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Abstract 

In this paper, the frequency responses analysis of the sandwich beams with functionally graded face 

sheets and homogeneous core is investigated based on the high order sandwich beam theory. All 

materials are temperature dependent and the functionally graded materials properties are varied 

gradually by a power law rule which is modified by considering the even and uneven porosity 

distributions. The nonlinear Lagrange strain and the thermal stresses of the face sheets and in-plane 

strain and transverse flexibility of the core are considered. Hamilton’s principle and Galerkin method 

are used to obtain and solve the equations for the clamped-free boundary condition. To verify the 

results of this study, they compared with special cases of the literatures. Based on the numerical 

results, it is concluded that by increasing the temperature, power law index, length, thickness, porosity 

volume fraction the fundamental frequency parameter decreases and increasing the wave number 

causes the frequency increases.  

Keywords: Sandwich beam, FGM, Porosity, Temperature dependent, Clamped-free. 

1- Introduction 

Nowadays, the sandwich panels which 

usually have two thin and stiff faces and a 

lightweight flexible core have become the 

common and useful structures in the 

modern industries such as aerospace, 

transportation, naval and construction 

structures.  These structures have a high 

bending rigidity, high performance with a 

low weight concurrently [1].  

On the other hand, the failure, 

delamination and the thermal stress 

concentration are the results of using the 

classical composite materials in the high 

temperature environments. To avoid these 

damages, the functionally graded materials 

(FGMs) have been proposed which are 

microscopic inhomogeneous materials and 

gradually graded from a metal surface to a 

ceramic one [2].  

In the classical theories, the core has been 

considered as a constant thickness layer, 

but to investigate the localized effects in 

the sandwich structures behavior, the high 

order sandwich panels theory is presented 

and the core is considered as a transversely 

flexible layer [3]. Many researchers have 

been studied the mechanical behaviors of 
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sandwich beams by using different 

theories. Fazzolari studied the vibration 

and elastic stability of functionally graded 

sandwich beams resting on the elastic 

foundation by using a higher beam theory 

[4]. Based on the Timoshenko beam 

theory, Chen et al. studied the nonlinear 

vibration of sandwich beam with porous 

FG core and solved the equation by 

applying Ritz method theory [5]. Akbaş 

investigated the vibration of FG porous 

deep beam based on a finite element 

procedure under the thermal conditions [6]. 

Bourada et al. studied the vibration of FG 

beams with porosity based on a high order 

trigonometric deformation theory [7]. Li et 

al. studied the nonlinear vibration of FG 

sandwich beams with negative Poisson’s 

ratio honeycomb core based on the 3D full-

scale finite element analyses [8]. Wu et al. 

surveyed the vibration and buckling of 

sandwich beams with FG carbon nanotube-

reinforced composite faces based on the 

Timoshenko beam theory [9]. Xu et al. 

investigated the vibration of composite 

sandwich beam with corrugated core based 

on the continuous homogeneous theory and 

Rayleigh-Ritz method [10]. Li et al. 

investigated the vibration of multilayer 

lattice sandwich beams numerically and 

experimentally [11]. Li investigated the 

nonlinear vibration and stability of axially 

moving viscoelastic sandwich beam under 

resonances by using Galerkin method [12]. 

Şimşek and Al-shujairi investigated 

different types of vibration behaviors of 

FG sandwich beams under the harmonic 

loads by using Timoshenko beam theory 

[13]. Nguyen et al. studied the buckling 

and vibration behaviors of different types 

of FG sandwich beams by using a quasi 3D 

beam theory [14]. By using a finite 

element model, Kahya and Turan 

investigated the buckling and vibration of 

different types of FG sandwich beams 

based on the first order shear deformation 

theory [15]. Tossapanon and 

Wattanasakulpong studied the buckling 

and vibration behavior of sandwich beams 

with FG faces resting on elastic foundation 

based on the Timoshenko beam theory and 

Chebyshev collocation [16]. Arikoglu and 

Ozkol investigated the vibration of 

composite sandwich beams with 

viscoelastic core based on differential 

transform method [17]. Pradhan and 

Murmu investigated the vibration of FG 

beams and FG sandwich beams resting on 

elastic foundations by using differential 

quadrature method [18]. Mashat et al. 

