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Abstract 
Mutation testing could be a capable procedure to assess the quality of test suites. The method 
of creating mutation testing includes creating a huge number of test cases, which can be 
computationally costly and time-consuming. This consider proposes a classifier-based 
approach to diminish the number of created mutation tests that includes preparing a classifier 
on a set of instruction highlights to decide which ones are error-prone. The classifier is 
prepared on a dataset of instruction characteristics for identifying the foremost compelling 
informational for infusing mutants Mutation score is calculated to decide the foremost viable 
enlightening. The ponder assesses the adequacy of the approach through tests on a few open-
source ventures. The comes about appear that the approach is able to decrease the number of 
produced mutants whereas keeping up high mutation score. This approach has the potential to 
essentially diminish the computational burden of change testing and make strides the 
effectiveness of program testing. 

Keywords: error propagation, instruction classification, machine learning, software mutation testing 

1. Introduction 
Software testing is considered an impartible 

part of the software development process. If 
the software that is delivered to the customer 
has an acceptable level of quality, appropriate 
tests are needed. Software testing will be 
successful when it can find many errors in the 
program [1]. To improve the software quality, 
it is necessary to pay special attention to the 
software testing step. The effectiveness of a 
software testing is determined based on the 
ability of the test case to find faults in a 
program. If the effectiveness of test cases is 
higher, the software will be of higher quality 
[2]. It is noteworthy that the cost of software 
testing is about 50% of the total cost of the 
software development process. Therefore, 

cost and time consumption is two main 
challenges of this research. 

The method to evaluate the effective quality 
of a test suite is the mutation testing. The 
underlying idea of the mutation testing is to 
inject bugs, namely mutants, into the source 
code of the program. The program containing 
the injected bugs is called mutant which 
actually encompass faulty versions of the 
original program. These syntax changes are 
usually minor and are designed to reflect 
common faults that may be present in the 
original program. A mutant is said to be killed 
if a test case is found that discriminates 
between the mutant and the original program. 
Test suites that kill a large number of 
mutations are of higher quality than those that 
kill a small number[3].  
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These mutants are generated using a 
mutation tool, which implements mutation 
operators; rules for how a mutant should be 
generated from an input program. Table 1 
contains only one example of a mutation 
operator; there are many others. 

Mutation testing is empirically more 
robust than testing metrics such as control-
flow-based testing and data-flow-based 
testing[4]. Despite its effectiveness, several 
factors make mutation testing expensive 
and difficult to use experimentally: large 
sets of mutants that must be run, sometimes 
many times; creating test cases to kill 
mutants; number of required tests and 
equivalent mutants are examples of these 
factors[5], [6]. 

Table 1. A Example of Mutating Operation 

For a given program p, m signifies a mutant 
of program p. Review that m is an equivalent 
mutant on the off chance that m is 
grammatically diverse from p, but has the 
same conduct with p. Table 1 appears an case 
of equivalent mutant produced by changing 
the operator < of the initial program into the 
operator ! =. In the event that the statements 
inside the circle don't alter the value of i, 
program p and mutant m will deliver 
indistinguishable yield. 

Table 2. A Example of Equivalent Mutation 

Program P Equivalent Mutant m 
for  ( in t  i  = 0 ;  i  !< 
10;  i  + +)  
{ ( the value of i  
i s  not  changed)}  

for  ( in t  i  = 0 ;  i  ! = 
10;  i  + +)  
{ ( the value of i  
i s not  changed)}  

 

Mutations operators adjust the program 
beneath test to form mutants. For case, an 
arithmetic operator would alter the expression 

( a + b) to (a ∗b ), ( a −b), and ( a / b ). Mutation 
operators utilize fault scientific 
classifications that are ordinarily based on 
ponders of issues in genuine programs. 
Change operators are applied to a program P 
to form a set of mutants M . Each test t in a 
test set T is run against each mutant m,, m ∈ 
M . If m ( t ) _ = P ( t ) for some t , then we 
say that t has killed m . If not, the tester 
should find  a test that kills m . If m and P are 
equivalent, then P (t) = m (t) for all possible 
test cases.[7] . 
 An equivalent mutant plays the role of a 
parasite in the testing process. Indeed, while 
it is expected to be killable, it remains always 
live even worse, a tedious effort could be 
uselessly dedicated to improving tests with 
no hope of killing it Consequently, mutation 
testing should be able to detect and exclude 
these mutations. However, the issue of 
functional equivalence of programs is 
undecidable [8]. If the analysis is done 
manually, it will be very tedious. It has been 
found empirically that the identification of an 
equivalent mutation in a real-world 
application takes approximately 15 minutes. 
[9]. Because there are many equivalent 
mutations in real applications, the cost of 
mutation application will be high.  

