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Abstract 

We provide a computer method for solving fractional order nonlinear Fredholm integro-differential 

equations in this study. This method transforms the core issue into a set of algebraic equations using 

Bernoulli wavelets. The operational Bernoulli wavelet with fractional integration is obtained and used. 

It works particularly well for technical applications. The convergence of the suggested strategy is the 

most crucial aspect to note here. The collocation approach for this issue has a unique approximation 

since these requirements can be shown using mathematical principles and matrices theory. Finally, some 

pertinent examples for which the exact solution is known are used in numerical simulation to confirm 

the effectiveness and relevance. Alternatively, these examples will demonstrate the viability and 

correctness of the suggested approach. 

Keywords: Fractional calculus, Bernoulli wavelets, Fredholm integro-differential equations, collocation 

method.

1- Introduction  

Differential equations (DEs) are a subfield of 

mathematics having several uses in science and 

engineering. Based on fractional order integrals 

and derivatives, fractional differential equations 

(FDEs) are a relatively recent branch of applied 

mathematics. 

FDEs and fractional integro-differential 

equations have been used to model a variety of 

physical and chemical processes in recent years. 

Actually, the use of fractional calculus provided 

a more accurate representation of complex 

natural phenomena [1, 2], such as non-

Brownian motion, signal processing[3], system 

identification [4], control theory [5], 

viscoelastic materials [6], buckling analysis [7], 

stress theories [8], and polymers [8, 9]. 

There has been a great deal of interest in 

developing numerical techniques for solving the 

many forms of FDEs and FIDEs that have been 

proposed for use in standard models. The 

following are some techniques for solving 

FDEs that have been proposed: Adomian 

decomposition method (ADM) [10-12], 

Laplace decomposition method (LDM) [12], 

Homotopy perturbation method (HPM) [13-16], 

Homotopy analysis method (HAM) [17, 18], 

Iterative method [18, 7], Grunwold-Letnikov 

method [19], Diethelm algorithm [20], Spectral 

method [21]. 
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Wavelet theory has been used in several 

technological disciplines since it was first 

developed. On the foundation of wavelets, 

which are localized functions, energy-bounded 

functions, such as 𝐿2(ℝ)are constructed (R). In 

order to solve fractional differential equations, 

operational matrices of fractional order 

integration for the Legendre wavelet [22], 

Chebyshev wavelet [23-25], Haar wavelet [26], 

cosine and sine (CAS) wavelet [27, 28] and the 

second kind Chebyshev wavelet [29, 30] have 

recently been constructed. For the purpose of 

producing operational matrices for fractional 

order integration, all of the wavelet techniques 

previously discussed use Block-Pulse functions. 

In order to solve fractional integro-differential 

equations [28, 31], wavelets have been used in 

a variety of methods. Legendre wavelets were 

used in the Meng et al. method's [31] resolution 

of fractional integro-differential equations. 

Fractional integro-differential equations with 

weakly singular kernels were solved using CAS 

wavelet techniques by Yi and Huang [28]. 

An efficient method based on Haar wavelets 

and Block-pulse functions was developed by 

Saeedi [32] to solve nonlinear Fredholm 

integro-differential equations of fractional 

order. Heydari [20] developed a successful 

Chebyshev wavelets method for solving a class 

of nonlinear fractional integro-differential 

equations across a wide interval. In [33] a 

numerical method for solving a class of 

nonlinear mixed Fredholm-Volterra integro-

differential equations of fractional order is 

presented. 

In this paper, a novel operational method for the 

solution of the following class of fractional 

order nonlinear Fredholm integro-differential 

equations is presented. 

𝐷𝑞𝑓(𝑥) − 𝜆∫  
1

0

𝑘(𝑥, 𝑡)[𝑓(𝑡)]𝑝𝑑𝑡

= 𝑔(𝑥)                               (1.1)  

 𝑝 > 1 

with these supplementary conditions: 

𝑓(𝑖)(0) = 𝛿𝑖 ,            𝑖 = 0,1, … , 𝑟 − 1     

     𝑟 − 1 < 𝑞 ≤ 𝑟 𝑟 ∈ ℕ 

where 𝑔 ∈ 𝐿2([0,1)), 𝑘 ∈ 𝐿2([0,1)2) are 

known functions, 𝑓(𝑥) is unknown function, 𝐷𝑞 

is the Caputo fractional differential operator and 

𝑝 is a positive integer.  

By extending the solution as Bernoulli wavelets 

with unknown coefficients, the collocation 

method reduces the issue to a set of algebraic 

equations. The primary characteristic of an 

operational approach is the transformation of a 

differential problem into an algebraic equation.  

2- Preliminaries 

2-1- Fractional operators 

Fractional integration and derivatives have 

several meanings. The Riemann- Liouville 

definition and the Caputo definition are the 

most often used definitions of a fractional 

integration and derivative, respectively [34]. 

Definition 2.1. The Riemann-Liouville 

fractional integral operator of order 𝛼 is defined 

as 

𝐼𝛼𝑢(𝑡) =
1

Γ(𝛼)
∫  
𝑡

0

  (𝑡 − 𝑠)𝛼−1𝑢(𝑠)𝑑𝑠        (2.1) 

Where 𝛼 > 0 

Definition 2.2. The Caputo definition of 

fractional differential operator is given by 

𝐷𝛼𝑢(𝑡)

=

{
 

 
𝑑𝑟𝑢(𝑡)

𝑑𝑡𝑟
𝛼 = 𝑟 ∈ ℕ

1

Γ(𝑟 − 𝛼)
∫  
𝑡

0

 
𝑢𝑟(𝑠)

(𝑡 − 𝑠)𝛼−𝑟+1
𝑑𝑠 0 ≤ 𝑟 − 1 < 𝛼 < 𝑟

     (2.2) 

The Caputo fractional derivatives of order 𝛼 is 

also defined as 𝐷𝛼𝑢(𝑡) = 𝐼𝑟−𝛼𝐷𝑟𝑢(𝑡) is the 

usual integer differential operator of order 𝑟. 

