تأثير ميزان مصر ف بذر بر عملكرد و اجزاى عملكر دارقام كندم ديم（Triticum aestivum L） در منطقه قزوين

سعيد سيف زاده＇＂، سيدعليرضا ولدآبادى＇، مجيد اسماعيلى「
ا－دانشيار، گروه زراعت، واحد تاكستان، دانشگًاه آزاد اسلامى، تاكستان، ايران「－دانشجوى كارشناسى ارشد زراعت، كروه زراعت، واحد تاكستان، دانشكاه آزاد اسلامى، تاكستان، ايران

چجكيده

به منظور بررسى تأثير ميزان بذر بر عملكرد ارقام كندم ديم آزمايشى بهصورت فاكتوريل بر پايه طرح بلوكهاى

 ميانگين اثرات ساده نشان داد، بالاترين عملكرد دانه و شاخص برداشت مربيوط بهر به رقم آذر 「 و و بيشترين عملكرد

 بذر • ．

 وازههاى كليدى：بذر، تراكم، رقم، عملكرد دانه، كندم
＊نغارنده مسئول（s．seyfzadeh＠tiau．ac．ir）

مىباشد، به طورى كه در دامنه وسيعى از تراكم ، تعداد سنبله قابل برداشت با ميزان عملكرد دانه متناظر خواهد بود، عده اى نيز بر اين باورند كه عملكرد بهينه دانه با ميزان تراكم بهیينه بوته رابطه تنگَاتنگگ دارد به طوريكه در آن تراكم، مقدار عملكرد دانه حد اكثر است؛ و چنانچچه مـيزان تراكم كمم باشد، از پتانسيــل توليــد بــه نحـــو اسـتفاده نمىیگرد؛ و در فراتر از تراكم بهیينه نيز مواد فتوسنتزى به جاى اين كه صرف توليد بيشتر دانه شوند صرف رشد رويشى يا تنفس گیياه مى گریند. از سوى ديگر به واسطه تنوع گسترده اقليمىى معمولاً ارقامى، بهترين سازگارى را در منطقه ای نشان مى دهند كه براى كشت در آن، اصلاح شده اند. ارقام مختلف به شرايط اقليمى معينى ساز گار شده اند. بنابراين انتخاب رقم و يا رقمهاى مناسب براى كشت، از اولويتهاى مههم براى توليد بهتر محصولات مىباشد. در انتخاب ارقام بايد به ساز گارى آنها با شرايط اقليمى منطقة توجه شود و بر اساس آزمايشات دقيق، ارقام مناسب معرفى گردند.

مقدمد

غلات، ممهم ترين گياهان غذايى كره زمين و تأمين كننـده V باشند و بطور كلى VD درصد كل انرزی و نيمى از پروتئين مورد نياز بشر در حال حاضر از غلات تأمين مى شود Hiltbrunner et) (al., 2007. گَندم مهمْ ترين گياهى است كه در ايران و ساير كشورهاى دنيا مورد كشت وكار قرار مىگيرد. گندم نان يكى از غلات بسيار مـهم جهان است كه بخش عمده ای از غذاى روزانه مردم را تامين كند و اغلب در نواحى خشك و نيمه خشك با تغييرات زياد آب و هوايى سالانه رشد مى كند و به صورت آبى و ديم قابل كشت مىباشد (جلالى فر و همكاران، ا (1)). توسعه سطح زير كشت و افزايش عملكرد محصول در واحد سطح دو راهبرد مهمم براى بالا بردن ميزان توليد هرگياه مىباشد. براى بدست آوردن بيشينه عملكرد دانه بايد تمام اجزاى آن در حد مطلوب باشد. برخى اعتقاد دارند كه گَندم به دليل داشتن خاصيت پنجه زنى، داراى انعطاف پذيرى بالایی از نظر تراكم بوته

به منظور كاهش در ميزان بذر مصرفى (هزينه توليد) و افزايش توليد در واحد سطح مىباشد. بنابراين اين تحقيق با هدف بررسى تأثير ميزان بذر بر عملكرد و اجزاى عملكرد سه رقم گندم ديم آزمايش خاص در منطقه قزوين اجرا گرديد.

مواد و روشها

اين تحقيق به منظور بررسى تأثير ميزان بذر بر عملكرد و اجزاى عملكرد ارقام گندم ديم در منطقه قزوين آزمايشى در سال زراعى IF.Y-IF.1 شهرستان آوج اجراء گرديد. از نظر جغرافيايى
 N در پنجاه و پنج كيلومترى شمال شرق شهرستان آوج قرار گرفته است. اطلاعات اقليمى ايستگاه سينوپتيكى ميانگین دما در جدول ا و ميانگين بارش در جدول Y آمده است. ارتفاع مزرعه از سطح دريا .. IV متر و بر اساس تقسیم بندى كوپن داراى اقليم نيمه خشك سرد مىباشد. متوسط بارندگى ساليانه آن در حدود . .