In this paper, all program instructions are 
analyzed and a set of program code level 
characteristics that contribute to error 
propagation rate are listed. The instructions 
with low rate are assigned to the supervised 
machine-learning algorithm for classification. 
Finally, based on classification, instructions 
with low efficiency are removed from the 
program so that the amount of mutations 
generated is minimized. Classification is one 
of the ways to increase the accuracy of 
classification, which can be effective in 
improving the classification process. 

Program p Mutant p’ 

if ( a > 0 && b > 0 ) 
return 1; 

if ( a > 0 || b > 0 ) 
return 1; 
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2. Related Works 

  Computation costs of mutation testing are 
one of the challenging research problems in 
this field of study. Researchers have 
proposed different techniques for solving this 
problem. In the following some of the key 
techniques and methods are discussed: 
Authors in [10] investigated the idea of 
selective mutation, which uses only the most 
critical mutation operators. in fact this 
method selects a subset of the mutation 
operators[11]. Offutt and Zapf [12] extended 
the selective mutation idea, which allows 
testers to perform approximate mutation 
testing. They demonstrated that reducing the 
number of mutants decreases the testing costs 
while providing coverage that is almost as 
strong as non-selective mutation. The 
selective set of mutation operators 
(appropriately modified for Java) were 
implemented for Java in muJava [13]. 
Kaminski and others[14] further showed that 
only three mutants out of the seven created by 
the relational operator replacement operator 
(ROR) are needed. Mutant sampling is on of 
the most straightforward strategies which 
selects a subset of the mutants randomly. 
Mutant random sampling was one of the first 
attempts to mutant reduction. Higher order 
mutants (HOMs) first introduced by Jia & 
Harman [15], combine the changes from 
multiple first-order mutants (FOMs), i.e. single 
statement mutants, into one mutant [16]. It is 
also possible to generate HOMs that are 
subsuming; the test cases that kill a 
subsuming HOM also kill every FOM that it is 
generated from. Consequently, using HOMs 

also allows for the execution time of mutation 
testing and analysis to be reduced, since if a 
subsuming HOM is killed, each of its 
constituent FOMs are as well. Antonio and 
vergilio [9] display comes about of a 

mapp ing cons ider ,  b y synt hesiz ing 
characteristics of the HOM Testing 
approaches, HOM generation techniques, 
assessment viewpoints, patterns and 
investigate openings. Strong Mutation is 
regularly alluded as conventional Mutation 
Testing. That's , it is the detailing initially 
proposed by DeMillo et al. [17]. In Strong 
Mutation, for a given program p, a mutant m of 
program p is said to be murdered as it were on 
the off chance that mutant m gives a different 
output from the initial program p. To optimize 
the execution of the Strong Mutation, Howden 
[8] proposed Weak Mutation. In Weak 
Mutation, a program p is expected to be built 
from a set of components C = {c1, ..., cn}. 
Assume mutant m is made by changing 
component cm, mutant m is said to be killed 
on the off chance that any execution of 
component cm is diverse from mutant m. 
Firm Mutation was to begin with proposed by 
Woodward and Halewood [18]. The thought 
of Firm Mutation is to overcome the 
impediments of both weak and strong 
mutations by giving a continuum of middle 
conceivable outcomes. The thought of 
Mutant Clustering was first proposed in 
Hussain's ace proposal [19]. Rather than 
selecting mutants randomly, Mutant 
Clustering chooses a subset of mutants 
utilizing clustering calculations. The method 
of Mutation Clustering starts from creating 
all to begin with arrange mutants. A 
clustering calculation is at that point 
connected to classify the primary arrange 
mutants into diverse clusters based on the 
killable test cases. Each mutant within the 
same cluster is ensured to be killed by a 
comparable set of test cases. Combefis and 
Schils has benefited unsupervised clustering to 
aid the assessment of large quantities of 
solution programs [20].  
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3. Propsed MethodE 