studied the vibration of FG layered beams 

by using Carrera unified formulation and 

FEM [19]. Nguyen et al. studied the 

vibration and buckling of FG sandwich 

beams based on the higher order shear 

deformation theory [20]. Vo et al. studied 

the vibration and buckling of FG sandwich 

beams by using a quasi 3D theory and a 

finite element model [21]. Yang et al. 

studied the vibration behavior of the 

different type of the FG sandwich beams 

by using a meshfree boundary-domain 

integral equation method [22]. Abdolahi 

and Yas Studied the vibration of 

Timoshenko beam with the elastic 

foundation by using Timoshenko theory 

[23]. Farahani et al. studied the vibration 

behavior of thick FG beam under axial 

load based on the elasticity theory [24]. 

Pirmoradian and Karimpour studied the 

dynamic stability of a beam which excited 

by transition of circulating masses by 

considering the effects of convective mass 

acceleration and large deformation beam 

theory [25]. Pirmoradian et al. investigated 

the instability of double walled carbon 

nanotubes surrounded by elastic medium 

based on the Euler-Bernoulli beams model 
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and a nonlocal elastic theory [26],[27]. 

Torkan et al. studied transverse vibration 

of a rectangular plate on an elastic 

foundation and the instability due to 

occurrence of parametric resonance under 

passage of continuous series of moving 

masses [28]. Torkan et al. studied the 

dynamic stability of the thick rectangular 

plate carrying an orbiting mass and lying 

on a viscoelastic foundation based on the 

first order shear deformation theory [29]. 

Torkan and Pirmoradian studied the 

daynamic stability of thick elastic plates 

carrying a moving mass based on different 

higher order shear deformation theory [30]. 

Heydari et al. studied the sound 

transmission loss of porous heterogeneous 

cylindrical nanoshell based on a nonlocal 

strain gradient and first order shear 

deformation theories [31]. Heydari et al. 

studied the acoustic wave transmission of 

double walled FG cylindrical microshell in 

thermal conditions based on a modified 

strain gradient theory [32]. 

After studying the accessible references, it 

is concluded that more studying about the 

beam mechanical behavior is needed. Also, 

analyzing the temperature dependent 

vibration behavior of sandwich beams with 

porous functionally graded materials skins 

and considering the flexibility and lateral 

displacement of the core for clamped-free 

boundary condition has not been reported. 

So, in this study, by applying a high order 

sandwich beam theory which modified by 

considering the flexibility of the core in the 

thickness direction, frequency responses of 

the sandwich beams is investigated. 

Sandwiches consist of two FG faces which 

cover a homogeneous core. All materials 

are temperature dependent and FGM 

properties are location dependent which 

graded in according to a power law rule.  

To increase the accuracy of the model of 

the FGM properties, even and uneven 

porosity distributions are applied. 

Nonlinear Lagrange strain and thermal 

stresses of the face sheets and in-plane 

strain of the core are considered. 

Governing equations of the motion are 

obtained based on the Hamilton’s principle 

and solved by a Galerkin method for the 

clamped-free boundary condition. In order 

to validate the present approach, special 

cases of the results of this analytical 

approach are compared with some 

literatures. Finally, the effects of the 

temperature, power law index, some 

geometrical parameters and porosity on the 

vibration characteristics of the defined 

sandwich beams are investigated. 

2-Formulation 

Consider a sandwich beam with two FG 

face-sheets and a homogeneous core with a 

clamped-free boundary condition as shown 

in Fig. 1. 

 
Fig. 1 A schematic of clamped-free FG sandwich 

beam 

The properties of the homogeneous and the 

FG materials are temperature dependent 

which defined as follows [33]: 

 1 2 3

0 1 1 2 31P P T PT PT PTP 

    
 

(1) 

where "P"s are coefficients of temperature, 

and they are unique for each material; 

T=T0+ΔT, which T0 is equal to 300(K). 

