of instructions of the
program code that do not have much effect on
the output of the program. But this does not
mean that these instructions should be
completely removed from the program. The
selection of this type of instructions is based
on the error propagation rate (ep-rate). The
instructions with the lowest level of
effectiveness do not necessarily mean their
complete removal from the program code. In
some cases, keeping that instruction in the
program may increase the mutation score in
the program. In this paper, we use the
programs with java languages. The reason for
choosing Java language to check mutations in
the proposed method is the existence of
limited platforms in the field of mutation
production. Mujava, as the most powerful
platform in this field, has made the flexibility
and applicability of the proposed method
limited to Java language only.

Fig. 1. Steps of the proposed method

The supervised machine learning algorithms
were used to classify instructions. Those machine
learning algorithms are Gradient Boosted
Trees, Decision Tree, Multi-Layer
Perceptron, and Random Forest and Neural
Networks. After classifying the instructions
mutation operators are applied on selective
instructions. The proposed method is
depicted in Fig.1.
In any program, there are many instructions,
the nature of each instruction is different
from the other . This difference is determined
based on a series of criteria and
characteristics. If we want to check Java
language programs, there are instructions in
programs that removing those instructions
will not affect the output of the program. We
call this Z-instruction. For example,
notification and print instructions. But in the
discussion related to the software mutation
test, the case is different. In this case, Z-
instructions that have low effectiveness in the
output of the program have a different effect
on the mutation score. Among Z-instructions,
sometimes not deleting that instruction will
increase the mutation score. This is because
some of the characteristics of those
instructions are different from the rest of the
instructions and the remaining of that
instruction can somehow change the number
of kill and live mutants. So, the purpose of
this part of the method is to separate
notification and print instructions and
classify Z-instructions. For example, Fig.2
shows the part of java Prime program, the
total number of Z-instructions is 7. While it
can be proven that the effect of these 8
instructions on the mutation score is
different. To prove this, we need to use a
classification with supervised machine
learning algorithms. Classification of
instructions can help in dividing these types

Journal of Artificial Intelligence in Electrical Engineering, Vol.13, No.50, July 2024

5

of instructions based on effecting. To identify
instructions with low impact on program
output, we need to be able to separate low
impact instructions from other instructions
based on a series of features. The values
associated with each characteristic in the
table have been assigned. Each entry takes
different values based on the instruction in
the program code. This characteristic based
on which the level of effectiveness can be
determined are as follows:

i. Average number of executions: This
property specifies the average number
of executions of each instruction for test
data.

ii. Number of variables: Any instruction
can declare a variable or use a variable
based on its application in the program.
In Z- instructions, this feature has a
great impact to determine the level of
the instruction. The sum of the test
variables and other variables is the
number of variables.

iii. Test variable: In order to be able to
identify the behavior of the program,
we need to use test data. The test data
should be edge-coverage. that is, they
can cover all edges of the program as
much as possible based on the edge
coverage property. Running the
majority of edges allows us to identify
the behavior of individual instruction.
The variables in the instructions can be
the type of variables used in the test
data. If these types of variables are
available in the Z instructions, the value
of this column in the data table will be
equal to 1.

iv. Other variable: Any variable other than
the variable used by the test data is
placed in this class. Control
dependency: This feature represents the
number of next instructions which has

control dependency on the result of the
current instruction.

v. Static variable: Static variable
is variable which belongs to the class
and initialized only once at the start of
the execution. It is a variable which
belongs to the class. Static variables are
initialized only once, at the start of the
execution.

vi. Nesting level: The nesting level of an
instruction shows the accessibility of
the instruction. If the instruction is not
in an if instruction, its nesting level is 0;
if it is in an if instruction, then its
nesting level is 1.

Equation.1 shows the ep-rate. The ep-rate of
each instruction in a program has been
measured by 100 executions in the presence
of the injected mutant. The number of times
the program fails divided by 100 indicates the
ep-rate rate of an instruction.