The relation between the Riemann-Liouville 

integral operator 𝐼𝛼 and Caputo differential 

operator 𝐷𝛼 is given by the following 

expressions: 

 𝐷𝛼𝐼𝛼𝑢(𝑡) = 𝑢(𝑡)                                         (2.3) 

 𝐼𝛼𝐷𝛼𝑢(𝑡) = 𝑢(𝑡) − ∑  𝑟−1
𝑘=0  𝑢

(𝑘)(0+)
𝑡𝑘

𝑘!
   (2.4) 

where  𝑡 > 0. 
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2-2- Bernoulli polynomials 

Bernoulli polynomials of order 𝑚 can be 

defined by [35] 

𝛽𝑚(𝑡) =∑  

𝑚

𝑖=0

(
𝑚
𝑖
)𝛼𝑚−𝑖𝑡

𝑖                            (2.5) 

where 𝛼𝑖, 𝑖 = 0,1,… ,𝑚 are Bernoulli numbers. 

These numbers are a sequence of signed rational 

numbers which arise in the series expansion of 

trigonometric functions [35-38] and can be 

defined by the identity 

𝑡

𝑒𝑡−1
= ∑  ∞

𝑖=0 𝛼𝑖
𝑡𝑖

𝑖!
                                        (2.6) 

Table 1: Bernoulli polynomials and numbers 

𝑖 
Bernoulli 

numbers(𝛼𝑖) 
𝑚 

Bernoulli 

polynomials(𝛽𝑚(𝑡)) 

0 1 0 1 

1 −1
2⁄  1 𝑡 −

1

2
 

2 1
6⁄  2 𝑡2 − 𝑡 + 1 6⁄  

3 0 3 𝑡3 −
3

2
𝑡2 +

1

2
𝑡 

 

The first few Bernoulli polynomials and 

numbers are listed in Table 1. Bernoulli 

polynomials satisfy the following formula [34] 

∫  
1

0

𝛽𝑛(𝑡)𝛽𝑚(𝑡)𝑑𝑡

= (−1)𝑛−1
𝑚! 𝑛!

(𝑚 + 𝑛)!
𝛼𝑛+𝑚,  𝑚, 𝑛 ≥ 1.      (2.7) 

According to [39], Bernoulli polynomials form 

a complete basis over the interval [0, 1]. 

2-3- Function approximation by using of 

Bernoulli polynomials 

We can approximate 𝑓(𝑡) by using Bernoulli 

polynomials as 

𝑓(𝑥) ≃ ∑  𝑀−1
𝑖=0 𝑎𝑖𝛽𝑖(𝑡) = 𝐴

𝑇𝐵(𝑡)              (2.8) 

where 𝐵(𝑡) = [𝛽0(𝑡), 𝛽1(𝑡), … , 𝛽𝑀−1(𝑡)]
𝑇 

and 𝐴 = [𝑎0, 𝑎1, … , 𝑎𝑀−1]
𝑇 

2-4- Bernoulli wavelets 

 In recent years, the various basic functions 

have been used to estimate the solution of 

integral equations. In this work, we review 

construction of a basic for 𝐿2[0, 1] that this 

basic consist of orthonormal system Bernoulli 

wavelets 𝜓𝑛,𝑚(𝑡) = 𝜓(𝑘, �̂�,𝑚, 𝑡). These 

wavelets have four arguments: �̂� = 𝑛 − 1 ,

𝑛 = 1,2,3, … , 2𝑘−1, 𝑘 can assume any positive 

integer, 𝑚 is the order for Bernoulli 

polynomials and 𝑡 is the normalized time. We 

define them on interval [0,1) as follows 

𝜓𝑛,𝑚(𝑡) =

{2
𝑘−1

2 �̂�𝑚(2
𝑘−1𝑡 − �̂�)

�̂�

2𝑘−1
≤ 𝑡 <

�̂�+1

2𝑘−1

0  otherwise 
      (2.9) 

with 

�̂�𝑚(𝑡)

=

{
 

 
1                                   , 𝑚 = 0
1

√
(−1)𝑚−1(𝑚!)2

(2𝑚)!
𝛼2𝑚

𝛽𝑚(𝑡), 𝑚 > 0     (2.10) 

where 𝑚 = 0,1,2,… ,𝑀 − 1 and 𝑛 =

1,2,… , 2𝑘−1. The coefficient 
1

√
(−1)𝑚−1(𝑚!)2

(2𝑚)!
𝛼2𝑚

 is 

for normality. 

Definition 2.3. A function 𝜓 ∈ 𝐿2 is called an 

orthonormal wavelet if the collection of 

functions 𝜓𝑛,𝑚(𝑡), 𝑛,𝑚 ∈ ℤ, as defined in 

𝜓𝑛,𝑚(𝑡):= 2
𝑛/2𝜓(2𝑗𝑡 − 𝑘)                           (2.11) 

is an orthonormal basis of 𝐿2 [28].  

According to Theorem 4.2. in [29] and 

Definition 3.1 Bernoulli wavelets is a basis. 