Usually, it is considered that functionally 

graded materials are composed of metal 

and ceramic. Material properties such as 
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Young’s modulus, density, Poisson’s ratio 

are varied gradually across the thickness 

direction. The power law rule which 

consists of even porosity distribution is 

presented as follow [34]: 

         

   

, 1

( )
2

j j
ce mj j j j

j j
ce m

P z T g z P T g z P T

P T P T

 
 

  

 


 

(2) 

   ( ) ; ;2( )2

( , )

t b
t b

N N

t b

t b

h h
z z

g z g z
h h

j t b

 

 



 (3) 

where "N" is the constant power law index; 

g(z) and [1-g(z)] are volume fraction of 

ceramic and metal; "ζ" is the porosity 

distribution; subscripts “m” and “ce” refer 

to metal and ceramic; and subscripts "t" 

and "b" refer to top and bottom face sheets, 

respectively. In the uneven case, the micro 

voids are spread in the middle area of the 

layers and decrease near to the edges and 

tend to the zero. So, power law rule in the 

uneven case is modified as follows [34]: 

         

   

, 1

2
( ) (1 ), ( , )

2

j j

j j j ce j m

jj j

ce m

P z T g z P T g z P T

z
P T P T j t b

h

   
 

   


 (4) 

To model the displacement fields of the 

face-sheets, First Order Shear Deformation 

Theory (FSDT) is employed as follows 

[35]: 

   0 , ;

)

, ,

( ,

jj j ju t

j

x z t u x z

t b

  


 

(5) 

   0  , , ,j jw x z t w x t
 

(6) 

where "0" denotes values with 

correspondence to the central plane of the 

layers. "u" and "w" are the in-plane 

deformation and the transverse deflections 

of the faces in the "x" and "z" directions, 

respectively. “Φ” is the rotation of 

transvers normal line. Also, the kinematic 

relations of the core are considered as 

polynomial pattern with the unknown 

coefficients, uk (k=0,1,2,3), for the in-plane 

and wl (l=0,1,2) for vertical displacement 

components which obtained by the 

variational principle [36]: 

       

 

2

0 1 2

3

3

, , , , ,

,

c c c c

c

u x z t u x t u x t z u x t z

u x t z

 


 (7) 

     

 
c c 0 1 c

2

2 c

w x, z ,t = w x,t + w x,t z

+w x,t z
 (8) 

In this theory, the compatibility conditions 

assume that the faces are sticked to the 

core completely. The displacements of the 

interface between the core and the face 

sheets can be obtained as follows [37]: 

   / 2 / 2c c c t t tu z h u z h   
, 

 / 2c c c tw z h w  
 

(9) 

   / 2 / 2b b b c c cu z h u z h   
, 

 / 2b c c cw w z h
 

(10) 

To obtain the governing equations of the 

motion, Hamilton's energy principle is 

applied as follow: 

 
2

1

0 

t

t

K U dt   
 

(11) 

The variation of the kinetic and the strain 

energy are “δK” and “δU”, respectively; 

“t” is the time coordinate that varies 

between the times “t1” and “t2”; “δ” is the 

variation operator. The variation of the 

kinetic energy is calculated as follows: 



9 

M. Rahmani / Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 14 (2022) 0005~0018 
 

 

 

2

1

2 2

1 0

2

2

0

2

2

0

2

{ (   )

(   )

( ) }

t

t

b

b

c

c

t

t

L

h

t

t t t t t t t

ht

h

b b b b b b b

h

h

c c c c c c

h

L

L

Kdt

z u u w w dxdz

z u u w w dxdz

u u w w dxdz dt







 

    

   

    





  

 

 

 
(12) 

where (∙∙) indicates the second derivative 

with respect to time; the density is "ρ" 

which in the functionally graded layers is 

the function of the displacement; the core 

is indicated with "c". The variation of the 

total strain energy in the face sheets and 

the core, also the compatibility conditions 

at the interfaces of the layers which are the 

constraints and attended in the Hamilton’s 

principle in terms of Lagrange multipliers, 

is expressed as follows: 
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(13) 

where “σxx”  is the in-plane normal stress; 

“τxz” is the in-plane shear stresses; “εxx” 

and “γxz” display the in-plane normal and 

shear linear strains; “dxx” and “dzz” are the 

in-plane normal and shear nonlinear strains 

of the layers; “σT
xx” and “σT

zz” express the 

thermal stresses; “σc
zz” and “εc

zz” present 

the lateral normal stress and strain in the 

core; “τc
xz” and “γc

xz” declare shear stresse 

and shear strain in the core; and “λx’ and 

“λz” are the Lagrange multipliers. 