 Errro − Propagation	Rate	 =
୳୫ୠୣ୰	୭	ୟ୧୪୳୰ୣ

୭୲ୟ୪	୳୫ୠୣ୰	୭	୶ୣୡ୳୲୧୭୬
∗ 100 (1)

public class Prime {
public int prime(int n) {
int i=1;
boolean isPrime = true;
System.out.print(i+ " is a secondary variable\n");
System.out.println(n+ " must be a positive
number");
if (n == 0 || n == 1) {
isPrime= false;
System.out.printf(n+ " is Not Prime");
return 0;
} else {
for (i = 2; i <= n/2; i+=1) {
if (n % i == 0) {
isPrime = false;
System.out.printf ("'%S' %n"," is Not prime");
break;
.
.
.

Fig. .2. A summary view of Prime java program

Zeinab Asghari et al : Enhancing Software Quality Assessment: Classifier-Based…

6

The MuJava tool is used instructions ep-rates
and quantify the Rank feature.this feature
represents ep-rate of Z-instructions.The
category of ep-rate is shown in table 3.

Table 3. Error-propagation rate of Z-instructions

4. Results and Discussion
A series of mutation testing experiments has
been performed in order to measure the ep-
rate of Z-instructions. We must use machine
learning algorithms to create a classification
of benchmark programs. For this purpose, it
is necessary to use the ep-rate. The
supervised machine learning algorithms used
in this section are: AutoMLP, Neural
Networks, Random Forest and naive bayes.
The performance of the created classifier has
been compared with each other. Table 4
shows the Prime program data required for
the classification of machine learning
algorithms. These data are extracted for all
benchmark programs and will be used as
input for ML algorithms. Indeed the last
column is the dependent variable and the
other features are independent variables that
are used in the training stage of the machine
learning algorithm. In this paper, we use the
RapidMiner tool for implement data
classification. Table 6 shows the
performance of the created classifier by
different ML algorithms in terms of
accuracy, precision, recall, and kappa.
The dataset prepared in table 4 was used to
train the ML algorithm and the created
classifier by the ML algorithms has been
tested in the same way (k-fold). The created
classifier is a multi-class classifier; the

outputs of the classifier are shown in table 3.
Every Z-instruction in a 2-class classification
must be sorted into one of two categories.
Given a set of program Z-instructions at the
source code level, the generated classifier
must determine which category (A, B) each
Z-instruction belongs to. Indeed, the created
classifier takes the features of an instruction
and predicts its classes in terms of its error-
propagation rate. This stage of the proposed
method has been implemented in the
RapidMiner tool set. RapidMiner includes an
extensive data analysis library and it is one of
the most frequently used tools for data
analysis and data mining applications. Table
5 shows the details of benchmarks programs
used in proposed method. These programs
have been used abundantly in the
experiments of various articles. In the
proposed method, it has not been possible to
check real-world huge programs due to
checking programs at the instruction level.
Because the mutations that are created during
the review process of the proposed method in
medium and small programs show a
significant increase. For example, in the
calculator program, with 31 lines of code,
112 mutants have been created, which is a
relatively large number for checking
mutations and classifying them.

Table 4. The values of the features for the Prime
benchmark program

propagation
rate

Category

 11% - 30% A
0% - 10% B

R
un

tim
e

A
ve

ra
ge

N
um

be
r o

f
va

ria
bl

es

Te
st

va

ria
bl

e
O

th
er

va

ria
bl

e
C

on
tro

l
de

pe
nd

en
cy

St
at

ic

va
ria

bl
e

N
es

tin
g

Le
ve

l

R
an

k

1 1 1 0 0 1 0 A
1 1 1 0 1 1 0 B
1 1 1 0 0 1 1 B
3 1 1 0 1 1 2 A
2 1 0 1 0 0 1 A
1 1 0 1 0 1 0 A
1 1 1 0 0 0 0 B

Journal of Artificial Intelligence in Electrical Engineering, Vol.13, No.50, July 2024

7

Table 6 shows the performance of the
created classifier by different ML
algorithms in terms of accuracy, precision,
recall, and kappa. There is potential
limitations or drawbacks of using a
classifier-based approach such this
approach. The risk of misclassifying in
supervised machine learning algorithms
occurs when the algorithm incorrectly
assigns a label or category to a data point.
This can happen due to various reasons
such as insufficient or biased training data,
incorrect feature selection, or inappropriate
model selection. Misclassification can lead
to inaccurate results. Over-reliance on
supervised machine learning algorithms
without proper human oversight can also
lead to potential drawbacks.

