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Abstract 

In this paper, the effect of different boundary conditions on dynamic stability of a beam located on a 

viscoelastic medium stimulated by moving masses and periodic axial force is studied. Partial 

differential equations governing the system are derived using Hamilton's method and based on Euler-

Bernoulli beam theory. Then, equations are converted into a set of ordinary differential equation with 

time-varying coefficients using Galerkin method along with trigonometric shape functions. The time-

varying position of moving loads causes these time-varying coefficients in the governing equations. 

By applying Floquet's theory to the obtained equations, the conditions of parametric resonance are 

analyzed for different values of mass and velocity of passing loads. The results obtained from this 

research show that the stiffness and viscosity of the elastic medium have positive effects on the 

stability of the beam under moving and fluctuating axial loads. So, with a suitable choice for these 

values in practical applications, it is possible to prevent unexpected vibrations of the structure. In 

addition, the use of fixed supports for the two ends of the beam exposed to the mentioned loadings has 

high reliability in the discussion of dynamic stability. 
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1- Introduction 

The problem of vibration of structures 

under dynamic loading is one of the 

important fields of engineering with many 

industrial applications, such as pipes 

carrying fluids, cranes carrying moving 

loads, gun barrels, movement of vehicles 

on bridges, and the passage of trains on 

rails located on elastic medium and so on. 

Therefore, attention to solving such 

problems analytically and experimentally 

has been the focus of many researchers for 

many years [1-7]. The research can be 

divided into two main groups. The first 

group of these researches examines the 

time or frequency response of the beam 

under moving mass. The second group 

mainly focuses on system stability 
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analysis. This category includes the 

identification of those parameters of the 

system, according to which instability 

occurs in the system and as a result, the 

beam experiences vibration with increasing 

amplitude. In this category, the results 

usually lead to analytical or numerical 

calculations that determine the stable and 

unstable states of the problem. In the 

following, a review of the papers analyzing 

the dynamic stability of the beam under 

moving mass loading in different boundary 

and medium conditions is given. Mackrtich 

[8] investigated the dynamic stability of 

Euler-Bernoulli and Timoshenko beams 

located on elastic medium under the 

passage of moving masses with constant 

velocities and equal distances, using the 

Floquet theory, and showed that the Euler-

Bernoulli has a wider stable region in the 

plane of the mass-velocity. Senalp et al [9] 

investigated the dynamic response of 

Euler-Bernoulli beam with finite length 

and located on linear and non-linear 

viscoelastic substrates, stimulated under 

moving masses at different speeds. 

Mirzabigi and Bakhtiari-Nejad [10] 

investigated the stability of the beam-

moving mass system with elastic boundary 

conditions. Pirmoradian et al. [11] 

investigated the instability and resonance 

of a Timoshenko beam excited by the 

successive passage of moving masses. In 

their study, they used the incremental 

harmonic balance method to investigate 

parametric resonance conditions. In 

another study Pirmoradian et al. [12] 

studied instability of plates lying on elastic 

foundations traversed by inertial loads. The 

stability of the plate vibrations was 

investigated via incremental harmonic 

balance method.  

By reviewing the previous papers, it can be 

seen that the investigation of the effect of 

different boundary conditions and the 

effect of the axial force on the plane of 

instability of the beam- moving mass 

system has not been done so far. Therefore, 

in this article, besides considering these 

cases, how the viscoelastic medium affects 

the stability plane of the beam- moving 

mass problem is investigated.  

2- Problem formulation 

In this section, the equations of motion 

governing the beam on the viscoelastic 

medium with different boundary 

conditions under moving mass and 

alternating axial loadings are obtained 

using Hamilton's principle and based on 

Euler-Bernoulli theory. In deriving the 

equations, small amplitude vibration 

(linear model) is considered. In addition, 

all acceleration terms of the moving mass 

including Criollis and centripetal 

accelerations are applied in the dynamic 

equations. 

The beam has a length of , thickness of 

h , cross-sectional area of A , density of   

and Young's modulus of E , while beam is 

located on a viscoelastic medium with a 

stiffness of k  and damping coefficient of 

c . The schematic of the considered model 

is shown in Fig. 1. In the following, the 

governing equations are derived using 

Hamilton's principle. 