By considering small deflection, the strain 

components for the faces can be declared 

as follows [38]: 

 ,
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  (14) 
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(17) 

The "(),i" expresses the derivation with 

respect to “i”. The strain of the core can be 

defined as [38]: 

   ,, , , ,c
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In this model by substituting the 

expressions of the Eq. (12) and Eq. (13) 

according to the kinematic relations of the 

layers and using the interfaces relations, 

and after some algebraic operations, the 

thirteen equations of motion are obtained. 

These equations are not independent and 

by using the compatibility conditions and 

based on a reduction method the number of 

equations are reduced to nine. These 

equations include two unknowns of the 

faces and seven unknowns of the core 

which are presented in the follows: 
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where “Ikt”, “Ikb” (k=0, 1, 2) are the inertia 

terms of the top and the bottom face sheets, 

respectively; “Ilc” (l=0, 1,…,6) are the 

inertia terms of the core. “Nj
xx”, “Nj

xz”, 

(j=t, b) are the stress resultants and “Mj
xx” 

(j=t, b) are the moment resultants of the 

top and the bottom face sheets; “NjT
xx”, 

“NjT
zz”, (j=t,b) are the force thermal 

resultants; “Qxc”, “MQ1xc”, “MQ2xc”, “Rzc”, 

“Mzc”, “Rxc”, “Mx1c”, “Mx2c” and “Mx3c” are 

the high order stress resultant of the core. 

In the relations of the face sheets, the in-

plane stress resultants, “Nxx”; the moment 

resultants, “Mxx”; and the out of plane 
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shear stress resultants, “Nxz”,  are 

calculated as follows [38]: 

11 0, 11 , , ( , )j j

xx x

j

x

T

x

j

xN A u B j t bN     (34) 

11 0, 11 ,

j j

xx x x xx

Tj jM B u D M    (35) 

2

44 0,( )
12

j j

x

j

z xN A w  
 

(36) 

“A” is the stretching stiffness, “B” is the 

bending-stretching stiffness and “D” is the 

bending stiffness; which are constant 

coefficients and express as [39]: 
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(37) 

The high order thermal stress resultants in 

the face sheets are depicted as follows 

[39]: 

 
/2
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where “E”, “ν” and “α” are the Young's 

modulus, the Poisson’s ratio and the 

thermal expansion coefficient, 

respectively, which in the functionally 

graded layers are the function of the 

displacement, too. The inertia terms of the 

face sheets and the core are calculated as 

follows [38]: 
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The high order stress resultants of the core 

are as follows: 
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(43) 

Finally, by substituting the high order 

stress resultants in terms of the kinematic 

relations, the equations are derived in 

terms of the nine unknowns.  

3-Verification and numerical results 

In order to solve the equations of the free 

vibration of the FG sandwich beam, a 

Galerkin method with nine trigonometric 

shape functions is established which satisfy 

the boundary condition. The shape 

functions of the clamped-free boundary 

condition can be expressed as [40]: 
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where “am=mπ/L; “m” is the wave number 

and , ,uk wk jC C C are the nine unknown 

constants of the shape functions. These 

nine equations can be written in a 9×9 

matrix which include the mass, “M”, and 

stiffness, “K”, matrices as follows: 

2( ) 0mm m mk M C   (49) 

In Eq. (49), “ m ” is the natural frequency; 

and “Cm” is the Eigen-vector which 

contains nine unknown constants.  

In order to validate the approach of this 

study, present results in a special case are 

compared with results of literatures 

[41],[42], [43] which are shown in Table 1, 

for the simply supported (S-S) and 

clamped (C-C) boundary conditions.  