مهم ترين پارامترهاى مورد نظر در بررسى ارقام گندم در مناطق سردسير و معتدل با زمستان طولانى و بهار كوتاه و همراه با خشكى و تغييرات دما، مقاوم بودن به سرما و يخبندان و همچحنين بايد از لحاظ مقاومت به خشكى نيز در حد مطلوبى باشند. در بين تنش هاى محيطى، خشكى بيش از هر عامل ديگر باعث محدود شدن رشد گندم ديم و كاهش توليد محصول آن در ديم زارها مىشود (امام، צ^٪٪). تنش خشكى در اقليم گرمسير و نيمه گرمسير نيز يكى از مهم ترين عوامل محدود كننده عملكرد گَندم تحت شرايط ديم مىباشد. با توجه به گستردگى سطح زير كشت گَندم در اقليم سرد، معتدل و گرم، كمبود تعداد ارقام براى كاشت در اقليم سرد و معتدل و شناخته نشدن بسيارى از ارقام معرفى شده در اين مناطق براى كشاورزان، لازم است كشاورزان با ارقام جديد در مزرعه آشنا شده و خود كشاورزان اقدام به انتخاب رقم مناسب جهت افزايش و پايدارى عملكرد محصول نمايند. تراكم يا ميزان بذر مطلوب يكى از جنبههاى مهم مديريت زراعى

ساليانه آن /^٪ا درجه سانتى گراد و متوسط شروع آزمايش بصورت تصادفى چنج نمونه حداقل و حداكثر دماى ساليانه آن به ترتيب خاك از عمق صفر تا • سانتىمترى از چند
 است. بافت خاك مزرعه از نوع لوم با اسيديته مخلوط نمودن به آزمايشگاه خاك شناسى N/1 و هدايت الكتريكى ا/4/4 دسى زيمنس ارسال ترديد، كه نتايج آن در جدولr آمده بر متر مىباشد. به منظور مشخص شدن است. خصوصيات فيزيكى و شيميايى خاك، قبل از

$\begin{aligned} & \frac{2}{7} \\ & \frac{7}{3} \\ & \frac{5}{3} \end{aligned}$	$\begin{aligned} & \overline{\overline{3}} \\ & = \\ & = \\ & = \end{aligned}$	$\begin{aligned} & \dot{\vdots} \\ & \frac{1}{2} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \frac{\vdots}{4} \\ & \frac{1}{3} \\ & \frac{2}{3} \end{aligned}$	$\underset{\substack{5 \\ \frac{2}{3}}}{\substack{2}}$	$\begin{aligned} & \dot{7} \\ & \hline \end{aligned}$		$\begin{aligned} & \dot{3} \\ & \frac{3}{3} \\ & \frac{3}{3} \end{aligned}$	$\begin{aligned} & = \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \bar{\lambda} \\ & =1 \\ & \vdots \\ & \vdots \\ & \frac{1}{3} \\ & \frac{1}{n} \end{aligned}$		$\begin{aligned} & \dot{\overline{3}} \\ & \frac{3}{3} \\ & \frac{1}{3} \\ & \frac{2}{3} \\ & \hline \end{aligned}$	
فوريه	راانويه	دسامبر	نوامبر	ا اكتبر	ستبامبر	اوت	زؤيّه	زؤن	4	آوريل	مارس	
vN	$0 / 9$	9/4	17%	r//r	10/9	ra/.	ra/	r9N	$11 / 9$	1V/9	1r//	(درجاى روى سلـيوس)
-r/q	--/0	-r/r	r/0	9/r	1r/^	1v/9	1v/9	10/r	1./8	9%	1/T	(دراى شهـي ســـيوس)
1/*	\cdots	r/f	v/s	$17 / \wedge$	19/9	rF/r	1F/9	rr/r	Iv/.	$1 r \times$	v/I	(درجهى روزانـيوس)
1r/.	9/r	NT	$1 . / 1$	IfN	r./	rf/f	ro/9	r9/4	MrN	19N	10/r	تشتي خور شيدى (مكارول بر متر مربع در روز)

جدول Y- ميانگین بارش، بارش مؤثر و تبخير تعرق تَانسيل ماهانه بر اساس دادههاى اقليمى (دورْى س ساله)

جدول

آزمايشى بصورت فاكتوريل بر پايه طرح بذر در سطوح •9، •I • و •10 كيلوگرم در بلوكهاى كامل تصادفى در r تكرار به اجراء هكتار و ارقام آذر r، هشت رود و صدرا در r

درآمد. هر تكرار در اين طرح شامل 9 تيمار سطح بودند. مساحت هر كرت Q متر مربع با
بود و در مجموع Y Y واحد آزمايشى مورد
بررسى قرار گرفتند. فاكتورها شامل ميزان متر بود. تيمارها به صورت تصادفى و با قرعه

كرتهاى آزمايشى به ترتيب انجام شد. در زمان برداشت، رديف كاشت اول و آخر از طرفين و Q/ • متر از ابتدا و انتماى كرت ها به عنوان حاشيه در نظر گرفته شد، سیس بوتههاى مساحت باقى مانده به ميزان حدوداً K/Y وسيله داس، كف بُر گرديد. بوته هاى برداشت شده به دستههاى كوچگى تقسیم و هر دسته با نخهاى كنفى بسته شدند، سپس با استفاده از خرمنكوب آزمايشگاهى كوبيده و بعد از بوجارى دانهها در داخل پاكتهاى كاغذى جداگانه و مشخصى ريخته شد و به انبار انتقال داده شدند.

همزمان با برداشت محصول تعداد 1 بوته از جهار خط ميانى هر كرت فرعى به صورت تصادفى انتخاب شدند. انتخاب نمونه ها به گونه اى انجام شد كه معرف واقعى كرتهاى فرعى مورد نظر باشند . سیس ارزيابىهاى صفات به طور جداگانه براى هر كرت آزمايشى صورت پذيرفت. صفات شامل تعداد سنبله در بوته، تعداد دانه در سنبله اصلى، تعداد دانه در سنبله فرعى، تعداد سنبله در

كشى به واحدهاى آزمايشى اختصاص داده خواهد شد. كشت خطى كار در عمق ^ 1 سانتى متر قرار داده شد.