For example, if the algorithm is not
monitored and updated regularly, it may
become outdated and less accurate over time.
Additionally, the algorithm may not be able
to handle new or unexpected data that was not
included in the training data. This can lead to
incorrect predictions or decisions, which can
have negative consequences in real-world
applications.

Table 5. Benchmark programs

pr
og

ra
m

LO
C

no
. o

f
Z_

in
str

uc
tio

n

pr
og

ra
m

de

sc
rip

tio
n

Prime 34 7 Determines if it is
a prime number

Perfect 21 5 Determines if it is
a perfect number

Factorial 26 5 Determining
factorial number

Triangle 28 5 Determining
triangle type

Calculator 31 5 Building a
calculator

Table 6. The output of different ML algorithms

N
am

e
of

M

L
al

go
rit

hm

A
cc

ur
ac

y

K
ap

pa

R
ec

al
l

Pr
ec

isi
on

MLP 100% 1 100% 100%
Naive
bayes 100% 1 100% 100%

Random
Forest 100% 1 100% 100%

NN 96.67% 0.927 95.45% 97.50%
After the classification is done by machine
learning algorithms, it is time to create
mutations. Now, based on the features of each
leveled instruction, test mutations are created.
For example, the mutations created for the
Prime program are shown in Figure 3. After
generating mutant programs , Mujava uses the
Junit tool for executing the test and evaluating
the mutation score. in this level , the error
propagation rate for each instruction is
evaluated by the proposed method. Then, the
instructions with a high error propagation rate
are detected. Our first priority the Z-
instructions with a high error-propagation rate
were subjected. The Z-instructions with a low
rate of error-propagation are subjected to
mutation operators in the next priority. The
status of the created mutants is then looked into
in terms of being alive or killed. After that, it is
calculated how many mutations were made on
the Z-instructions with the highest mistake
propagation rate and the average mutation
score. Finally, the obtained results are
compared and contrasted with those of the
previous related works. Because in this article,
the programs available in this method have
been checked at the instruction level and each
instruction has been classified in a very clear
and precise way, also the classification of the
program instructions has been done based on
machine learning methods, so this article is
somehow It is unique and it can even be said
that it is considered superior to other existing
methods.

Zeinab Asghari et al : Enhancing Software Quality Assessment: Classifier-Based…

8

Fig. 3. A view of operators for prime program

Table 7. Generated mutants for all benchmarks
by the MuJava tool

pr
og

ra
m

na

m
e

To
ta

l
m

ut
an

ts

nu
m

be
r o

f
m

ut
an

ts
 a

fte
r

de
le

tin
g

Z-

in
str

uc
tio

ns

nu
m

be
r o

f
m

ut
an

ts
 fo

r A
-

le
ve

l
of

 Z
-

in
str

uc
tio

ns

nu
m

be
r o

f
m

ut
an

ts
 fo

r B
-

le
ve

l o
f Z

-
in

str
uc

tio
ns

calculator 112 58 12 42

Prime 112 47 10 55

Perfect 70 54 23 38

Triangle 213 169 14 29

Factorial 78 53 9 16
In this paper, we cannot compare our

proposed method with previous methods.
The reason of lack of comparative analysis
between different classifier-based
approaches is that the previous existing
methods which are based on classification did
not analyze the programs at the instruction
level, so it is not possible to compare the
proposed method with the existing methods.
In fact, the previous existing methods have
injected mutations at the block level or they
have not done the classification based on
machine learning classification methods. The
following graphs show the results of tests
performed on 5 benchmark programs using
the Mujava tool. In these experiments, the
average results of 5 test data series have been
used in the programs. As you can see in the

figures, on the horizontal axis, original is the
original program, z1 is the modified version
of the original program by removing the first
instruction of level D, and similarly z5 is the
modified version of the original program by
removing the last instruction of level D. In
fact, as many instructions as level D, we will
have charts on the horizontal level. Figure 4
shows the number of live mutations for the
calculator program. In this program, there are
5 level D instructions. As shown in the figure,
there are instructions that, by removing that
instruction, the number of live mutations has
decreased significantly. Similarly, Figure 5
shows the average kill mutants per 5 level D
instructions. In Figure 6, the results obtained
for score mutation are shown.