There are a series of instructions of the 
program code that do not have much effect on 
the output of the program. But this does not 
mean that these instructions should be 
completely removed from the program. The 
selection of this type of instructions is based 
on the error propagation rate (ep-rate). The 
instructions with the lowest level of 
effectiveness do not necessarily mean their 
complete removal from the program code. In 
some cases, keeping that instruction in the 
program may increase the mutation score in 
the program. In this paper, we use the 
programs with java languages. The reason for 
choosing Java language to check mutations in 
the proposed method is the existence of 
limited platforms in the field of mutation 
production. Mujava, as the most powerful 
platform in this field, has made the flexibility 
and applicability of the proposed method 
limited to Java language only.  

 
Fig.  1. Steps of the proposed method 

The supervised machine learning algorithms 
were used to classify instructions. Those machine 
learning algorithms are Gradient Boosted 
Trees, Decision Tree, Multi-Layer 
Perceptron, and Random Forest and Neural 
Networks. After classifying the instructions 
mutation operators are applied on selective 
instructions. The proposed method is 
depicted in Fig.1. 
In any program, there are many instructions, 
the nature of each instruction is different 
from the other . This difference is determined 
based on a series of criteria and 
characteristics. If we want to check Java 
language programs, there are instructions in 
programs that removing those instructions 
will not affect the output of the program. We 
call this Z-instruction. For example, 
notification and print instructions. But in the 
discussion related to the software mutation 
test, the case is different. In this case, Z-
instructions that have low effectiveness in the 
output of the program have a different effect 
on the mutation score. Among Z-instructions, 
sometimes not deleting that instruction will 
increase the mutation score. This is because 
some of the characteristics of those 
instructions are different from the rest of the 
instructions and the remaining of that 
instruction can somehow change the number 
of kill and live mutants. So, the purpose of 
this part of the method is to separate 
notification and print instructions and 
classify Z-instructions. For example, Fig.2 
shows the part of java Prime program, the 
total number of Z-instructions is 7. While it 
can be proven that the effect of these 8 
instructions on the mutation score is 
different. To prove this, we need to use a 
classification with supervised machine 
learning algorithms. Classification of 
instructions can help in dividing these types 
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of instructions based on effecting. To identify 
instructions with low impact on program 
output, we need to be able to separate low 
impact instructions from other instructions 
based on a series of features. The values 
associated with each characteristic in the 
table have been assigned. Each entry takes 
different values based on the instruction in 
the program code. This characteristic based 
on which the level of effectiveness can be 
determined are as follows: 

i. Average number of executions: This 
property specifies the average number 
of executions of each instruction for test 
data. 

ii. Number of variables: Any instruction 
can declare a variable or use a variable 
based on its application in the program. 
In Z- instructions, this feature has a 
great impact to determine the level of 
the instruction. The sum of the test 
variables and other variables is the 
number of variables. 

iii. Test variable: In order to be able to 
identify the behavior of the program, 
we need to use test data. The test data 
should be edge-coverage. that is, they 
can cover all edges of the program as 
much as possible based on the edge 
coverage property. Running the 
majority of edges allows us to identify 
the behavior of individual instruction. 
The variables in the instructions can be 
the type of variables used in the test 
data. If these types of variables are 
available in the Z instructions, the value 
of this column in the data table will be 
equal to 1. 

iv. Other variable: Any variable other than 
the variable used by the test data is 
placed in this class. Control 
dependency: This feature represents the 
number of next instructions which has 

control dependency on the result of the 
current instruction. 

v. Static variable:  Static variable 
is variable which belongs to the class 
and initialized only once at the start of 
the execution. It is a variable which 
belongs to the class. Static variables are 
initialized only once, at the start of the 
execution. 

vi. Nesting level: The nesting level of an 
instruction shows the accessibility of 
the instruction. If the instruction is not 
in an if instruction, its nesting level is 0; 
if it is in an if instruction, then its 
nesting level is 1. 