 
Fig. 1 Schematic of Beam-moving mass system 

The displacement field equations based on 

the Euler-Bernoulli beam theory are 

defined as the following: 
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(1) 
 
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
 
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(2)  , , 0v x z t  

(3)    , , ,w x z t w x t 

where u , v  and w   are the general 

displacements of the beam in the direction 

of the x , y , and z  axes,respectively. 

Also, w  represents the transverse 

displacement of the neutral axis of the 

beam. Based on Euler-Bernoulli beam 

theory, strains can be defined as follows: 

(4) 2

2xx

u w
z

x x


 
  
 

 

(5) 0yy zz xy xz yz         

Using the above relations, the energy 

functions of the system can be extracted as 

follows. 

The beam's strain energy function is 

defined as 
(6) 1

2
b xx xxPE d 



  

where   states the beam volume. 

Applying Hook’s law to Eq. (6) yields to 

 (7) 21

2
b xxPE E d


  

Using Eq. (4) and remembering the 

relationship of the second moment of 

inertia of the beam  I , the strain energy 

of the beam is obtained as 
 (8) 2

2

2

0

1

2
b

w
PE EI dx

x

 
  

 
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The beam kinetic energy can be stated as 
(9) 

2

0

1

2
b

w
KE A dx

t

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  
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The work done by the moving mass is 

introduced by the following equation 

(10) 
   

0

, , ,mPE F x y t w x t dx  

where the loading function  , ,F x y t  is 

defined by 
(11) 

   
2

2
, ,

d w
F x y t m g x vt

dt


 
   

 
 

In Eq. (11), m  is the mass of moving load, 

g  introduces the gravitational 

acceleration, and   is the delta function 

used to introduce the position of the 

moving mass on the beam. Using some 

algebraic calculation will lead to  

(12) 
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2
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V
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
, 
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2
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V
x t



 
, 

2

2

w

t




introduce 

centripetal, Coriolis and normal 

accelerations, respectively. 

The work done by the viscoelastic medium 

and the oscillating axial force are 

expressed by the following equations: 
(13) 

0

1

2
f

w
V kw c wdx

t

 
  

 
 

(14) 
  

2

0

0

1
cos

2
P

w
V p p t dx

x

 
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where 0p  is the static part of axial force, 

while p  and   represent amplitude and 

frequency of the oscillatory axial force.  

Equations of motion are obtained using 

Hamilton's principle using the following 

equation  
(15)   

0

0

t

b b m f pKE PE PE V V dt       

Substituting Eqs. (8-10, 13, 14) into Eq. 

(15) and performing some variation 

calculation, the partial equation describing 
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the motion of beam under excitation of 

moving mass and oscillatory axial force is 

derived as follows    

(16) 
  

 

4 2

4 2

2
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   

  
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
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  



 
 

   

 

The discretization of the equations of 

motion is achieved using the Galerkin 

method. For the Euler-Bernoulli beam 

theory, the variable w which is a function 

of x  and t  is expressed by 
(17)      

1

, i i
i

w x t x w t




  

where  iw t  is the generalized coordinate 

(time domain), and  i x  is the unknown 

shape function (space domain). The shape 

functions should be selected in such a way 

that satisfy the beam boundary conditions. 

Three types of boundary conditions are 

considered, which will be discussed in the 

following. For beam with simple-simple 

boundary condition, we have 
(18)    

   2 2

2 2

0 0, 0,

0
0, 0,

i i

i i

x x

 
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 
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while for the beam with fixed-fixed 

boundary condition, we have 
(19)    

   
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0
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i i

i i

x x
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and these relations for a beam with simple-

fixed boundary conditions are 
 

(20)    
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Accordingly, shape functions and natural 

frequencies of beam with simple-simple, 

fixed-fixed and simple-fixed boundary 

conditions can be expressed as Eqs. (21) to 

(23), respectively. 

(21) 
 

2
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x


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1 3
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2
8
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
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

 
  
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In order to apply the Galerkin method, Eq. 

(17) is inserted into Eq. (16). Then, by 

multiplying the resulted equation by  j x  

and integrating along the length of the 

beam and considering the condition of 

orthogonality between the vibration modes 

and considering the integral property of the 

Dirac delta function, the ordinary 

differential equations governing the beam- 

moving mass system in the vector-matrix 

form is extracted, in the form of (24). 