در اواخر ارديبهشت ماه I + +1، عمليات شخم به وسيله هر گاوآهن برگرداندار انجام شد و در مهرماه 1F•1، عمليات ديسك زدن در صورت گرفت تا كلوخههاى حاصل از شخم به خوبى خرد شده و بستر مناسبى براى بذرها فراهم گردد. براى اين منظور، مرحله دوم ديسک به صورت عمود بر اولى نيز زده شد. جهت تامين عناصر غذايى مورد نياز گياه (نيتروزن، فسفر و پتاسیم) از كودهاى اوره به صورت سرک و سوپرفسفات تریپل به ميزان • • ا كيلوگرم در هكتار استفاده شد. و بعد از آن عمليات كاشت به صورت دستى در

در راستاى مبارزه با علفهاى هرز حاشيءٔ مزرعه و بين كرتهاى اصلى و تكرارها، طى چند مرحله به وسيله كولتيواتور، اقدام به پاك سازى مزرعه بصورت مكانيزه گرديد. برداشت گْندم به صورت دستى و پس از رسيدگى كامل و خشى شدن بوتههاى

تعداد سنبله در واحد سطح مهم ترين جزء در تعيين عملكرد دانه گندم است. به طورى كه افزايش ميزان بذر موجب افزايش تعداد سنبله در واحد سطح و كاهش تعداد دانه در آن مىشود (Wood et al., 2003). مقايسه ميانگين اثر سطوح رقم نشان داد كه رقم آذر -Y با Y/V در سنبله اصلى را به خود اختصاص داد كه با رقم هشت رود در يک گروه آمارى قرار FI/F. Fرفت. و رقم صدرا با تعداد دانه كمترين تعداد دانه در سنبله اصلى را به خود Zahed et al اختصاص داد(جدول ه). (2010) اظهار داشتند كه رقم به طور معنىدارى تعداد دانه در سنبله گندم را تحت تأثير قرار داد.

تعداد دانه در سنبله فرعى

اثر ميزان مصرف بذر و رقم بر تعداد دانه در
سنبله فرعى در سطح پنج درصد معنى دار

نيز افزايش حداكثر Giunta et al (2007)
عملكرد دانه در ارقام جديد را به افزايش

بوته، تعداد دانه در گیياه، قطر ساقه، تعداد دانه در بوته، وزن هزار دانه، عملكرد دانه، عملكرد بيولوزيك، شاخص برداشت بود. رسم نمودارها توسط نرم افزار Excel و رسم جداول با Word انجام شد.

نتايج و بحث

 تعداد دانه در سنبله اصلىنتايج حاصل از جدول مقايسه ميانگين نشان داد كه بلوك بندى در سطح پنج درصد موثر بوده است و اثر ميزان بذر بر تعداد دانه در سنبله اصلى در سطح يك درصد معنى دار گرديد و همچنين اثر رقم بر صفت فوق در

سطح پنج درصد معنى دار گرديد (جدول٪). مقايسه ميانگین اثر ميزان بذر بر تعداد دانه در سنبله اصلى مؤيد اين بود كه در مصرف بذر به ميزان •9 كيلوگرم در هكتار با ميانگیين عددى Y\&/T Y دانه بيشترين تعداد دانه در سنبله اصلى را دارا بود و در گروه آمارى جداگانه اى قرار گرفت و مصرف بذر به ميزان •10 كيلوگرم در هكتار با ميانگین YI/TY اصلى را به خود اختصاص داد(جدول ه).

تعداد دانه در گیياه

نتايج حاصل از جدول تجزيه واريانس نشان داد كه اثر ميزان مصرف بذر و رقم بر تعداد دانه در گیياه در سطح يك درصد معنى دار گرديد (جدول ¢). مقايسه ميانگين اثر ميزان مصرف بذر بر تعداد دانه در گياه مؤيد اين بود كه در مصرف بذر به ميزان •9 كيلوگرم در هكتار با ميانگين عددى V•/9 دانه در گياه را دارا بود و مصرف بذر به ميزان
 دانه كمترين تعداد دانه در گیياه را به خود Donaldson et اختصاص داد(جدول ه). al (2001) سطح و كاهش شمار سنبله در بوته را با افزايش تراكم كاشت گندم گزارش كردند؛ و بيان داشتند كه تعداد سنبله در واحد سطح با افزايش تراكم در گَندم افزايش يافته و در پیى آن شمار دانه در سنبله و وزن هزار دانه
كاهش مىيابند.

مقايسه ميانگين اثر رقم نشان داد كه رقم آذر-Y با •\&

تعداد دانه در متر مربع نسبت داده اند.
مصرف بذر به ميزان • 9 كيلوگرم در هكتار با ميانگين عددى FM/D\& دانه بيشترين تعداد دانه در سنبله فرعى را دارا بود و مصرف بذر به ميزان • 1 ا كيلوگرم در هكتار با ميانگين TV/FY فرعى را به خود اختصاص داد(جدول ه). مقايسه ميانگين اثر سطوح رقم نشان داد كه
 در سنبله فرعى را به خود اختصاص داد و رقم هشت رود با تعداد دانه MN/FY دانه كمترين تعداد دانه در سنبله فرعى را به خود

اختصاص داد كه با رقم هشت رود در يى
گروه آمارى قرار گرفت(جدول ه). شاخص كاهش Sofizadeh et al (2006) برداشت ارقام قديمى گندم را در مقايسه با ارقام جديد به تعداد و وزن كمتر دانه نسبت دادند.