Table 1. Fundamental frequency parameters of 

present results and literatures [41],[42], [43] 

(L/h=5) 

B.C reference N=0 N=0.5 N=1 N=2 

S-S 

Simsek 

[41] 
5.1525 4.4083 3.9902 3.6344 

Vo [43] 5.1526 4.3990 3.9711 3.6050 

Nguyen 

[42] 
5.1525 4.4075 3.9902 3.6344 

Present 

method 
5.0789 4.3312 3.8618 3.5487 

C-C 

Simsek 

[41] 
10.0344 8.7005 7.9253 7.2113 

Vo [43] 9.9984 8.6717 7.9015 7.1901 

Present 

method 
9.9151 8.5887 7.8080 7.1088 

Consider a FG sandwich beam which is 

assumed to be made from a mixture of 

Silicon nitride as ceramic phase and 

Stainless steel as metal phase. The 

temperature-dependent properties of 

constituent materials which is introduced 

by Eq. (1) are presented in the reference   

[35]. For simplicity, the fundamental 

frequency parameter defined that is non-

dimensional as: 

/1000    (50) 

In general, “ht-hc-hb” sandwich beam is a 

structure with the indices of outer face 

sheet thickness, core thickness and inner 

face sheet thickness equal to “ht”, “hc” and 

“hb”, respectively. Therefore, in 1-8-1 

sandwich, the core thickness is eight times 

of the every face sheet thickness. 

According to Eq. (1), temperature rising 

reduces the Young modulus of metal and 

ceramic. So, the strength of the materials 

reduces, which is an important reason in 

decreasing the frequency in high 

temperature conditions. Fig. 2 shows the 

fundamental frequency parameter variation 

versus the temperature for 1-8-1 FG face 

sheets sandwich beam with clamped-free 

boundary condition. Geometrical 

parameters are “h = 0.02m, L/h=5, m=1”. 

By increasing the temperature, the 

fundamental frequency parameters 

decrease. As shown in Fig. 2, when N=0, 

the FG layers are made of full ceramic, as 

a result, the stability and resistant against 

the high temperature conditions are more 

than the other values of “N”, so the 

fundamental frequency parameters of it are 

higher than others. By increasing the 

power law index, “N”, the amount of the 

ceramic reduces in the structure which 

causes the young modulus of the FGM and 

the stability of the structures decrease. 

When “N=0”, by increasing the 

temperature, the fundamental frequency 

parameter decreases 31.30%, for “N=1” 

and “N=2” it decreases 40.34%, and 

43.25%, respectively.  
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Fig. 2 Fundamental frequency variation versus 

temperature 

Some geometrical effects on the 

fundamental frequency of FG sandwich 

beams are investigated. Figure 3 shows the 

effect of length to thickness ratio on the 

fundamental frequency parameter in 1-8-1 

FG face sheets sandwich beam in the 

clamped-free boundary conditions. When 

ratios are increased in a constant “N”, the 

fundamental frequency parameter 

decreases. Based on the Fig. 3, with 

increasing of this ratio, the stability of the 

structure is reduced and it is important to 

consider that long length is not proper for 

the FG sandwich beams. Also, it is obvious 

that, with increasing the power law index, 

“N”, the fundamental frequency 

parameters decrease, but in this case effect 

of variation of the length is dominant 

parameter and its variation has an 

impressive effect on the fundamental 

frequency. For example, for L/h=5, by 

increasing “N”, the fundamental frequency 

parameter decrease 10.80%, but for “N=0”, 

by increasing this ratio, the fundamental 

frequency decreases 6130%. Also, it 

should be noted that when the ratio is more 

than 12, the slope of the variation of the 

fundamental frequency is decreased 

significantly. 

 

Fig. 3 Fundamental frequency variation versus L/h 

ratio 

Fig. 4 depict the effect of the variation of 

the core to face sheet thickness ratio, 

“hc/ht”, on the fundamental frequency 

parameter in various power law indices 

and constant total thickness. When 

“hc/ht=0.5”, it means the thickness of the 

faces are two times of the core thickness, 

so it shows the results of the 2-1-2 

sandwich. And, when “hc/ht=8”, it shows 

results of the 1-8-1 sandwich. For all 

power law indices, by increasing the ratio 

in the constant total thickness, the amount 

of metal increases and the structure will be 

softer, so the fundamental frequency 

parameters decrease. Also, when the power 

law index is increased in a constant 

thickness, ceramic quantity will decrease 

and the fundamental frequency parameters 

decrease. For example, in “hc/ht=0.5”, the 

fundamental frequency parameter decrease 

32.62% when “N” is increased, and in 

“hc/ht=8”, the fundamental frequency 

parameter decrease 11.06% when “N” is 

increased. Also, for “N=0”, by increasing 

this ratio, the fundamental frequency 

decreases 36.47%. 
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Fig. 4 Effect of variation of the core to face sheets 

thickness ratio on the fundamental frequency 

parameter  

Effect of the variation of the wave number, 

“m”, on the fundamental frequency 

parameter in various power law indices 

and constant total thickness is depicted in 

the Fig. 5. By increasing the wave number, 

the fundamental frequency parameters 

increase.   