 

2-5- Expanding Bernoulli wavelet via the 

Bernoulli polynomials 

The Bernoulli wavelets may be expanded into 

an M-term Bernoulli polynomials as 

Ψ(𝑡) = Φ𝐵(𝑡)                                          (2.12) 
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where Φ is the transformation matrix of the 

Bernoulli wavelet to the Bernoulli polynomials. 

For example, E. Keshavarz et al. in [40] obtain 

in case M = 3 and k = 2: 

Φ = {
𝜑1 = [𝑎𝑖𝑗]6×3 0 ≤ 𝑡 <

1

2

𝜑2 = [𝑏𝑖𝑗]6×3
1

2
≤ 𝑡 < 1

           (2.13) 

They also obtain Φ in more general case for 

arbitrary M and k = 2. for more details, see in 

[40]. 

 

2-6- Expanding Bernoulli polynomials via 

BPFs 

First, let us expand 𝑖-th Bernoulli polynomials 

by using of BPFs: 

𝛽𝑖(𝑡) ≃ ∑  𝑚′−1
𝑗=0 𝑒𝑗𝑏𝑗(𝑡)                                 (2.14) 

where 𝑒𝑗 = 𝑚
′∫0

1
 𝛽𝑖(𝑡)𝑏𝑗(𝑡)𝑑𝑡. By using of 

BPFs properties, we have 

𝑒𝑗 = 𝑚
′∫  

1

0

 𝛽𝑖(𝑡)𝑏𝑗(𝑡)𝑑𝑡 = 𝑚
′∫  

𝑗+1
𝑚′

𝑗
𝑚′

 𝛽𝑖(𝑡)𝑑𝑡 

= 𝑚′ ∫  
𝑗+1

𝑚′

𝑗

𝑚′

 ∑  𝑖
𝑛=0   (

𝑖
𝑛
)𝛼𝑖−𝑛𝑡

𝑛𝑑𝑡                   (2.15) 

= 𝑚′∑  𝑖
𝑛=0   [(

𝑖
𝑛
)𝛼𝑖−𝑛 ∫  

𝑗+1

𝑚′

𝑗

𝑚′

  𝑡𝑛] 𝑑𝑡           (2.16) 

= 𝑚′∑  𝑖
𝑛=0   [(

𝑖
𝑛
)𝛼𝑖−𝑛 [

𝑡𝑛+1

𝑛+1
] 𝑗
𝑚′

𝑗+1

𝑚′

]               (2.17)  

= 𝑚′∑  

𝑖

𝑛=0

  [(
𝑖
𝑛
)

𝛼𝑖−𝑛
(𝑚′)𝑛+1(𝑛 + 1)

[((𝑗 + 1)𝑛+1

− 𝑗𝑛+1)]] 

= 𝑚′∑  

𝑖

𝑛=0

  [(
𝑖
𝑛
)

𝛼𝑖−𝑛
(𝑚′)𝑛+1(𝑛 + 1)

[∑  

𝑛

𝑟=0

  (
𝑛 + 1
𝑟

) 𝑗𝑟]] 

Now, we can obtain 𝐸 transform matrix that as 

follows: 

𝐵(𝑡) = 𝐸𝐵𝑚′(𝑡)                                            (2.18) 

where 𝐸 = [𝑒𝑗]. 

 

3- Function approximation by using 

Bernoulli wavelets  

So, suppose that 𝑓 be an arbitrary function in 

𝐿2([0,1]), there exist the unique coefficients 

𝑐1,0, 𝑐1,1, … , 𝑐2𝑘−1,𝑀−1 such that 

𝑓(𝑡) ≃ ∑  

2𝑘−1

𝑛=1

∑  

𝑀−1

𝑚=0

𝑐𝑛,𝑚𝜓𝑛,𝑚(𝑡)

= 𝐶𝑇Ψ(𝑡)                           (3.2) 

where 𝑇 indicates transposition, 𝐶 and Ψ(𝑡) are 

2𝑘−1𝑀 × 1 matrices given by 

𝐶 = [𝑐1,0, 𝑐1,1, … , 𝑐1,𝑀−1, 𝑐2,0, 𝑐2,1, …, 

𝑐2,𝑀−1, … , 𝑐2𝑘−1,0, … , 𝑐2𝑘−1,𝑀]
𝑇                    (3.3)   

Ψ(𝑡) = [𝜓1,0(𝑡), 𝜓1,1(𝑡),… , 𝜓1,𝑀−1(𝑡), …, 

𝜓2𝑘−1,0(𝑡), … , 𝜓2𝑘−1,𝑀(𝑡)]
𝑇                (3.4) 

 

To compute 𝐶, we must evalute two matrices as 

follows: 

 F matrix is 

𝐹 = [𝑓1,0, 𝑓1,1, … , 𝑓1,𝑀−1, 𝑓2,0, 𝑓2,1, …, 

𝑓2,𝑀−1, … , 𝑓2𝑘−1,0, … , 𝑓2𝑘−1,𝑀]
𝑇      (3.5) 

where 𝑓𝑖,𝑗 = ∫0
1
 𝑓(𝑡)𝜓𝑖,𝑗(𝑡)𝑑𝑡. 