واريتههاى قديمى و جديد گندم دريافتند كه واريتههاى جديدتر در مقايسه با واريتههاى قديمى تر تعداد دانه در واحد سطح بالاترى

داشتند.

گیياه را به خود اختصاص داد و همچپنين رقم صدرا با تعداد دانه $9 / 1$ Mانه كمترين تعداد دانه در گياه را به خود اختصاص داد(جدول (Q

جدول F - تجزيه واريانس دانه در سنبله اصلى، دانه در سنبله فرعى و دانه در گیياه
ميانگیين مربعات

تعداد دانه در گیی	دانه در سنبله فرعى	دانه در سنبله اصلى	درجه آزادى	منبع تغييرات
r/•Vr ${ }^{n s}$	YI/VAF ${ }^{\text {ns }}$	r-/AFq*	r	بلوك
rอq/rav**	q./g4\|*	-9/8YY**	r	ميزان بذر
190/901**	V9/99.*	rl/QrV*	r	رقم
19/9br ${ }^{\text {ns }}$	$11 / \% \cdot 9$ ns	r/9¢0 ${ }^{\text {ns }}$	F	ميزان بذر × رقم
$r \Delta / 1 . q$	r1/ril	9/V99	19	خطا
v/Ar	11/Qr	11/.9		ضريب تغييرات (درصد)

جدول Q- مقايسه ميانگين اثرات ساده ميزان بذر و رقم بر روى دانه در سنبله اصلى، دانه در سنبله فرعى و دانه در گیياه

دانه در گیی	دانه در سنبله فرعى	دانه در سنبله اصلى	رقم	ميزان بذر
$v \cdot / 94 a$	fridsa	rg/rua		- 9 كيلوگرم در هكتار
GT/YIb	rq/ $\cdot \Delta b$	rr/afb		آ.
QN/¢¢b	rv/rub	YI/TYb		-10.
வ9/^rb	rल/19b	YI/FIb	صدرا	
¢r/aqb	rN/FTb	ry/dsa	هشترود	
4N/4.a	¢r/ヶba	re/vra	آذر	

مقايسه ميانگیين اثر سطوح مصرف بذر نشان داد كه مصرف بذر به ميزان •q كيلوگرم در هكتار با K/Y09 سنبله بيشترين تعداد سنبله در بوته را به خود اختصاص داد در حالى كه مصرف بذر به ميزان • | ا كيلوگرم در هكتار
 در بوته را دارا بود و در گروه آمارى مشتركى با مصرف • •K كيلوگرم بذر در هكتار قرار

Donaldson et al (جدول (V) داشت
(2001) افزايش شمار سنبله در واحد سطح و كاهش شمار سنبله در بوته را با افزايش تراكم كاشت گندم گزارش كردند؛ و بيان داشتند كه تعداد سنبله در واحد سطح با افزايش تراكم در گندم افزايش يافته و در پی آن شمار دانه در سنبله و وزن هزار دانه كاهش مىيابند مقايسه ميانگیين اثر سطوح رقم نشان داد كه رقم آذر-Y با تعداد سنبله در بوته را دارا بود و رقم صدرا با l/AVV بوته را به خود اختصاص داد (جدول V). نتايج مطالعه (2001) Fathi et al نشان

قطر ساقه

نتايج حاصل از جدول تجزيه واريانس نشان داد كه اثر ميزان بذر و رقم در قطر ساقه در سطح يک درصد معنىدار گرديد (جدول ؟). مقايسه ميانگين اثر سطوح مصرف بذر نشان داد كه مصرف • 9 كيلوگرم بذر در هكتار با D/Y•६ ميلىمتر بيشترين ميزان قطر ساقه را دارا بود و مصرف •ه1 كيلوگرم بذر در هكتار با Q/ •V ميلىمتر كمترين ميزان قطر ساقه را به خود اختصاص داد (جدولV). مقايسه ميانگين اثر سطوح رقم نشان داد كه رقم آذر-Y با Q/4 4 ميلىمتر بيشترين ميزان قطر ساقه را دارا بود كه با رقم هشت رود در گروه آمارى مشتركى قرار گرفت و رقم صدرا با F/qra ميلىمتر كمترين ميزان قطر ساقه
را به خود اختصاص داد (جدول V).

تعداد سنبله در بوته

اثر ميزان مصرف بذر بر تعداد سنبله در بوته در سطح يك درصد معنىدار گرديد و اثر رقم نيز در صفت فوق در سطح پنج درصد معنى-
دار شد (جدول ؟).

بيشترين ميزان وزن هزار دانه را دارا بود و رقم صدرا با ا هزار دانه را به خود اختصاص داد (جدول V). Jafarnejad (2009) در شرايط آب و هوايى نيشابور نيز نشان داد كه بين وزن هزار دانه ارقام تفاوت معنىدارى وجود داشت.

مقايسه ميانگين اثر متقابل ميزان بذرو رقم نشان داد كه مصرف بذر به ميزان كيلوگرم در هكتار در رقم آذر-Y با با گرم بيشترين وزن هزار دانه را به خود اختصاص داد و مصرف بذر به ميزان •10 كيلوگرم در هكتار در رقم صدرا با Yا/TK گرم كمترين وزن هزار دانه را به خود Hosseinpour et اختصاص داد(جدول ^). al (2015) بر عملكرد دانه و اجزاء آن در ارقام مختلف گندم، اعلام نمودند كه سه صفت تعداد سنبله در مترمربع، تعداد دانه در سنبله و وزن هزار دانه، موثرترين صفات تعيين كننده عملكرد دانه بودند.

