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ABSTRACT 
In this paper, an effective numerical method is introduced 

for the treatment of nonlinear two-dimensional Volterra-

Fredholm integro-differential equations. Here, we use the so-

called two-dimensional block-pulse functions.First, the two-

dimensional block-pulse operational matrix of integration and 

differentiation has been presented. Then, by using this 

matrices, the nonlinear two-dimensional Volterra-Fredholm 

integro-differential equation has been reduced to an algebraic 

system. Some numerical examples are presented to illustrate 

the effectiveness and accuracy of the method. 
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Introduction 
An area of increasing scientific interest over the past 

decades is the study of Volterra-Fredholm integro-differential 

equation. This equation is encountered in various applications 

such as physics, mechanics, and applied science [1-4]. A 

general form of the Volterra-Fredholm integral equation can 

be written as: 
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with given supplementary conditions, where U(t, x) is an 

unknown function which should be determined; 

g(t, x) and k(x,t,y,s) are analytical functions, respectively[5]. 

In this paper, we consider the nonlinear function [ (   )] in 

the following form 

 

 ( (   ))    (   ) 
 

where p is a positive integer. With regard to the fact that 

every finite interval can be transformed to [ 0, 1] by linear 

map, without loss of generality, we can consider A1 =A2 = 1 

As we know, the block-pulse functions (BPFs) presented 

by Harmuth [6] are a powerful mathematical tool for solving 

various kinds of integral equations. These functions are a set 

of orthogonal functions with piecewise constant values which 

are defined in the time interval [ 0, T1] as: 
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where i = 0, . . . ,m − 1 with m as a positive integer.The 

solution of Fredholm and Volterra integral equations of the 

second kind have been approximated using BPFs in [7]. 

Maleknejad and Mahmoudi in [8] have applied a combination 

of Taylor and block-pulse functions to solve linear Fredholm 

integral equation. The BPFs and Lagrange interpolating 

polynomials have been used to approximate the solution of 

Volterra’s population model by Marzban et al. [9]. Recently, 

Maleknejad and Mahdiani have applied two dimensional (2D-

BPFs) for solving nonlinear mixed Volterra-Fredholm- 

integral equations [10]. In this paper, we use 2D-BPFs to 

approximate the solution of Equation (1). 

This paper is organized as follows. In section ‘Properties 

of the 2D-BPFs’, the definition and some properties of the 

2D-BPFs are presented. The 2D-BPFs are applied to solve 



IJISSM, 2015, 4(1): 418-423 

 419 

Equation 1 in ‘Applying the method’ section. The error 

analysis of the proposed method has been investigated in 

section ‘The error analysis’. Some numerical results have 

been presented in section ‘Numerical results’ to show 

accuracy and efficiency of the proposed method. Finally, 

some concluding remarks are given in ‘Conclusion’section. 

 

Properties of the 2D-BPFs 
We usually call the block-pulse functions containing two 

variables as two-dimensional block-pulse functions. An 

(m1m2) set of 2D-BPFs are defined in region t ∈[ 0, T1) and 

 x ∈[ 0, T2) as: 
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where i1 = 1, 2, . . . ,m1 and i2 = 1, 2, . . . ,m 2 with positive 

integer values for m1,m2, and h1 = T1/m1 , h2 = T2/m2 .There 

are some properties for 2D-BPFs, e.g. 

disjointness,orthogonality, and completeness. 

 

1. Disjointness 

The two-dimensional block-pulse functions are disjoined with 

each other, i.e. 
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2. Orthogonality 

The two-dimensional block-pulse functions are orthogonal 

with each other, i.e. 
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in the region of ),[ t T  and ),[ x T  where 

, ,  ,. . .,i j m     and , ,  ,. . .,i j m    . 

 

3. Completeness 

For every 
([ ) [ )) ,  ,f L T T     

 when m1 and m2 go to 

infinity, Parseval identity holds: 
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The set of 2D-BPFs may be written as a (m1m2) 

vector  (t,x): 
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Where ( ) [,  ,  ,) [ )t x T T     . From the above 

representation and disjointness property, it follows that 
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where V is an m1m2 vector and  ̃ = diag(V).Moreover, it can 

be clearly concluded that for every (m1m2) × (m1m2) matrix A 
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T
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where  ̂ is an m1m2 vector with elements equal to the 

diagonal entries of matrix A. 