Number of Live mutants in the mutation
test performed on the calculator program

Fig. 4. Number of killed mutants in the
mutation test performed on the calculator

program

95 95

83 83 84
82

75

80

85

90

95

100

original z1 z2 z3 z4 z5

N
um

be
r

of
 L

iv
e

M
ut

an
ts

Calculator program

17

11

17 17 17 17

0
5

10
15
20

N
um

be
r o

f K
ill

ed

M
ut

an
ts

Calculator program

Journal of Artificial Intelligence in Electrical Engineering, Vol.13, No.50, July 2024

9

Fig. 5. Number of mutation score in the
mutation test performed on the calculator

program

Figure 7 shows the results of live mutations
on Prime program. According to the figure,
this program has 6 instructions in D level.
Compared to the original program, by
removing the level D instruction in the
modified z6 program, the number of live
mutations has been significantly reduced. In
Figure 8, the amount of kill mutants shows
that only by removing the instruction into z1
program, the number of kill mutants has
decreased significantly. Figure 9 shows the
mutation score for the Prime program. The
results indicate that the deletion of the z4
instruction has reduced the mutation score. It
can be concluded that if the instruction in z4
program is not removed from the program,
the mutation score can be kept at an
acceptable level.

Fig. 6. Number of live mutants in the mutation

test performed on the Prime program

Fig. 7. Number of killed mutants in the

mutation test performed on the Prime program

Fig. 8. Number of mutation score in the
mutation test performed on the Prime program

Fig. 9. Number of live mutants in the mutation

test performed on the Perfect program

Fig. 10. Number of killed mutants in the
mutation test performed on the Perfect program

15
10

17 17 16 17

0
5

10
15
20

N
um

be
r o

f M
ut

at
io

n
Sc

or
e

Calculator program

95 95

83 83 84 83 82

75
80
85
90
95

100

N
um

be
r o

f L
iv

e
M

ut
an

ts

Prime program

17
11

17 17 17 17 17

0
5

10
15
20

N
um

be
r o

f K
ill

ed

M
ut

an
ts

Prime program

15
10

17 17 16 17 17

0

10

20

N
um

be
r o

f M
ut

at
io

n
Sc

or
e

Prime program

13

6 5 5 6 6

0
5

10
15

N
um

be
r o

f L
iv

e
M

ut
an

ts

Perfect program

57

26 26 26 25 26

0
20
40
60

N
um

be
r o

f K
ill

ed

M
ut

an
ts

Perfect program

Zeinab Asghari et al : Enhancing Software Quality Assessment: Classifier-Based…

10

Figure 10 shows the changes made to the
number of live mutants on 5 different versions
of the Perfect program. The results show that
removing the D level instructions in the two
created programs z2 and z3 has reduced the
number of live mutants. Figure 11 shows that
the z4 program has fewer killed mutants than
the rest of the programs. In fact, the level D
instruction in this program should not be
removed from the main program to achieve
optimal results. Figure 12 also shows the
bounce score for the Perfect program. As you
can see in the figure, the two programs z2 and
z3 have a better situation than the rest of the
programs compared to the original program.
In fact, the D-level instruction sin these two
programs should be removed from the
program.

Fig. 11. Number of mutation score in the

mutation test performed on the Perfect program

Figure 13 shows the test results on the
Triangle program. As you can see, the
number of live mutants has decreased in the
first version of the original program. But in
the rest of the versions produced from the
original program, the reduction of live
mutants is more noticeable. Likewise, in
Figure 14, the number of kill mutants in the
first version of the main program has been
significantly reduced. This shows that it is
better not to delete the level D instruction in
the z1 program. The reduction of the
mutation score in the first version of the
original program in Figure 15 also proves this
claim.