داد كه اثر رقم تعداد سنبله گَندم را به طور معنىدارى تحت تأثير قرار داد.

وزن هزار دانه

اثر ميزان بذر و رقم بر وزن هزار دانه در سطح يك درصد معنىدار شد و اثر متقابل ميزان بذر و رقم بر وزن هزار دانه در سطح پنج درصد معنىدار گرديد (جدول ؟). مقايسه ميانگین اثر سطوح ميزان بذر نشان داد كه سطوح مختلف مصرف بذر در گروههاى آمارى مختلف قرار گرفتند و مصرف بذر
 بيشترين وزن هزار دانه را به خود اختصاص داد و مصرف بذر به ميزان ••1ه كيلوگرم در هكتار با r|/q گرم كمترين وزن هزار دانه را به خود اختصاص داد (جدول). Varga) ط et al (2001) هزار دانه را با افزايش تراكم كاشت اعلام نمودند.

مقايسه ميانگين اثر سطوح رقم بر وزن هزار

جدول \＆－تجزيه واريانس اثر عوامل آزمايشى بر قطر ساقه، سنبله در بوته، وزن هزار دانه

ميانكّين مربعات			درجه آزادى	منبع تنييرات
وزن هزار دانه	سنبله در بوته	قطر ساقه		
- Nfff ns	$\cdot / \cdot \Gamma \Lambda^{n s}$	$\cdot / \cdot v q^{n s}$	r	بلوك
ra／gve＊＊	－／440＊＊	．／ヶ9（ ${ }^{\text {\％}}$	r	ميزان بر
「V／rへa＊＊	－／1ヶr＊	－／ver＊	r	رقم
－／199＊	$\cdot 1 \cdot \Delta f^{n s}$	$\cdot / \cdot T)^{\text {ns }}$	${ }^{\text {r }}$	ميزان بذر × رقم
$1 / 91$.	． $1.4 \wedge$	－$/ 1 \Delta r$	19	خطا
r / FV	9／VF	V／aF		ضريب تغييرات（درصد）

جدول V－مقايسه ميانگَين اثرات ساده ميزان بذر و رقم بر قطر ساقه، سنبله در بوته و وزن هزار دانه

وزن هزار دانه (g)	سنبله در بوته	$\begin{aligned} & \text { قطر ساقه } \\ & \text { (mm) } \end{aligned}$	رقم	ميزان بذر
relsa	¢／ヶดяa	$\Delta / 4 \cdot 9 a$		． 9 كيلوكرم م در هكتار
refseb	1／arsb	$\Delta / r 9 \Delta a$		rir．
rı／quc	1／Ar¢b	a／$\cdot \cdot \vee b$		10．
rr／blc	1／Avrb	$\uparrow / q r \Delta b$	صدرا	
r¢／\ヶb	r／．rsab	d／fiva	هشترود	
ra／99a	r川lda	d／499a	r	
ميانگَينهاى داراى حداقل يك حرف مشتر ك در هر ستون فاقد اختلاف معنىدار مى باشند（ه．｜＇هـ）．				
جدول＾－مقايسه ميانگين اثرات متقابل ميزان بذر و رقم بر قطر ساقه، تعداد سنبله در بوته و وزن هزار دانه				
وزن هزار دانه （g）	تعاد سنبله در بوته	$\begin{aligned} & \text { قطر سر (mm) } \\ & \hline \end{aligned}$	رقم	ميزان بذر
reigvb	$r / r a \cdot a$	f／99sa	صدرا	
ra／qrb	r／aqra	d／9ra	هشترود	． 9 كيلوكرم در هكتار．
rv／M＾a	$r / 9 \mathrm{~s} \cdot \mathrm{a}$	0／498a	r آذ	
ri／arc	r／vara	d／194a	صدرا	
rengb	r／as．a	d／fera	هشترود	Tr．
ryma	r／rfea	d／arra	آذر	
ri／rec	r／999a	fisfoa	صرا	
rr／．ec	r／． ¢ra	D／Irsa	هشترود	．ها كيلوكرم در هكتار．
rr／f．c	r／area	a／rea	آذر	

مقايسه ميانگیين اثر سطوح رقم نشان داد كه رقم آذر-r با $11 \cdot r$ كيلوگرم بيشترين عملكرد دانه را به خود اختصاص داد و رقم صدرا با QVY/V كيلوگرم در هكتار كمترين عملكرد دانه را به خود اختصاص داد (جدول گزارش Donaldson et al (2001) . كردند كه تعداد سنبله بارور در واحد سطح مهمم ترين عامل تعيين كننده عملكرد دانه محسوب مىشود. آنها همچچنين با مقايسه ارقام از نظر تعداد سنبله در متر مربع گزارش نمودند كه رقم N-^| را به خود اختصاص داد.