 
Fig. 5 Effect of variation of the wave number on the 

fundamental frequency parameter 

Effect of the variation of the total thickness 

of the sandwiches, “h”, on the fundamental 

frequency parameter in various power law 

indices for clamped-free FG sandwich 

beam is depicted in Fig. 5. It is obvious 

that by increasing the total thickness, the 

fundamental frequency parameter 

decreases. For example, in “N=0” by 

increasing the “h”, the fundamental 

frequency parameter decrease 2462.63%. 

But, it is seen that after the “h=0.02m”, the 

rate of variation is decreased and the 

differences is 561.48%. For “h=0.01m”, by 

increasing “N”, the fundamental frequency 

parameter decrease 10.80%.  

 
Fig. 6 Effect of the variation of the total thickness 

of the sandwiches on the fundamental frequency 

parameter  

In order to investigate the porosity 

influence, Figs. 7 and 8 show the effect of 

even and uneven porosity distributions on 

the fundamental frequency parameters of 

sandwich beam, respectively. Geometrical 

parameters are “h = 0.02m, L/h=5, m=1”. 

In even distributions, porosities occur all 

over the cross-section of FG layer. While, 

in uneven distribution, porosities are 

available at middle zone of cross section. 

As shown in Figs. 7 and 8, by increasing 

the porosity volume fraction, the 

fundamental frequency parameters 

decrease for all power law indices. the 

slope of decreasing are stronger in the case 

of even porosity distribution. In the even 

case in “N=0”, by increasing the volume 

fraction of the porosity, the fundamental 

frequency decreases 10.82%, and in the 

uneven case in “N=0”, by increasing the 
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volume fraction of the porosity, the 

fundamental frequency decreases 5.21% 

 
Fig. 7 Fundamental frequency variation versus even 

porosity. 

 

Fig. 8 Fundamental frequency variation versus 

uneven porosity 

4-Conclusion 

In this study, frequency analysis of 1-8-1 

sandwich beams, according to a high order 

sandwich beam theory was presented. The 

displacement fields of the face-sheets were 

considered based on the first order shear 

deformation theory and the core 

displacement fields were considered as the 

polynomial distributions for vertical and 

horizontal deflections. High order stress 

resultants and in-plane stresses in the core 

and thermal stress resultants, and nonlinear 

strains in the face sheets were considered. 

All materials were temperature dependent. 

A power law distribution was used to 

model the material properties of the FG 

face sheets which modified by considering 

two distributions of porosity. The 

equations of motion were obtained by 

Hamilton's principal and solved by using 

Galerkin method for clamped-free 

boundary condition. In order to survey the 

capabilities of this model for free vibration 

analysis, the results were verified by 

literature results in a special case. Based on 

the results, there was a good agreement 

between them. The following conclusion 

can be drawn: 

1. By increasing the temperature, the 

fundamental frequency parameters 

decrease. 

2. While power law index is increased, the 

amount of ceramic reduces, so the 

fundamental frequency parameter 

decreases. 

3. By increasing the length to thickness 

ratio, the stability of the structure 

reduces, so the fundamental frequency 

parameter decreased. 

4. In a constant total thickness, with 

increasing the core to face-sheet 

thickness ratio in different power law 

indices, the fundamental frequency 

parameters decrease. For example, in 

the value of “hc/ht=0.5”, 2-1-2 type, FG 

faces sandwiches due to the more 

quantity of ceramic have stiffer 

structure than the value of “hc/ht=8”, 1-

8-1 type, so the fundamental frequency 

parameter in 2-1-2 type is higher. 

5. By increasing the wave number, the 

fundamental frequency parameter 

increases. 

6. By increasing the total thickness of the 

sandwich beams, the fundamental 

frequency parameter decreases.  
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7. By increasing the porosity volume 

fraction in both even and uneven 

distributions, the fundamental frequency 

parameter decrease. Also, variation of 

frequencies in even porosity case is 

more than uneven case. 
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