Fig. 12. Number of live mutants in the mutation

test performed on the Triangle program

Fig. 13. Number of killed mutants in the
mutation test performed on the Triangle

program

Fig. 14. Number of mutation score in the
mutation test performed on the Triangle

program

In Figure 16, the two instructions in programs
z1, z2 of the Factorial program have been
identified as effective instructions in the main
program from level D, and it is better to
remove them from the program. In Figure 17,
except for the instruction in the z3 program,
the rest of the instructions have similar
conditions, that is, by removing these
instructions, the number of killed mutants has
increased. And finally, Figure 18 shows an
increase in the mutation score in all
programs, but in the z3 program, the increase
is not significant.

81 81
83 83

80
81

78
80
82
84

N
um

be
r f

f M
ut

at
io

n
Sc

or
e

Perfect program

140 137
129 129 129 129

120
125
130
135
140
145

N
um

be
r o

f L
iv

e
M

ut
an

ts

Triangle program

73

65

73 73 73 73

60
65
70
75

N
um

be
r o

f K
ill

ed

M
ut

an
ts

Triangle program

34
32

36 36 36 36

30
32
34
36
38

N
um

be
r o

f M
ut

at
io

n
Sc

or
e

Triangle program

Journal of Artificial Intelligence in Electrical Engineering, Vol.13, No.50, July 2024

11

Fig. 15. Number of live mutants in the mutation

test performed on the Factorial program

Fig. 16. Number of killed mutants in the
mutation test performed on the Factorial

program

Fig.17. Number of mutation score in the
mutation test performed on the Factorial

program

This article examines the level D instructions
available at the level of the program code and
we showed that some instructions at this level
may increase the number of generated
mutants and decrease the speed of the
program by removing the instruction.
Therefore, in some cases, it will not be
necessary to delete these instructions. In this
article, we have shown that the rate of error
propagation rate in some instructions of the
program is higher than in other instructions,
and in some instructions this rate is lower. In
instructions that have a lower error

propagation rate, two categories of
instructions have been identified. Removing
the second level from these instructions has
increased the mutation score and reduced the
number of live mutants. The scalability of the
proposed approach is limited to the size and
complexity of software systems to which it is
applied. Considering that the number of
mutations generated in the examined
programs has a direct relationship with the
number of program lines and the complexity
of the program instructions, so this creates a
limitation for the author to select only
programs to generate mutants in which The
number of created mutants should be
reasonably small so that the speed of program
execution and the quality of instruction
execution do not decrease.

Refrences
[1] Nasrin Shomali and Bahman Arasteh “Mutation

reduction in software mutation testing using
firefly optimization algorithm”; Data
Technologies and Applications Emerald
Publishing Limited 2514-9288 DOI
10.1108/DTA-08-2019-0140 11 April 2020

[2] Asghari, Zeinab, Bahman Arasteh, and Abbas
Koochari. "Effective Software Mutation-Test
Using Program Instructions Classification."
Journal of Electronic Testing (2024): 1-
27,DOI:10.1007/s10836-023-06089-0.

[3] Beller, Moritz, et al. "What it would take to use
mutation testing in industry—a study at
facebook." 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE,
2021,DOI: 10.1109/ICSE-
SEIP52600.2021.00036.

[4] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses
vs mutation testing: an experimental comparison
of effectiveness” Journal of Systems and
Software, vol. 38, no. 3, pp. 235–253, 1997,DOI:
https://doi.org/10.1016/S0164-1212(96)00154-
9.

[5] Offutt, A.J. , Untch, R.H. , 2000. “Mutation
2000: uniting the orthogonal”.In: Proceed- ings
of the Mutation 20 0 0 Symposium. Kluwer
Academic Publishers, San Jose, CA , USA , pp.
34–44,DOI:https://doi.org/10.1007/978-1-4757-
5939-6_7.