Equation.1 shows the ep-rate. The ep-rate of 
each instruction in a program has been 
measured by 100 executions in the presence 
of the injected mutant. The number of times 
the program fails divided by 100 indicates the 
ep-rate rate of an instruction.  
 

  Errro − Propagation	Rate	 =
୳୫ୠୣ୰	୭	ୟ୧୪୳୰ୣ

୭୲ୟ୪	୳୫ୠୣ୰	୭	୶ୣୡ୳୲୧୭୬
∗ 100             (1) 

 
public class Prime { 
public int prime(int n) { 
int i=1; 
boolean isPrime = true; 
System.out.print(i+ " is a secondary variable\n"); 
System.out.println(n+ " must be a positive 
number"); 
if (n == 0 || n == 1) { 
isPrime= false; 
System.out.printf(n+ " is Not Prime"); 
return 0; 
} else { 
for (i = 2; i <= n/2; i+=1) { 
if (n % i == 0) { 
isPrime = false; 
System.out.printf ("'%S' %n"," is Not prime"); 
break; 
. 
. 
. 

Fig. .2. A summary view of Prime java program 
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The MuJava tool is used instructions ep-rates 
and quantify the Rank feature.this feature 
represents ep-rate of Z-instructions.The 
category of ep-rate is shown in table 3. 

Table 3. Error-propagation rate of Z-instructions 

 
 

 

4. Results and Discussion 
A series of mutation testing experiments has 
been performed in order to measure the ep-
rate of Z-instructions. We must use machine 
learning algorithms to create a classification 
of benchmark programs. For this purpose, it 
is necessary to use the ep-rate. The 
supervised machine learning algorithms used 
in this section are: AutoMLP, Neural 
Networks, Random Forest and naive bayes. 
The performance of the created classifier has 
been compared with each other. Table 4 
shows the Prime program data required for 
the classification of machine learning 
algorithms. These data are extracted for all 
benchmark programs and will be used as 
input for ML algorithms. Indeed the last 
column is the dependent variable and the 
other features are independent variables that 
are used in the training stage of the machine 
learning algorithm. In this paper, we use the  
RapidMiner tool for implement data 
classification. Table 6 shows the 
performance of the created classifier by 
different ML algorithms in terms of 
accuracy, precision, recall, and kappa.  
The dataset prepared in table 4 was used to 
train the ML algorithm and the created 
classifier by the ML algorithms has been 
tested in the same way (k-fold). The created 
classifier is a multi-class classifier; the 

outputs of the classifier are shown in table 3. 
Every Z-instruction in a 2-class classification 
must be sorted into one of two categories. 
Given a set of program Z-instructions at the 
source code level, the generated classifier 
must determine which category (A, B) each 
Z-instruction belongs to. Indeed, the created 
classifier takes the features of an instruction 
and predicts its classes in terms of its error-
propagation rate. This stage of the proposed 
method has been implemented in the 
RapidMiner tool set. RapidMiner includes an 
extensive data analysis library and it is one of 
the most frequently used tools for data 
analysis and data mining applications. Table 
5 shows the details of benchmarks programs 
used in proposed method. These programs 
have been used abundantly in the 
experiments of various articles. In the 
proposed method, it has not been possible to 
check real-world huge programs due to 
checking programs at the instruction level. 
Because the mutations that are created during 
the review process of the proposed method in 
medium and small programs show a 
significant increase. For example, in the 
calculator program, with 31 lines of code, 
112 mutants have been created, which is a 
relatively large number for checking 
mutations and classifying them. 

Table 4. The values of the features for the Prime 
benchmark program 
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1 1 1 0 0 1 0 A 
1 1 1 0 1 1 0 B 
1 1 1 0 0 1 1 B 
3 1 1 0 1 1 2 A 
2 1 0 1 0 0 1 A 
1 1 0 1 0 1 0 A 
1 1 1 0 0 0 0 B 
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Table 6 shows the performance of the 
created classifier by different ML 
algorithms in terms of accuracy, precision, 
recall, and kappa. There is potential 
limitations or drawbacks of using a 
classifier-based approach such this 
approach. The risk of misclassifying in 
supervised machine learning algorithms 
occurs when the algorithm incorrectly 
assigns a label or category to a data point. 
This can happen due to various reasons 
such as insufficient or biased training data, 
incorrect feature selection, or inappropriate 
model selection. Misclassification can lead 
to inaccurate results. Over-reliance on 
supervised machine learning algorithms 
without proper human oversight can also 
lead to potential drawbacks.  