(24)      t W t W W t  M B K F 

where the components of the matrices and 

vectors are as follows 
 

 
   ij ij i m j m

m
M x x

A
  


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Considering the first mode of vibration 

 1i j  , and inserting equation (21) 

into equation (25), the ordinary differential 

equation governing the beam with simple 

supports is obtained as follows 
2

2

2
1 2 sin
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Equation (26) is an ordinary differential 

equation with time-varying coefficients. As 

long as the mass is moving on the beam, 

the coefficients of the equation change 

with time. When the mass leaves the beam, 

equation (26) becomes the free vibration 

equation of the beam. Therefore, in order 

to analyze the stability of the system, the 

passage of moving masses is considered 

intermittently. The periodicity of the 

passage is T V . To reflect this 

assumption in the governing equations, the 

Fourier expansion of time-varying 

coefficients (coefficients related to the 

moving mass) of Eq. (26) is written as Eq. 

(27)  
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By defining the following dimensionless 

parameters  
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the dimensionless governing equation for a 

beam with simply supports under the 

alternating passage of moving masses is 

resulted 
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It should be mentioned that the axial 

oscillating force is considered in such a 

way that the frequency of its oscillations is 

twice the frequency of mass passing on the 

beam  2 Vt  . With a similar process 

and by using the corresponding shape 

functions, the equation governing the 

fixed-fixed beam and simple-fixed beam, 

under the passage of moving mass and 

alternating axial force loading, in the 

dimensionless form are obtained 
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3- Stability analysis 

As seen, due to the successive passage of 

moving masses and applying the 

fluctuating axial loading, the ordinary 

differential equations governing the 

problem became equations with time 

varying coefficients. In this section, the 

Floquet theory is applied to find stable and 

unstable regions of the mentioned system 

in plane of speed-mass of moving masses. 

In addition, the influence of beam 

boundary conditions, axial loading 

amplitude, stiffness and damping of the 

elastic medium on the stability of the 

system is studied. 

Floquet theory is a standard theory for 

analyzing the features of a system without 

fully solving its governing equations [13]. 



19 

R. Motiei et al. / Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 14 (2022) 0013~0024 
 

 

Based on this method, the instability of a 

periodic system can be checked by 

determining and identifying the basic 

matrix in a time interval. The eigenvalues 

of this matrix can be considered as a 

criterion for determining the stability of the 

system. If for the selected parameters of 

the problem, all the eigenvalues of the 

basis matrix are located inside the unit 

circle centered  0,0  in the complex 

plane, then the system has asymptotic 

stability and otherwise the system is 

unstable. To determine the unstable region 

of the problem parameters plane, a code 

has been written in MATLAB software, 

which after finding the basic matrix for the 

points of this plane, calculates its 

eigenvalues and the stability of the system 

for the selected parameters. The stability 

plane belonging to the beam with simple-

simple, fixed-fixed and simple-fixed 

boundary conditions under the successive 

passage of moving masses and alternating 

axial loading are shown in Figs. 1 to 3, 

respectively. In these analyses, the 

dimensionless parameters are * 0.5k  , 
* 0.1c  , 0.1   and 1  . In these 

figures, the horizontal and vertical axes 

represent the dimensionless velocity and 

mass of passing loads, respectively, and 

the hatched areas are the unstable regions 

and the white areas are the stable regions. 

As can be seen, in addition to the wide 

unstable areas, there are also tongues of 

instability in the stable area of the 

parameters plane. By comparing Figs. 1-3, 

it can be concluded that although the 

unstable regions belonging to the simple-

fixed boundary conditions are slightly 

wider than the simple-simple boundary 

conditions, the stable region associated 

with the boundary conditions of the fixed-

fixed is wider than other cases. Therefore, 

as a practical result, the use of fixed 

supports for two ends of the beam exposed 

to the passage of moving masses and axial 

oscillating force has high reliability in the 

discussion of dynamic stability. 