29
12 9

24 17 17

0

20

40
N

um
be

r o
f L

iv
e

M
ut

an
ts

Factorial program

49
61 64

49 56 56

0
20
40
60
80

N
um

be
r o

f K
ill

ed

M
ut

an
ts

Factorial program

62
83 87

67 76 76

0

50

100

N
um

be
r o

f M
ut

at
io

n
Sc

or
e

Factorial program

https://doi.org/10.1016/S0164-1212(96)00154-
https://doi.org/10.1007/978-1-4757-

Zeinab Asghari et al : Enhancing Software Quality Assessment: Classifier-Based…

12

[6] Alessandro Viola Pizzoleto et al.2019.”A
systematic literature review of techniques and
metrics to reduce the cost of mutation testing”,
The Journal of Systems and Software 157 (2019)
110388, DOI: 10.1016/j.jss.2019.07.100.

[7] Mateo, Pedro Reales, and Macario Polo Usaola.
"Reducing mutation costs through uncovered
mutants." Software Testing, Verification and
Reliability 25.5-7 (2015): 464-489, DOI:
10.1002/stvr.1534.

[8] T.A. Budd, D. Angluin, “Two notions of
correctness and their relation to testing”, Acta
Inform. 18(1) (1982) 31–45,
DOI:10.1007/BF00625279.

[9] D. Schuler, A. Zeller,” Covering and uncovering
equivalent mutants”, Softw. Test. Verif. Reliab.
(2012), DOI: 10.1002/stvr.1473.

[10] W. E. Wong and A. P. Mathur, “Reducing the cost
of mutation testing: An empirical study,” Journal
of Systems and Software, vol. 31, no. 3,pp. 185–
196, 1995, DOI: 10.1016/0164-1212(94)00098-
0.

[11] Ellen Francine Barbosa, Jose Carlos Maldonado,
and Auri Marcelo Rizzo Vincenzi. “Toward the
determination of sufficient mutant operators for
C.” In: Software:Testing Verification and
Reliability 11 (2001), DOI: 10.1002/stvr.226.

[12] A.J. Offutt, G. Rothermel, and C. Zapf. “An
experimental evaluation of selective mutation”.
In 15th International Conference on Software
Engineering, pages 100-107,May 1993, DOI:
10.1109/ICSE.1993.346062.

[13] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon.
“MuJava : An automated class mutation system”.
Wiley's Software Testing, Veriffcation, and
Reliability, 15(2):97-133,June 2005, DOI:
10.1002/stvr.308.

[14] Gary Kaminski, Paul Ammann, and Jeff Offutt.
“Improving logic-based testing”. Journal of
Systems and Software, 86(8):2002-2012,
August, DOI: 10.1016/j.jss.2012.08.024.

[15] Y. Jia and M. Harman. “Constructing Subtle
Faults Using Higher Order Mutation Testing”.
In: Source Code Analysis and Manipulation,
2008 Eighth IEEE International Working
Conference on. 2008, pp. 249–258, DOI:
10.1109/SCAM.2008.36.

[16] Jia, Yue, and Mark Harman. "Higher order
mutation testing." Information and Software
Technology 51.10 (2009): 1379-1393.

[17] Richard A. DeMillo, Richard J. Lipton, and
Frederick G. Sayward. “Hints on test data
selection: Help for the practicing programmer”.
Computer, 11(4):34-41, April 1978, DOI:
10.1109/C-M.1978.218136.

[18] M. R. Woodward and K. Halewood, “From Weak
to Strong, Dead or Alive “ an Analysis of Some
Mutation testing Issues,” in Proceedings of the

2nd Workshop on Software Testing, Verification,
and Analysis (TVA’88). Banff Albert, Canada:
IEEE Computer Society, July 1988,pp. 152–158,
DOI: 10.1109/WST.1988.5370.

[19] S. Hussain, “Mutation Clustering,” Masters
Thesis, King’s College London, Strand, London,
2008.

[20] Sebastien Combefis and Arnaud Schils.”
Automatic programming error class
identification with code plagiarism-based
clustering”. In Proc. 2ndInt. Code Hunt Work.
Educ. Softw. Eng. - CHESE 2016, pages 1-
6,New York, New York, USA, 2016. ACM Press,
DOI: 10.1145/2993270.2993271.