For example, if the algorithm is not 
monitored and updated regularly, it may 
become outdated and less accurate over time. 
Additionally, the algorithm may not be able 
to handle new or unexpected data that was not 
included in the training data. This can lead to 
incorrect predictions or decisions, which can 
have negative consequences in real-world 
applications. 
 

Table 5. Benchmark programs 
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Prime 34 7 Determines if it is 
a prime number 

Perfect 21 5 Determines if it is 
a perfect number 

Factorial 26 5 Determining 
factorial number 

Triangle 28 5 Determining 
triangle type 

Calculator 31 5 Building a 
calculator 

 

Table 6. The output of different ML algorithms 
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MLP 100% 1 100% 100% 
Naive 
bayes 100% 1 100% 100% 

Random 
Forest 100% 1 100% 100% 

NN 96.67% 0.927 95.45% 97.50% 
After the classification is done by machine 
learning algorithms, it is time to create 
mutations. Now, based on the features of each 
leveled instruction, test mutations are created. 
For example, the mutations created for the 
Prime program are shown in Figure 3. After 
generating mutant programs , Mujava uses the 
Junit tool for executing the test and evaluating 
the mutation score. in this level , the error 
propagation rate for each instruction is 
evaluated by the proposed method. Then, the 
instructions with a high error propagation rate 
are detected. Our first priority the Z-
instructions with a high error-propagation rate 
were subjected. The Z-instructions with a low 
rate of error-propagation are subjected to 
mutation operators in the next priority. The 
status of the created mutants is then looked into 
in terms of being alive or killed. After that, it is 
calculated how many mutations were made on 
the Z-instructions with the highest mistake 
propagation rate and the average mutation 
score. Finally, the obtained results are 
compared and contrasted with those of the 
previous related works. Because in this article, 
the programs available in this method have 
been checked at the instruction level and each 
instruction has been classified in a very clear 
and precise way, also the classification of the 
program instructions has been done based on 
machine learning methods, so this article is 
somehow It is unique and it can even be said 
that it is considered superior to other existing 
methods. 
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Fig. 3. A view of operators for prime program 

Table 7. Generated mutants for all benchmarks 
by the MuJava tool 
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calculator 112 58 12 42 

Prime 112 47 10 55 

Perfect 70 54 23 38 

Triangle 213 169 14 29 

Factorial 78 53 9 16 
In this paper, we cannot compare our 

proposed method with previous methods. 
The reason of lack of comparative analysis 
between different classifier-based  
approaches is that the previous existing 
methods which are based on classification did 
not analyze the programs at the instruction 
level, so it is not possible to compare the 
proposed method with the existing methods. 
In fact, the previous existing methods have 
injected mutations at the block level or they 
have not done the classification based on 
machine learning classification methods. The 
following graphs show the results of tests 
performed on 5 benchmark programs using 
the Mujava tool. In these experiments, the 
average results of 5 test data series have been 
used in the programs. As you can see in the 

figures, on the horizontal axis, original is the 
original program, z1 is the modified version 
of the original program by removing the first 
instruction of level D, and similarly z5 is the 
modified version of the original program by 
removing the last instruction of level D. In 
fact, as many instructions as level D, we will 
have charts on the horizontal level. Figure 4 
shows the number of live mutations for the 
calculator program. In this program, there are 
5 level D instructions. As shown in the figure, 
there are instructions that, by removing that 
instruction, the number of live mutations has 
decreased significantly. Similarly, Figure 5 
shows the average kill mutants per 5 level D 
instructions. In Figure 6, the results obtained 
for score mutation are shown. 