 

2D-BPFs expansion 
A function ([ ) [ )) ,  ,f L T T      may be expanded 

by the 2D-BPFs as: 
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where F is a (m1m2) × 1 vector given by 
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and ( , )t x is defined in (8). 

 

The block-pulse coefficients fi1,i2 are obtained as: 
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such that the error between f (t, x) and its block-pulse 

expansion (13) in the region of  

 

t ϵ [0,T1) , y ϵ [0,T2) , i.e, 
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is minimal. 
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A function of four variables ( , , , )k t s x y on [0,T1)× [0,T2)× 

[0,T3)× [0,T4) may be approximated with respect to BPFs 

such as 

 

( , , , ) ( , ) ( , ) ( )Tk t s x y t x K s y    

 

where ( , )t x  and ( , )s y are 2D-BPF vectors of 

dimension m1m2 and m3m4, respectively, and K is a (m1m2) 

×(m3m4) two dimensional block-pulse coefficient matrix. 

Also, the positive integer powers of a function u(s, y) may be 

approximated by 2D-BPFs as: 

 

[ ( , )] [ ( , ) ] ( , ) , ( )p T p Tu s y s y u s y      

 

where   is a column vector, the elements of which are pth 

power of the elements of the vector U. 

 

Operational matrix of integration 

The integration of the vector ( , )t x defined in (3) may be 

obtained as: 
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in which      , is i th component. Thus  
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where P is a (m2)×(m2)  matrix and is called operational 

matrix of double integration and can be denoted by P=(
  

 
)P2 , 
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So the double integral of very function U(x,t) can be 

approximate by : 
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By similar method ∫    (   )    
 

 
 in terms of 2D-BPFs as: 
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Operationalmatrix of differentiation 
We now need to compute the operational matrix of 

differentiation.For this, let 
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The  expansion of function U(x,t) over Dt  whit respect to

, ( , )i j x t  , i,j =0,1,…,m-1, can be written as:  
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given as follows. 
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Applying the method 
In this section, we solve the nonlinear two-dimensional 

Volterra-Fredholm integro-differential equations using 2D-

BPFs. As we have shown before, we can write 
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Using the proposed equations in section ‘Properties of the 

2D-BPFs’ to approximate the partial derivatives, we have                             
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The error analysis 
Here, we investigate the representation error of a 

differentiable function f (t, x) when it is represented in a 

series of 2D-BPFs over the region D=[0,1)×[0,1). For this, we 

briefly review and use some results from [10,11]. For details, 

see the mentioned references.We put  m1=m2=m, h1=h2=
 

 
 

We define the representation error between f(x,t) and its 2D-

BPF expansion over every subregion Di1,i2 as follows: 
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Where '( , ) [ . ]f t x M   . Error between ( , )f t x  and 

its 2D-BPF expansion, ( , )mf t x , over the region D can be 

obtained as follows: 
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Using Equations 44 and 45, it can be shown that (see [10,11]) 
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Hence, 1
( , ) ( ).e t x o

m
  Similar to the proposed method 

in [10,11], suppose that ( , )f t x is approximated by 
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Then, from Equation 38 for ( , )t x ϵ Di1,i2, we have  
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There fore, from Equation 47, it can be shown that 
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For an error estimation, reconsider the  following nonlinear 

two- dimensional Volterra-Fredholm integro-diffrential 

equation  
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Finally, the proposed method in this paper can be applied to 

approximate em(t, x) in Equation 50. 

 

Numerical results 
In this section, three examples are given to show the 

accuracy of the proposed method. For the all examples,we 

consider the supplementary conditions from the exact 

solution. The absolute error is computed for m = m1 = m2 

terms of 2D-BPF series in all examples. Allcomputations are 

implemented in MATLAB software ona personal computer. 

 

Example1. For the example, consider the following equation 

[1]: 

 

( , ) ( , )
( , ) ( , )xu x t u x t

x tu s y dsdy g x t
x t

 
 

  

 
  

   
, , [ , ],x t     

 

Table 1 Absolute errors for example 1 

(x, t) |e5,5(x,y)| [1] |e6,6(x,  y)| [1] m = 32 m = 64 

(0.01, 0.01) 1.666 ×10−7 1.666 ×10−7 2.238 ×10−8 2.124 ×10−8 

(0.02, 0.02) 1.333 ×10−6 1.333 ×10−6 7.980 ×10−8 7.742 ×10−8 

(0.1, 0.1) 1.670 ×10−4 1.666 ×10−4 6.809 ×10−6 4.714 ×10−6 

(0.2, 0.2) 1.347 ×10−3 1.332 ×10−3 2.334 ×10−4 2.230 ×10−4 

 

Where  
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( , ) ( ) exp( ),g x t x esp t x t x t t  
  

 

 

 

With subject to the initial conditions  
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u x t
u t t
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The exact solution of this problem is ( , ) exp( ).u t x x t  

The numerical results of problem is shown in Table 1. 