مقايسه ميانگیين اثر متقابل ميزان بذر و رقم HF. نشان داد كه مصرف بذر به ميزان كيلوگرم در هكتار در رقم آذر-Y با \&K كيلوگرم در هكتار بيشترين عملكرد دانه را به خود اختصاص داد و مصرف بذر به ميزان كيلوگرم در هكتار در رقم صدرا با كيلوگرم در هكتار كمترين عملكرد دانه را Hiltbrunner et al (جاشت (جدل (1) (2007)تراكمهاى كاشت مطلوب در گندم را كليدى براى رسيدن به حداكثر عملكرد

عملكرد دانه

اثر ميزان بذر و اثر رقم بر عملكرد دانه در سطح يک درصد معنى دار گرديد و اثر متقابل ميزان بذر و رقم در سطح پنج درصد معنىدار شد (جدول 9). مقايسه ميانگين اثر ميزان مصرف بذر بر عملكرد دانه مؤيد اين بود كه در مصرف بذر به ميزان • •ا كيلوگرم در هكتار با ميانگين عددى |||| كيلوگرم در هكتار بيشترين عملكرد دانه را دارا بود و در گروه آمارى جداگانه ى قرارگرفت و مصرف بذر به ميزان 9IF/V 9 كيلوگرم در هكتار با ميانگین كيلوگرم در هكتار كمترين عملكرد دانه را به خود اختصاص داد (جدول • (). با تراكم مطلوب علاوه بر توليد عملكرد بالا حداكثر استفاده از منابع محيطى از جمله آب و هوا، نور و خاك به عمل مىآيد. البته در كشت ديم شرايط متفاوت است، زيرا متوسط رطوبت موجود در خاى از عوامل اصلى
تعيين كننده ميزان بذر مصرفى است
.(Lioveras et al., 2004)

مىدانند. تراكم گیاهى مناسب با تنيير (Darwinkel, 2008). مقايسه ميانگّين اثر ميزان مصرف بذر بر عملكرد بيولوزيكى مؤيد
 كيلوگرم در هكتار با ميانگين عددى كيلوگرم در هـتار عملكرد بيولوزيكى را دارا بود و در گروه آمارى جداگانه ى قرارگرفت و مصرف بذر به ميزان Y.rV ك. كيلوگرم بيولوزيكى را به خود اختصاص داد (جدول - (). مقايسه ميانگين اثر سطوح رقم نشان داد كه رقم آذر -Y با • عملكرد بيولوزيكى را دارا بود و رقم صدرا با ६ץاپ كيلوگرم در هكتار كمترين عملكرد بيولوزيكى را به خود اختصاص داد(جدول (1). Zahed et al (2010) اظهار داشتند كه رقم به طور معنىدارى تعداد دانه در سنبله گَندم را تحت تأثير قرار داد. همچنين اثر رقم بر عملكرد بيولوزيكى گندم در سطح احتمال يك درصد معنىدار بود. مقايسه ميانگين اثر متقابل ميزان بذر و رقم نشان داد كه مصرف بذر به ميزان • D ا كيلوگرم در

عواملى مانند تفاوت منطقه ، تاريخ كاشت، شرايط اقليمى، نوع خاك و ارقام فرق مى كند (Elhani et al., 2007). مقيمى مفرد و همكاران (Yף (I)) نيز در بررسى تراكمهاى مختلف در دو رقم كندم كوهدشت و دهدشت در شرايط ديم دريافتند كه بيشترين عملكرد مربوط به تراكم . . ه بوته در متر مربع در هر دو رقم بود.

عملكرد بيولوزيكى

اثر ميزان بذر و رقم بر عملكرد بيولوزيكى در سطح يك درصد معنى دار كرديد در صورتيكه اثر متقابل ميزان بذر و رقم اختلاف معنىدارى در سطح پنج درصد از خود نشان داد (جدول 9).

عملكرد هر محصول زراعى حاصل رقابت برون و درون بوته ایى براى دستيابى به عوامل محيطى جهت رشد است. حداكثر عملكرد، زمانى حاصل مىشود كه اين رقابتها به حداقل خود برسد و گياه بتواند از عوامل محيطى حداكثر استفاده را بنمايد

10 •1 اختصاص داد و مصرف بذر به ميزان كيلوگرم در هكتار با Yq/Ar درصد كمترين شاخص برداشت را به خود اختصاص داد (جدول • (). مقايسه ميانگين اثر سطوح رقم بر شاخص برداشت نشان داد كه رقم آذر - با
 برداشت را دارا بود و رقم هشت رود با آر/•r درصد كمترين ميزان شاخص برداشت را به خود اختصاص داد(جدول •). Jafarnejad (2009) روى ارقام گندم نان در شرايط آب و هوايى نيشابور نيز نشان داد كه شاخص برداشت ارقام گَندم به طور معنىدارى
متفاوت بود.

مقايسه ميانگين اثر متقابل ميزان بذرو رقم نشان داد كه مصرف بذر به ميزان • IT كيلوگرم در هكتار در رقم آذر-ץ با درصد بيشترين شاخص برداشت را به خود اختصاص داد و مصرف بذر به ميزان •10 كيلوگرم در هكتار در رقم هشت رود با MN/D9 خود اختصاص داد (جدول (1).

هكتار در رقم آذر-Y با كV\& كيلوگرم در
هكتار بيشترين عملكرد بيولوزيكى را به خود
اختصاص داد و مصرف بذر به ميزان rی৭V كيلوگَرم در هكتار در رقم صدرا با كيلوگرم در هكتار كمترين عملكرد بيولوزيكى را به خود اختصاص

Donaldson et al داد(جدول ז1).
(2001) نيز طى مطالعه ای روى اثر واريتههاى جديد گندم دريافتند كه وجود تغييرات زنتيكى بين واريتههاى مختلف منجر به بروز اختلافى در عملكرد بيولوزيكى و دانه گرديد.