 D is a matrix of order 2𝑘−1𝑀 ×

2𝑘−1𝑀  𝑎𝑛𝑑 𝐷 = [𝑑𝑛,𝑚
𝑖,𝑗
],  where 

  𝑑𝑛,𝑚
𝑖,𝑗

= ∫  
1

0

𝜓𝑖,𝑗(𝑡)𝜓𝑛,𝑚(𝑡)𝑑𝑡                    (3.6) 

Using Eq. (3.2) we obtain 

𝑓𝑖,𝑗 = ∑  

2𝑘−1

𝑛=1

∑  

𝑀−1

𝑚=0

𝑐𝑛,𝑚∫  
1

0

𝜓𝑛,𝑚(𝑡)𝜓𝑖,𝑗(𝑡)𝑑𝑡

= ∑  

2𝑘−1

𝑛=1

∑  

𝑀−1

𝑚=0

𝑐𝑛,𝑚𝑑𝑛,𝑚
𝑖,𝑗

 

Therefore 

𝐹𝑇 = 𝐶𝑇𝐷 ⟹ 𝐶 = 𝐹𝑇𝐷−1                  (3.7) 
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4- Operational matrix  

4-1- Bernoulli operational matrix of the 

fractional integration 

The Riemann-Liouville fractional integration of 

the vector 𝐵(𝑡) can be expressed by 

𝐼𝑞𝐵(𝑡) = 𝐹(𝑞)𝐵(𝑡)                                     (4.1)     

where 𝐹(𝑞) is the 𝑀 ×𝑀 Riemann-Liouville 

operational matrix of integration. we have 

𝐼𝑞𝛽𝑖(𝑡)  = 𝐼𝑞 (∑  𝑖
𝑟=0   (

𝑖
𝑟
)𝛼𝑖−𝑟𝑡

𝑟) 𝑡𝑟+𝑞

= ∑  𝑖
𝑟=0   (

𝑖
𝑟
) 𝛼𝑖−𝑟𝐼

𝑞𝑡𝑟
=

∑  𝑖
𝑟=0  

𝑖!𝛼𝑖−𝑟

(𝑖−𝑟)!Γ(𝑟+1+𝑞)
 = ∑  𝑖

𝑟=0  𝑏𝑖,𝑟
(𝑞)
𝑡𝑟+𝑞        (4.2) 

where 

𝑏𝑖,𝑟
(𝑞)
=

𝑖!𝛼𝑖−𝑟

(𝑖−𝑟)!Γ(𝑟+1+𝑞)
                                             (4.3) 

Assume 𝑡𝑞+𝑟 can be expanded in terms of 

Bernoulli polynomials 

𝑡𝑞+𝑟 ≃ ∑  𝑀−1
𝑗=0 𝑐𝑟,𝑗𝛽𝑗(𝑡)                                     (4.4)   

by Substituting Eq. (5.3), we have 

𝐼𝑞𝛽𝑖(𝑡) =∑  

𝑖

𝑟=0

𝑏𝑖,𝑟
(𝑞)
𝑡𝑟+𝑞

=∑  

𝑖

𝑟=0

𝑏𝑖,𝑟
(𝑞)

∑  

𝑀−1

𝑗=0

𝑐𝑟,𝑗𝛽𝑗(𝑡)

= ∑  

𝑀−1

𝑗=0

(∑  

𝑖

𝑟=0

 𝜃𝑖,𝑗,𝑟)𝛽𝑗(𝑡) 

where 

𝜃𝑖,𝑗,𝑟 = 𝑏𝑖,𝑟
(𝑞)
𝑐𝑟,𝑗                                                (4.5) 

Eq. (5.4) can be rewritten as 

𝐼𝑞𝛽𝑖(𝑡)

≃ [∑  

𝑖

𝑟=0

 𝜃𝑖,0,𝑟,∑  

𝑖

𝑟=0

 𝜃𝑖,1,𝑟 , … ,∑  

𝑖

𝑟=0

 𝜃𝑖,𝑀−1,𝑟]𝐵(𝑡) 

where   𝑖 = 0,1, … ,𝑀 − 1. Therefore, we have 

𝐹𝑞 = 

(

 
 
 
 
 

𝜃0,0,0 𝜃0,1,0 … 𝜃0,𝑀−1,0

∑ 

1

𝑟=0

 𝜃1,0,𝑟 ∑ 

1

𝑟=0

 𝜃1,1,𝑟 … ∑  

1

𝑟=0

 𝜃1,𝑀−1,𝑟

⋮ ⋮ ⋱ ⋮

∑  

𝑀−1

𝑟=0

 𝜃𝑀−1,0,𝑟 ∑  

𝑀−1

𝑟=0

 𝜃𝑀−1,1,𝑟 … ∑  

𝑀−1

𝑟=0

 𝜃𝑀−1,𝑀−1,𝑟
)

 
 
 
 
 

 

 

5- Bernoulli wavelet operational matrix of 

the fractional integration 

We now derive the Bernoulli wavelet 

operational matrix of the fractional integration. 

Let 

𝐼𝑞Ψ(𝑡) = 𝑃(𝑞)Ψ(𝑡)                                       (4.6) 

where matrix 𝑃(𝑞) is called the Bernoulli 

wavelet operational matrix of the fractional 

integration. Using Eq. (4.1) and Eq. (2.12) we 

get 

𝐼𝑞Ψ(𝑡) = 𝐼𝑞Φ𝐵(𝑡) = Φ𝐼𝑞𝐵(𝑡)

= Φ𝐹(𝑞)𝐵(𝑡)                     (4.7) 

From Eq. (4.6) and Eq. (4.7) we have 

𝑃(𝑞)Ψ(𝑡) = Φ𝐹(𝑞)𝐵(𝑡)                    (4.8) 

From Ψ(𝑡) = Φ𝐵(𝑡), So 

𝑃(𝑞)Φ𝐵(𝑡) = Φ𝐹(𝑞)𝐵(𝑡)                  (4.9) 

Then, the Bernoulli wavelet operational matrix 

of the fractional integration 𝑃(𝑞) is given by 

𝑃(𝑞) = Φ𝐹(𝑞)Φ−1                    (4.10) 

5-1- Expanding the integral part of the main 

equation via Bernoulli wavelets 

Consider Eq. (1.1), the two-variable function 

𝑘 ∈ 𝐿2([0,1)2) can be approximated as: 
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𝑘(𝑥, 𝑡)

≃ ∑  

2𝑘−1

𝑛=1

∑  

𝑀−1

𝑙1=0

∑  

2𝑘−1

𝑚=1

∑  

𝑀−1

𝑙2=0

𝑘𝑖,𝑗𝜓𝑛,𝑙1(𝑥)𝜓𝑚,𝑙2(𝑡) 

Or in matrix form 

𝑘(𝑥, 𝑡) ≃ Ψ𝑇(𝑥)𝐾Ψ(𝑡),  𝐾 = [𝑘𝑖𝑗]            (5.1) 

According to [40]. 