 

Example 2. In this example, we consider a two dimensional 

nonlinear Volterra-Fredholm integro-diffrential equation as 

follows: 

 

( , )
( , ) ( cos ) ( , ) ( , )xu x t

u x t y z u y z dydz g x t
t


 

 


   

  
,   , [ , ]x t    , 

 

 

Table 2 Absolute errors for example 2 

(x, t) m = 16 m = 32 m = 64 

(0.01, 0.01) 5.136 ×10−7 8.903 ×10−8 7.378 ×10−8 

(0.02, 0.02) 1.307 ×10−6 2.918 ×10−7 8.703 ×10−8 

(0.1, 0.1) 5.563 ×10−5 1.809 ×10−6 1.714 ×10−6 

(0.2, 0.2) 2.973 ×10−3 1.334 ×10−4 1.230 ×10−4 

 

 

Where 

4 4 3 31 1 1
( , ) sin cos sin .

8 8 9
g x t x t t x t x t  

 
 

With supplementary conditions,  

 

( ,0) 0, ( ,0) .
u

u x x x
t


 

  
 

The exact solution of this problem is u(x, t) = x sin t. In Table 

2, the numerical results are presented. 

 

Conclusion 
In this paper, we have successfully approximated the 

solution of the form (1) of nonlinear Volterra-Fredholm 

integrodifferential equations. To this end, we have used some 

orthogonal functions called block-pulse functions. Moreover, 

the error of the proposed method is analyzed. For more 

investigation, some examples have been presented. As the 

numerical results showed, the proposed method is an 

effective method to solve the Volterra-Fredholm 

integrodifferential equations. 

 

 

 

 

 

References 
1) Darania, P, Shali, J, Ivaz, K: New computational method 

for solving some 

2) 2-dimensional nonlinear Volterra-Fredholm-Fredholm 

integro-differential equations. Numer.Algor. 57, 125–147 

(2011) 

3) Jerry, AJ: Introduction to Integral Equations with 

Applications, 2nd ed. 

4) Wiley, New York (1999) 

5) Kress, R: Linear Integral Equations. Springer, Berlin 

(1989) 

6) Tari, A, Rahimi, MY, Shahmorad, S, Talati, F: 

Development of the tau 

7) method for the numerical solution of two-dimensional 

linear Volterra 

8) integro-differential equations. Comput. Methods Appl. 

Math. 9, 421–435,(2009) 

9) Brunner, H: Collocation Methods for Volterra-Fredholm-

Fredholm Integral and RelatedFunctional Equations. 

Cambridge University Press, Cambridge (2004) 

10) Harmuth, HF: Transmission of Information by 

Orthogonal Functions. 

11) Springer, New York (1969) 

12) Kung, FC, Chen, SY: Solution of integral equations 

using a set of block 

13) pulse functions. J. Franklin I. 306, 283–291 (1978) 

14) Maleknejad, K, Mahmoudi, Y: Numerical solution of 

linear Fredholm 

15) integral equation by using hybrid Taylor and block–pulse 

functions. Appl. 

16) Math. and Comput. 149, 799–806 (2004) 

17) Marzban, HR, Hoseini, SM, Razzaghi, M: Solution of 

Volterra’s population model via block-pulse functions 

and Lagrange-interpolating polynomials.Math. Meth. 

Appl. Sci. 32, 127–134 (2009) 

18) Maleknejad, K, Mahdiani, K: Solving nonlinear mixed 

Volterraintegral equations with the two dimensional 

block-pulse functions using 

19) direct method. Commun. Nonlinear Sci. Numer. Simulat. 

16, 3512–3519 

20) (2011) 

21) Maleknejad, K, Sohrabi, S, Baranji, B: Application of 

2D-BPFs to nonlinear 

22) integral equations. Commun. Nonlinear Sci. Numer. 

Simulat. 15, 527–535 (2010) 

 

 