شاخص برداشت

نتايج حاصل از جدول تجزيه واريانس نشان داد كه بلوك بندى در صفت شاخص برداشت در سطح پنج درصد موثر بوده است، اثر ميزان بذر و رقم و اثر متقابل ميزان بذر و رقم بر شاخص برداشت در سطح يك درصد معنى دار شد (جدول9). مقايسه ميانگَن اثر سطوح ميزان بذر نشان داد كه مصرف بذر به ميزان •IT كيلوگرم در هكتار با ^K/ M درصد بيشترين شاخص برداشت را به خود

جدول•1－تجزيه واريانس تجز يه واريانس اثر عوامل آزمايشى بر عملكرد دانه، عملكرد بيولوزيكـ و شاخص برداشت

ميانكّين مربعات			درجه آزادى	منبع تنييرات
شاخص برداشت	عملكرد بيولوزيك	عملكرد دانه		
d／．rr＊	$19919 / 19 \wedge^{n s}$	var／．．．．ns	r	بلوك
ra／riv＊＊	－AFAIN／FAl＊＊	99入Fロ／TMY＊＊	r	ميزان بـر
9／A．r＊＊	rtr．rngata＊＊	ratar／fff＊＊	r	رقم
N／19＊	rarna／raq＊	ryaliviv＊	¢	ميزان بذر × رقم
$1 / \cdot 09$	9Vबq／／9．	1－va／rva	19	خطا
r / r.	F／9A	F／M		ضريب تغييرات（درصد）

جدول｜｜－مقايسه ميانگَين اثرات ساده ميزان بذر و رقم بروى عملكرد دانه، عملكرد بيولوزيكـ و شاخص برداشت

شاخص برداشت （\％）	$\begin{gathered} \text { عملكرد بيولوريك } \\ (\mathrm{kg} / \mathrm{h}) \end{gathered}$	عملكرد دانه （kg／h）	رقهم	ميزان بذر
$r \cdot 1 \cdot \wedge b$	r．rre	919／ve		－ 9 كيلوكرم در هكتار
rr／rлa	rraqb	lirla		\％
rq／גrb	rafia	1．arb		
$r .19 \Delta b$	birmb	quT／Vc	صدرا	
$r \cdot / \sim b$	rrala	$1.14 b$	هشترود	
rr／．ra	rra．a	$11 . r a$	آذر	

شاخص برد اشت （\％）	$\begin{gathered} \text { عملكرد بيولوزيك } \\ (\mathrm{kg} / \mathrm{h}) \\ \hline \end{gathered}$		رقم	ميزان بذر
rNage	rıavf	入ra／rf	صدرا	
r．rracde	r．99ef	9r．1se	هشترود	99 9 كيلوكرم در هكتار
r．aqbed	rifed	9rf／．de	آذرr	
rr／r ${ }^{\text {reb }}$	rrafbcd	$1.9 r b c$	صدرا	
rr／．．bc	rrorbc	1．v¢bc	هشترود	Ir．
ravea	rersb	irya	「 آذ	
$r 1 / \Delta) b c$	rryscde	$1.10 c d$	صدرا	
rn／ase	rirsa	$1.0 \wedge c$	هشترود	．ها كيلوكرم در هكتار．
ra／rade	rysda	11.96	آ＇ذر	

كاهش يافت. بيشترين عملكرد بيولوزيك
مربوط به ارقام هشت رود با غץآكيلوگرم در هكتار و آذر r با rV\& كیلوگرم در هكتار با ميزان بذر مصرفى •ها اكيلوگرم در هكتار

بيشترين عملكرد دانه با YY\&اكيلوگرم در
هكتار و بالاترين شاخص برداشت با

مصرفى •「اكيلوگرم در هكتار بود.

منابع

امام، ى. دانشگاه شيراز. 97 اص.

جلالى فر، س.، س. موسوى.، م. ر. عبدالهى.، م.ر. چائيحیى و د. مظاهرى.
 برخى ارقام گندم نان با استفاده از شاخص هاى قديم و جديد. فناورى توليدات گیياهى.

مقيمى مفرد.، آ.، ع. افشار، و م.ك.
 مختلف كشت گندم در شرايط ديم بر روى تغييرات مورفولوزيك عملكرد و اجزاى

كيلوگرم در هكتار بدست آمد. بيشترين وزن بود.
نتيجه گَيرى كلى

بيشترين تعداد دانه در سنبله اصلى، تعداد دانه در سنبله فرعى، تعداد دانه در بوته و

وزن هزار دانه از مصرف بذر به ميزان هزاردانه كه از اجزا مهمم عملكرد مىباشد در بين ارقام، مربوط به رقم آذر r با مقدار 9. گV/VA كيلوگرم در هكتار و وزن هزاردانه rV/VI گرم با ميزان بذر مصرفى •זآكيلوگرم در هكتار بود.

با تراكم مطلوب علاوه بر توليد عملكرد بالا حداكثر استفاده از منابع محيطى از جمله آب، هوا، نور و خاى به عمل مىى آيد البته در كشت ديم شرايط متفاوت است، زيرا متوسط رطوبت موجود در خاك از عوامل اصلى تعيين كننده ميزان بذر مصرفى است. طوريكه عملكرد دانه تحت تأثير سطوح مصرف بذر قرار گرفت و با افزايش مصرف بذر
 ابتدا افزايش يافت و پس از آن با توجه به رقابت درون گونه ای بوجود آمده عملكرد

Dena in Yassoj conditions. Journal of Agriculture Sciences and Natural Resources, 8(3): 23-31.