5-2- Expanding the nonlinear part under 

integral of the main equation 

By using Eq. (6.5), we have 𝑓(𝑥) ≅ 𝑎𝐵𝑚′(𝑥). 

From the disjoint property of BPFs, we have: 

[𝑓(𝑥)]2 ≅ [𝑎𝐵𝑚′(𝑥)]2 = [𝑎0𝑏0(𝑥) + ⋯+

𝑎𝑚′−1𝑏𝑚′−1(𝑥)]
2 = 𝑎0

2𝑏0(𝑥) + ⋯+

𝑎𝑚′−1
2 𝑏𝑚′−1                                                         (5.2) 

So 

[𝑓(𝑥)]2 ≅ [𝑎0
2 + 𝑎1

2 +⋯+ 𝑎𝑚′−1
2 ]𝐵𝑚′(𝑥)

= �̂�2𝐵𝑚′(𝑥)                       (5.3) 

And it is easy to show by induction that: 

[𝑓(𝑥)]𝑝 ≅ [𝑎0
𝑝
+ 𝑎1

𝑝
+⋯+ 𝑎

𝑚′−1
𝑝

]𝐵𝑚′(𝑥)

= �̂�𝑝𝐵𝑚′(𝑥)                       (5.4) 

By using of above calculations, we have: 

∫  
1

0
 𝑘(𝑥, 𝑡)[𝑓(𝑡)]𝑝𝑑𝑡                      (5.5) 

        = ∫  
1

0
 Ψ𝑇(𝑥)𝐾Ψ(𝑡)�̂�𝑝𝐵𝑚′(𝑡)𝑑𝑡                  

= ∫  
1

0
 Ψ𝑇(𝑥)𝐾Ψ(𝑡)𝐵𝑚′

𝑇 (𝑡)�̂�𝑝
𝑇𝑑𝑡               (5.6) 

 = ∫  
1

0

 Ψ𝑇(𝑥)𝐾Φ𝐵(𝑡)𝐵𝑚′
𝑇 (𝑡)�̂�𝑝

𝑇𝑑𝑡

 = ∫  
1

0

 Ψ𝑇(𝑥)𝐾Φ𝐸𝐵𝑚′(𝑡)𝐵𝑚′
𝑇 (𝑡)�̂�𝑝

𝑇𝑑𝑡

 

= Ψ𝑇(𝑥)𝐾Φ𝐸 ∫  
1

0
 𝐵𝑚′(𝑡)𝐵𝑚′

𝑇 (𝑡)�̂�𝑝
𝑇𝑑𝑡       (5.7) 

Now, we simplify the integral part of above 

calculations: 

∫  
1

0

 𝐵𝑚′(𝑡)𝐵𝑚′
𝑇 (𝑡)�̂�𝑝

𝑇𝑑𝑡 

= ∫  
1

0

  [
𝑏0(𝑡) ⋯ 0
⋮ ⋱ …
0 ⋯ 𝑏𝑚′−1(𝑡)

] [

𝑎0
𝑝

⋮
𝑎
𝑚′−1
𝑝

] 𝑑𝑡 

= ∫  
1

0

  [𝑎0
𝑝
𝑏0(𝑡), 𝑎1

𝑝
𝑏1(𝑡),⋯ , 𝑎𝑚′−1

𝑝
𝑏𝑚′−1(𝑡)]

𝑇
𝑑𝑡 

=
1

𝑚′ [𝑎0
𝑝
, 𝑎1
𝑝
, ⋯ , 𝑎

𝑚′−1
𝑝

]
𝑇
=

1

𝑚′ �̂�𝑝               (5.8) 

Then, we have 

∫  
1

0
𝑘(𝑥, 𝑡)[𝑓(𝑡)]𝑝𝑑𝑡 =

1

𝑚′Ψ
𝑇(𝑥)𝐾Φ𝐸�̂�𝑝  (5.9) 

by substituting Eq. (5.9) in Eq. (1.1) 

Ψ𝑇(𝑥)𝑐 − 𝜆
1

𝑚′Ψ
𝑇(𝑥)𝐾Φ𝐸�̂�𝑝 = Ψ

𝑇(𝑥)𝑔   (5.10) 

by using of collocation points as zeros of 

Chebyshev polynomials, we can be reduced Eq. 

(5.10) to a system of algebraic equations that be 

solved by numerical method. 

6- Numerical solution  

In this section we present the numerical solution 

for a class of nonlinear fractional Fredholm 

integro-differential equations. 

𝐼𝑞𝑓(𝑥) − 𝜆∫  
1

0

𝑘(𝑥, 𝑡)[𝑓(𝑡)]𝑝𝑑𝑡   𝑝 > 1   (6.1) 

Now, Let: 

𝐷𝑞𝑓(𝑥) ≅ 𝑐𝑇Ψ(𝑥)                          (6.2) 

For simplicity, we can assume that 𝛿𝑖 = 0 in Eq. 