 

Number of Live mutants in the mutation 
test performed on the calculator  program 

 
 

Fig. 4. Number of killed  mutants in the 
mutation test performed on the calculator  

program 
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Fig.  5. Number of mutation score  in the 
mutation test performed on the calculator  

program 

Figure 7 shows the results of live mutations 
on Prime program. According to the figure, 
this program has 6 instructions in D level. 
Compared to the original program, by 
removing the level D instruction in the 
modified z6 program, the number of live 
mutations has been significantly reduced. In 
Figure 8, the amount of kill mutants shows 
that only by removing the instruction into z1 
program, the number of kill mutants has 
decreased significantly. Figure 9 shows the 
mutation score for the Prime program. The 
results indicate that the deletion of the z4 
instruction has reduced the mutation score. It 
can be concluded that if the instruction in z4 
program is not removed from the program, 
the mutation score can be kept at an 
acceptable level. 
 
 

 
Fig.  6. Number of live mutants in the mutation 

test performed on the Prime  program 

 
Fig.  7. Number of killed mutants in the 

mutation test performed on the Prime program 

 
Fig.  8. Number of mutation score in the 
mutation test performed on the Prime program 

 

 
Fig.  9. Number of live mutants in the mutation 

test performed on the Perfect program 
 
 
 
 

 

Fig.  10. Number of killed mutants in the 
mutation test performed on the Perfect program 
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Figure 10 shows the changes made to the 
number of live mutants on 5 different versions 
of the Perfect program. The results show that 
removing the D level instructions in the two 
created programs z2 and z3 has reduced the 
number of live mutants. Figure 11 shows that 
the z4 program has fewer killed mutants than 
the rest of the programs. In fact, the level D 
instruction in this program should not be 
removed from the main program to achieve 
optimal results. Figure 12 also shows the 
bounce score for the Perfect program. As you 
can see in the figure, the two programs z2 and 
z3 have a better situation than the rest of the 
programs compared to the original program. 
In fact, the D-level instruction sin these two 
programs should be removed from the 
program. 

 

 
Fig. 11. Number of mutation score  in the 

mutation test performed on the Perfect  program 
 

Figure 13 shows the test results on the 
Triangle program. As you can see, the 
number of live mutants has decreased in the 
first version of the original program. But in 
the rest of the versions produced from the 
original program, the reduction of live 
mutants is more noticeable. Likewise, in 
Figure 14, the number of kill mutants in the 
first version of the main program has been 
significantly reduced. This shows that it is 
better not to delete the level D instruction in 
the z1 program. The reduction of the 
mutation score in the first version of the 
original program in Figure 15 also proves this 
claim. 

 

 
Fig.  12. Number of live mutants in the mutation 

test performed on the Triangle  program 

 
Fig.  13. Number of killed mutants in the 
mutation test performed on the Triangle  

program 

 
Fig. 14. Number of mutation score in the 
mutation test performed on the Triangle  

program 

In Figure 16, the two instructions in programs 
z1, z2 of the Factorial program have been 
identified as effective instructions in the main 
program from level D, and it is better to 
remove them from the program. In Figure 17, 
except for the instruction in the z3 program, 
the rest of the instructions have similar 
conditions, that is, by removing these 
instructions, the number of killed mutants has 
increased. And finally, Figure 18 shows an 
increase in the mutation score in all 
programs, but in the z3 program, the increase 
is not significant. 
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Fig.  15. Number of live mutants in the mutation 

test performed on the Factorial  program 

 
Fig.  16. Number of killed mutants in the 
mutation test performed on the Factorial  

program 

 
Fig.17. Number of mutation score in the 
mutation test performed on the Factorial  

program 

This article examines the level D instructions 
available at the level of the program code and 
we showed that some instructions at this level 
may increase the number of generated 
mutants and decrease the speed of the 
program by removing the instruction. 
Therefore, in some cases, it will not be 
necessary to delete these instructions. In this 
article, we have shown that the rate of error 
propagation rate in some instructions of the 
program is higher than in other instructions, 
and in some instructions this rate is lower. In 
instructions that have a lower error 

propagation rate, two categories of 
instructions have been identified. Removing 
the second level from these instructions has 
increased the mutation score and reduced the 
number of live mutants. The scalability of the 
proposed approach is limited to the size and 
complexity of software systems to which it is 
applied. Considering that the number of 
mutations generated in the examined 
programs has a direct relationship with the 
number of program lines and the complexity 
of the program instructions, so this creates a 
limitation for the author to select only 
programs to generate mutants in which The 
number of created mutants should be 
reasonably small so that the speed of program 
execution and the quality of instruction 
execution do not decrease. 
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