Giunta F., R. Motzo, and G. Pruneddu. 2007. Trends since 1900 in the yield potential of Italian-bred durum wheat cultivars. European Journal of Agronomy, 27: 12- 24.

Guarda, G., S. Padovan, and G. Delogu. 2004. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread- wheat cultivars grown at different nitrogen levels. European Journal of Agronomy, 21: 181-192.

Hiltbrunner, J., B. Streit, and M. Lidgens. 2007. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Research,102: 163171.

Hosseinpour, T., Ahmadi, A., Mohammadi, F., and Drikvand, R. 2015. The effect of seed rate on grain yield and its components of wheat cultivars in rain fed Conditions. Agronomy Journal Pajouhesh \& Sazandegi, 27(105): 101-110.

Jafarnejad, A. 2009. Determination of optimum sowing date for bread wheat

ملى پدافند غير عامل در بخش كشاورزى قشم، هرمز گان.

Darwinkel A. 2008. Patterns of tiller and grain production of winter wheat at widerange of plant sensities. Netherland Journal of Agriculture Science, 26: 383398.

Donaldson, E., F.W. Schillinger, and S.M. Dofing. 2001. Stravproduction and grain yield in relationships witer wheat. Crop Science, 46: 100-106.

Donaldson E., W.E. Schillinger, and S.M. Dofing. 2001. Straw production and grain yield relationship in winter wheat. Crop Science, 41: 100-106.

Elhani S., V. Martos, Y. Rharrabi, C. Royo, and L.F. Garcia del moral. 2007. Contribution of main stem and tillers to durum wheat (Triticum aestivum L. var. durum) grain yield and its components grown in Mediterranean environments. Field Crops Research, 103: 25-35.
-Fathi, G., S.A. Siadat, N. Rosseb, A.R. Abdali-Mashhadi, and F. Ebrahimpoor. 2001. Effect of planting date and seed density on yield components and grain yield of wheat cv.

Zahed, M., Galeshi, S., Latifi, N., Soltani, A., and Calateh, M. 2010. The effect of
plant density on seed yield and yield components in modern and old wheat cultivar. Elactronic Journal of Crop Production, 4(1): 201-215.
(Triticum aestivum L.) cultivars with different flowering habits in Neishabour.

Lioveras, J., Manent, J., Viudas, J., López, A. and Santiveri, P. 2004. Seeding rate influence on yield and yield componentsof irrigated winter wheat in a Mediterranean climate. Agronomy, 96: 1258-1265.

Sofizadeh, C.Z., Rahimian Mashhadi, H., and Deihimfard, R. 2006. The comparison of yield, nitrogen use efficiency and protein of the seed in modern and old wheat (Triticum aestivum L.) cultivars. Iranian Journal of Agricultural Sciences, 1: 13-20. (In Persian with English Summary).

Varga, B., Svečnjak, Z., and Pospisil,

 A. 2001. Winter wheat cultivar performance as affected by production systems in Croatia. Agronomy Journal, 93(5): 961-966.Wood G.A., Welsh J.P., Godwin R.J.,
Taylor J.C., Earl R., Knight S.M.
2003. Real-time measures of canopy size as basis for spatially varying nitrogen.

Biosystems Engineering. 84 (4): 513-
531.

The effect of seed amount consumption on yield and yield components of dryland Wheat cultivars (Triticum aestivum L.) in Qazvin region

S. Sayfzadeh ${ }^{1,}$, S.A. Valadabadi ${ }^{1}$, M. Esmaeily ${ }^{2}$
1. Associate Professor, Department of Agronomy, Takestan Branch, Islamic Azad University, Takestan, Iran.
2. M. Sc student, Department of Agronomy, Takestan Branch, Islamic Azad University, Takestan, Iran.

Abstract

In order to investigate the effect of seed amount consumption on the yield of dryland wheat cultivars, an experiment was conducted based on completely randomized block design in 3 replications in a private farm in Hesar Valiasr (AJ) village of Avaj city in the crop year of 1402-1401. The experimental factors included the amount of seed at the levels: 90, 120 and $150 \mathrm{~kg} /$ ha cultivars in 3 levels: Azar-2, Hashtroud and Sadra. To investigate the agricultural traits at harvesting time, eight plants were randomly selected from each plot. The results of the study showed that the amount of seed consumption had a significant effect on the traits, number of spikes per plant, number of seeds in the main spike, number of seeds in secondary spike, number of seeds per plant and 1000 grains weight. The mean comparison of simple effects show that the highest seed yield, harvest index was related to Azar 2 variety and the highest biological yield was related to Azar 2 and Hashtroud varieties. In the seed consumption rate treatments, the highest biological yield was gained in $150 \mathrm{~kg} / \mathrm{ha}$ of seeds consumption, and the highest seed yield and harvest index was related to $120 \mathrm{~kg} / \mathrm{ha}$ of seeds consumption. The mean comparison interaction effect of seed rate and variety demonstrated that application of $120 \mathrm{~kg} / \mathrm{ha}$ in Azar-2 variety had the highest seed yield ($1226 \mathrm{~kg} / \mathrm{ha}$) compared to $90 \mathrm{~kg} / \mathrm{ha}$ seed application in Sadra variety ($839.3 \mathrm{Kg} / \mathrm{ha}$) as the lowest seed yield, (31.56% increase between 2 treatments). In all evaluated traits, Azar 2 showed superiority over other cultivars.

Keywords: Density, Grain yield, Seed, Variety, Wheat

[^0]
[^0]: * Corresponding author (s.seyfzadeh@tiau.ac.ir)