(1.1). Hence by using Eq. (4.6) we have 

𝑓(𝑥) ≅ 𝑐𝑇𝑃(𝑞)Ψ(𝑥)                      (6.3) 

According to Eq. (2.12), from above equation 

we get: 

𝑓(𝑥) ≅ 𝑐𝑇𝑃(𝑞)Φ𝐵(𝑥)                   (6.4) 

By using of expanding 𝐵(𝑥) via 𝐵𝑚′(𝑥), we 

have 
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𝑓(𝑥) ≅ 𝑐𝑇𝑃(𝑞)Φ𝐸𝐵𝑚′(𝑥)                 (6.5) 

Define 

𝑎 = [𝑎0, 𝑎1, … , 𝑎𝑚′−1] = 𝑐
𝑇𝑃(𝑞)Φ𝐸        (6.6)  

Therefore, it can be written 

𝑓(𝑥) ≅ 𝑎𝐵𝑚′(𝑥)                                          (6.7) 

7- Convergence of method 

In this section, we first prove that when 𝑘 or 𝑚 

tends to infinity, the approximation of a 

function by Bernoulli wavelet bases converges 

to the function itself, then we converge the 

method. 

Lemma 7.1. Assumption 𝑓 ∈ 𝑐𝑚[0,1] and 

𝑓(𝑡) ≃ 𝑓0(𝑡) = ∑  2𝑘−1
𝑛=1  ∑  𝑀−1

𝑚=0   𝑐𝑛,𝑚𝜓𝑛,𝑚(𝑡) =

𝐶𝑇Ψ(𝑡)                                                               (7.1) 

If  𝑠𝑚 = span {𝛽0(𝑡), 𝛽1(𝑡), … , 𝛽𝑚−1(𝑡)} is a 

base for space of system, we can extend 𝑓(𝑡) as 

follow: 

𝑓𝑚(𝑡) = ∑  𝑚−1
𝑖=0  𝑎𝑖𝛽𝑖(𝑡) = 𝐴

𝑇𝐵(𝑡)                 (7.2) 

that 𝑓𝑚(𝑡) is a function approximation of 𝑓(𝑡) 

at distance [
𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
] then 

∥∥𝑓 − 𝑓0∥∥2 ≤
1

𝑚!√2𝑚+1
sup
𝑡∈[0,1]

 |𝑓(𝑚)(𝑡)|.         (7.3) 

Proof. We know {1, 𝑡, 𝑡2, … , 𝑡𝑚−1} is a basis 

for the space of polynomials of degree 𝑚 − 1. 

We define the Taylor expansion 𝑓(𝑡) as 

follows: 

𝑓(𝑡) = 𝑓(0) + 𝑡𝑓′(0) + ⋯+
𝑡𝑚−1

(𝑚−1)!
𝑓(𝑚−1)(0)                                          (7.4) 

We have 

|𝑓(𝑡) − 𝑓(𝑡)| ≤
𝑡𝑚

𝑚!
sup
𝑡∈𝐼𝑘,𝑛

 |𝑓(𝑚)(𝑡)|               (7.5) 

where 𝐼𝑘,𝑛 = [
𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
] , 𝑛 = 1,2,… , 2𝑘−1. 

According to the definition 2-norm: 

∥∥𝑓(𝑡) − 𝑓0(𝑡)∥∥2
2 = ∫  

1

0

  (𝑓(𝑡) − 𝐶𝑇𝜓(𝑡))2𝑑𝑡 

= ∑  

2𝑘−1

𝑛=1

 ∫  

𝑛

2𝑘−1

𝑛−1

2𝑘−1

(𝑓(𝑡) − 𝐴𝑇𝐵(𝑡))2𝑑𝑡 

≤ ∑  

2𝑘−1

𝑛=1

 ∫  

𝑛

2𝑘−1

𝑛−1

2𝑘−1

  {𝑓(𝑡) − 𝑓(𝑡)}2𝑑𝑡 

≤ ∑  

2𝑘−1

𝑛=1

 ∫  

𝑛

2𝑘−1

𝑛−1

2𝑘−1

  {
𝑡𝑚

𝑚!
sup
𝑡∈𝐼𝑘,𝑛

 |𝑓(𝑚)(𝑡)|}

2

𝑑𝑡 

≤ ∫  
1

0
  {
𝑡𝑚

𝑚!
sup
𝑡∈[0,1]

 |𝑓(𝑚)(𝑡)|}

2

𝑑𝑡                    (7.6) 

Therefore 

∥∥𝑓(𝑡) − 𝑓0(𝑡)∥∥2
2 ≤

1

(𝑚!)2(2𝑚+1)
( sup
𝑡∈[0,1]

 |𝑓(𝑚)(𝑡)|)

2

                   (7.7) 

In extending a function using the Bernoulli 

wavelet base, we have two degrees of freedom, 

which increases the accuracy of the method. 

One parameter is 𝑘 and the other 𝑚 is below the 

interval [
𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
]. When 𝑚 is fixed and 𝑘 

tends to infinity: 

|[
𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
]| =

1

2𝑘−1
→ 0                               (7.8) 

so 

∫  

𝑛

2𝑘−1

𝑛−1

2𝑘−1

(𝑓(𝑡) − 𝑓𝑚(𝑡))
2𝑑𝑡 → 0                          (7.9) 

Given the inequality proof (7.7) 

lim
𝑘→∞

 ∥∥𝑓(𝑡) − 𝑓0(𝑡)∥∥2 = 0.                                (7.10) 

and if we fix 𝑘 and move 𝑚 to infinity according 

to the equation (7.2) 
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lim
𝑚→∞

 ∥∥𝑓(𝑡) − 𝑓𝑚(𝑡)∥∥2 = 0. 