 
Fig. 1 Stability plane of beam with simple-simple 

boundary conditions 
 

 
Fig. 2 Stability plane of beam with fixed-fixed 

boundary conditions 
 

 

Fig. 3 Stability plane of beam with simple-fixed 

boundary conditions 
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As stated in the system modeling, a 

viscoelastic substrate was selected for the 

beam under loading. Now, in this section, 

the effect of the stiffness and damping 

parameters on the parametric plane is 

studied. In Fig. 4, the effect of substrate 

stiffness is considered. In these analyses, 

dimensionless parameters are set as 
* 0.1c  , 0.1   and 1  . From these 

figures, it can be concluded that the 

stiffness has a positive effect on the stable 

region of the parameter plane, so that with 

its increase, the extent of the stable areas 

increases and the beam will be stable for 

greater amounts of mass and velocity of 

loads transition. 

  
(a) (b) 

  
(c) (d) 

Fig. 4 The effect of the stiffness of the elastic medium on the stable and unstable regions for simple-fixed beam 
* 1.5k ) d( * 1k ) c( * 0.5k ) b( * 0k ) a( 

 

In Figs. 5-7, the effect of damping on the 

stability of the system is studied with 

dimensionless parameters * 0.5K  , 

0.1  and 1  . Based on these figures, it 

is clear that the increase in bed viscosity 

has no effect on the large unstable areas, 

while it causes the unstable tongues to 

separate and move away from the axis and 
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at the same time causes them to become 

thinner. In general, this result is in 

agreement with what was proposed for 

Mathieu's equation with the depreciation 

term in reference [13]. In addition to these 

cases, it can be seen in Fig. 8-a that the 

phenomenon of instability pockets has 

occurred for clamped-clamped beam, 

regardless of depreciation. This 

phenomenon occurs when the boundary 

curves of an instability tongue intersect 

each other in the plane of parameters [14]. 

In addition, based on the results of this 

section, the beam with fixed-fixed 

boundary conditions under moving and 

alternating axial mass loadings has a 

higher influence of the stiffness and 

damping of the substrate than the beam 

with simple-simple and simple-girder 

boundary conditions. Therefore, it can be 

concluded that choosing a suitable value 

for the stiffness and damping of the 

substrate leads to the prevention of 

inappropriate behavior of the system in 

practical applications. 

  
(a) (b) 

  
(c) (d) 

Fig. 5 the effect of damping on the stable and unstable regions of the simple-simple beam (a) 
* 0c   (b) 

* 0.1c  (c) * 0.2c  (d) * 0.3c   
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(a) (b) 

  
(c) (d) 

) c(* 0.1c ) b( * 0c  fixed beam (a)-e regions of the fixedthe effect of damping on the stable and unstabl 6Fig. 

* 0.3c ) d(* 0.2c  
 

  
(a) (b) 
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(c) (d) 

) b( * 0c  fixed beam (a)-simple the effect of damping on the stable and unstable regions of the 7Fig. 

* 0.3c ) d(* 0.2c ) c(* 0.1c  
 

4- Conclusion 

The dynamic stability of transverse 

vibrations of Euler-Bernoulli beams with 

different boundary conditions and located 

on an elastic bed under moving and 

alternating axial loads was carried out. The 

Coriolis and centripetal acceleration 

components were included in deriving the 

motion equations. The stability plane of the 

system was extracted in the mass-velocity 

plane of the passing loads. The influence 

of the boundary conditions, the stiffness 

and damping effect of the substrate, as well 

as the amplitude of the axial force on the 

parametric regions of the stability plane 

were investigated. Some of the results 

obtained in this research are as follows: 

 The unstable regions belonging to 

simple-fixed boundary conditions are 

slightly wider than simple-simple 

boundary conditions; however, the 

stable region associated with fixed-fixed 

boundary conditions is wider than other 

cases. 

 The use of clamp supports for two ends 

of the beam exposed to the passage of 

moving masses and periodic axial force 

has high reliability in dynamic stability. 

 The stiffness of the substrate has a 

positive effect on the stable areas of the 

parameter plane, so that with its 

increase, the unstable areas are 

transferred to higher speeds of the 

passing mass, and the beam will be 

stable for larger amounts of the mass 

and speed of the passing loads. 

 An increase in bed wear has no effect on 

the large unstable areas, while it causes 

the unstable tongues to separate and 

move away from the   axis and at the 

same time causes them to become 

thinner. 
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