Therefore, the convergence proof of the 

approximation of the function is completed by 

the Bernoulli wavelet. We now consider the 

convergence of the method. 

Theorem 7.1. Assume that 𝑦(𝑥) and 𝑦𝑚(𝑥) are 

the exact and approximate answers of Eq. (1.1) 

and that 𝑔𝑚(𝑥) is an extension of 𝑔(𝑥) in terms 

of the Bernoulli wavelet and 𝐻(𝑥, 𝑦) =

∫0
1
 (𝑘(𝑥, 𝑡)(𝑦(𝑡))𝑝)𝑑𝑡 in Lip-Sheetz condition  

∥ 𝐻(𝑥, 𝑦) − 𝐻(𝑥, 𝑧) ∥≤ 𝜆 ∥ 𝑦 − 𝑧 ∥  , 𝜆 > 0   (7.12) 

is true and 
𝜆

Γ(𝑞+1)
< 1 then 

∥∥𝑦(𝑥) − 𝑦𝑚(𝑥)∥∥ ≤
𝐸(𝑔)

Γ(𝑞+1)(1−
𝜆

Γ(𝑞+1)
)
            (7.11) 

where in 𝐸(𝑔) = ∥∥𝑔(𝑥) − 𝑔𝑚(𝑥)∥∥. 

Proof. According to the definition of 𝐻(𝑥, 𝑦), 

Eq. (1.1) is shown below 

𝐷𝑞𝑦(𝑥) = 𝑔(𝑥) + 𝐻(𝑥, 𝑦(𝑥))      𝑞 > 1 (7.12) 

with the initial conditions (𝑟 ∈ ℕ) 

𝑦(𝑖)(0) = 0,  𝑖 = 0,1, … , 𝑟 − 1   

where 𝑟 − 1 < 𝑞 ≤ 𝑟. By taking the integral 𝐼𝑞 

on the other side of the equation 

𝑦(𝑥) =
1

Γ(𝑞)
∫  
𝑥

0

(𝑥 − 𝑠)𝑞−1𝑔(𝑠)𝑑𝑠 

+
1

Γ(𝑞)
∫  
𝑥

0

(𝑥 − 𝑠)𝑞−1𝐻(𝑠, 𝑦(𝑠))𝑑𝑠       (7.13) 

On the other hand, 𝑔𝑚(𝑥) is an extension of 

𝑔(𝑥) and 𝑦𝑚(𝑥) is the approximate answer to 

the equation (7.4) So 

∥∥𝑦 − 𝑦𝑚∥∥  
 

≤ ‖
1

Γ(𝑞)
∫  
𝑥

0

  (𝑥 − 𝑠)𝑞−1(𝑔(𝑠) − 𝑔𝑚(𝑠))𝑑𝑠‖ 

+‖
1

Γ(𝑞)
∫  
𝑥

0

  (𝑥 − 𝑠)𝑞−1(𝐻(𝑠, 𝑦(𝑠))

− 𝐻(𝑠, 𝑦𝑚(𝑠)))𝑑𝑠‖ 

According to the norm properties 

∥∥𝑦 − 𝑦𝑚∥∥ ≤
1

Γ(𝑞)
∫  
𝑥

0

  (𝑥

− 𝑠)𝑞−1∥∥𝑔(𝑠) − 𝑔𝑚(𝑠)∥∥𝑑𝑠 

+
1

Γ(𝑞)
∫  
𝑥

0

  (𝑥 − 𝑠)𝑞−1‖𝐻(𝑠, 𝑦(𝑠))

− 𝐻(𝑠, 𝑦𝑚(𝑠))‖𝑑𝑠 
so 

∥∥𝑦 − 𝑦𝑚∥∥ ≤
𝐸(𝑔)

Γ(𝑞 + 1)
+

𝜆

Γ(𝑞 + 1)
∥∥𝑦 − 𝑦𝑚∥∥ 

in result 

∥∥𝑦(𝑥) − 𝑦𝑚(𝑥)∥∥ ≤
𝐸(𝑔)

Γ(𝑞 + 1) (1 −
𝜆

Γ(𝑞 + 1)
)
 

and the proof is complete. 

8- Numerical examples 

Example 8.1. Consider the following nonlinear 

Fredholm integro-differential equations of 

fractional order ([28, 36]) : 

𝐷𝛼𝑓(𝑥) − ∫  
1

0

𝑥𝑡[𝑓(𝑡)]2𝑑𝑡 = 1 −
𝑥

4
,  0 ≤ 𝑥

< 1,  0 < 𝛼 ≤ 1 

with supplementary condition𝑓(0) = 0.  

𝑓(𝑥) = 𝑥 is the exact solution of the equation in 

the case of 𝛼 = 1. The error in the case 𝛼 = 1, 

for different values of 𝑘 and 𝑀, is shown in 

Table 2 and 3. Note that: 

∥∥𝑒𝑗(𝑥)∥∥2
= (∫  

1

0

 𝑒𝑗
2(𝑥)𝑑𝑥)

1/2

≅ (
1

𝑁
∑  

𝑁

𝑖=0

 𝑒𝑗
2(𝑥𝑖))

1/2

, 

where 𝑒𝑗(𝑥𝑖) = 𝑓(𝑥𝑖) − 𝑓𝑗(𝑥𝑖), 𝑖 = 0,1, … ,𝑁. 

𝑓(𝑥) is the exact solution and 𝑓𝑗(𝑥) is the 

approximate solution which is obtained by 

numerical methods. According to [35, 30], in 

comparison between Chebyshev method and 

Bernoulli method 𝑗 = 𝑀(2𝑘−1) and in 
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comparison, between CAS method and 

Bernoulli method 𝑗 = 2𝑘(2𝑀 + 1). 

Table 2: Comparison between approximate norm-2 of 

absolute error by using of the two different methods in 

Example 8.1 

 
Chebyshev 

method [36] 
Bernoulli method 

1 ∥∥𝑒8∥∥2 ∥∥𝑒8∥∥2 

2 (𝑘 = 3,𝑀 = 2) (𝑘 = 3,𝑀 = 2) 

3 2.9700𝑒 − 007 2.7133𝑒 − 008 

4 ∥∥𝑒16∥∥2 ∥∥𝑒16∥∥2 

5 (𝑘 = 4,𝑀 = 2) (𝑘 = 4,𝑀 = 2) 

6 1.8610𝑒 − 008 1.9181𝑒 − 009 

7 ∥∥𝑒32∥∥2 ∥∥𝑒32∥∥2 

8 (𝑘 = 5,𝑀 = 2) (𝑘 = 5,𝑀 = 2) 

9 1.1645𝑒 − 009 1.6745𝑒 − 0011 

 

Table 3: Comparison between approximate norm-2 of 

absolute error by using of the two different methods in 

Example 7.1 

 CAS method [30] Bernoulli method 

1 ∥∥𝑒12∥∥2 ∥∥𝑒12∥∥2 

2 (𝑘 = 2,𝑀 = 1) (𝑘 = 2,𝑀 = 1) 

3 2.7133𝑒 − 003 2.8421𝑒 − 006 

4 ∥∥𝑒24∥∥2 ∥∥𝑒24∥∥2 

5 (𝑘 = 3,𝑀 = 1) (𝑘 = 3,𝑀 = 1) 

6 6.8179𝑒 − 004 2.2312𝑒 − 007 

7 ∥∥𝑒48∥∥2 ∥∥𝑒48∥∥2 

8 (𝑘 = 4,𝑀 = 1) (𝑘 = 4,𝑀 = 1) 

9 1.6745𝑒 − 005 1.2150𝑒 − 008 

 

Example 8.2. ([28, 36]) Consider the following 

nonlinear Fredholm integro-differential 

equation of order 𝛼 =
5

3
. 

𝐷
5
3𝑓(𝑥) − ∫  

1

0

(𝑥 + 𝑡)2[𝑓(𝑡)]3𝑑𝑡

=
6

Γ (
1
3
)
√𝑥
3

−
𝑥2

7
−
𝑥

4
−
1

9
 

,  0 ≤ 𝑥 < 1 

with these supplementary conditions 𝑓(0) =

𝑓′(0) = 0. the exact solution of the equation is 

𝑓(𝑥) = 𝑥2. The error for different values of 𝑘 

and 𝑀, is shown in Table 4 and 5. 

Table 4: Comparison between approximate norm-2 of 

absolute error by using of the two different methods in 

Example 8.2 

 
Chebyshev 

method [36] 
Bernoulli method 

1 ∥∥𝑒8∥∥2 ∥∥𝑒8∥∥2 

2 (𝑘 = 3,𝑀 = 2) (𝑘 = 3,𝑀 = 2) 

3 3.1863𝑒 − 005 3.5560𝑒 − 006 

4 ∥∥𝑒16∥∥2 ∥∥𝑒16∥∥2 

5 (𝑘 = 4,𝑀 = 2) (𝑘 = 4,𝑀 = 2) 

6 6.1566𝑒 − 006 6.2111𝑒 − 007 

7 ∥∥𝑒32∥∥2 ∥∥𝑒48∥∥2 

8 (𝑘 = 5,𝑀 = 2) (𝑘 = 5,𝑀 = 2) 

9 2.4897𝑒 − 007 2.5310𝑒 − 008 

Table 5: Comparison between approximate norm-2 of 

absolute error by using of the two different methods in 

Example 8.2 

 CAS method [30] Bernoulli method 

1 ∥∥𝑒12∥∥2 ∥∥𝑒12∥∥2 

2 (𝑘 = 2,𝑀 = 1) (𝑘 = 2,𝑀 = 1) 

3 3.5560𝑒 − 003 3.2752𝑒 − 004 

4 ∥∥𝑒24∥∥2 ∥∥𝑒24∥∥2 

5 (𝑘 = 3,𝑀 = 1) (𝑘 = 3,𝑀 = 1) 

6 9.0145𝑒 − 004 7.1300𝑒 − 005 

7 ∥∥𝑒48∥∥2 ∥∥𝑒48∥∥2 

8 (𝑘 = 4,𝑀 = 1) (𝑘 = 4,𝑀 = 1) 

9 2.2537𝑒 − 005 2.0078𝑒 − 006 
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9- Conclusion 

The most important point of this paper is the 

convergence of the proposed method and this 

hybrid approach has a unique approximation 

that is shown using mathematical principles and 

matrix theory.  

In this paper the Bernoulli wavelet is built and 

its fractional integration operational matrix is 

produced in this article. Then we utilize them to 

solve a class of nonlinear Fredholm integro-

differential equation of fractional order. The 

Bernoulli wavelet is made up of Bernoulli 

polynomials. It is better suited to the solution of 

fractional issues. The major advantage of the 

wavelet approach for solving equations is that 

the coefficients matrix of algebraic equations is 

sparse after discretization [32]. Even if the 

increment size is big, the solution is convergent. 
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