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Abstract 

Alginate is a natural polysaccharide that is extracted from alga sources mainly laminaria. Alginate is 

readily processable for applicable three-dimensional (3D) scaffold materials such as hydrogels, 

microspheres, microcapsules, sponges, foams and fibers. Alginate hydrogels have been particularly 

attractive in wound healing, drug delivery, neuroscience and soft tissue engineering applications. As 

these gels retain structural similarity to the extracellular matrices (ECM) in tissues and can be 

manipulated to play several critical roles. The nervous system is a crucial component of the body and 

damages to this system, either by of injury or disease which can result in serious or potentially lethal 

consequences. In this research, the aim is to simulate nerve fibers in Abaqus simulation software by 

finite element method (FEM). Also, the use of a similar material such as alginate can be used to 

validate this simulation. Restoring the damaged nervous system is a great challenge due to the 

complex physiology system and limited regenerative capacity. Currently, most of neural tissue 

engineering applications are in pre-clinical study, in particular for use in the central nervous system, 

however collagen polymer conduits aimed at regeneration of peripheral nerves have already been 

successfully tested in clinical trials. In this study, due to the complexity of measuring nerve endurance, 

static simulation was used in Abaqus software and the results showed that paired strings are stronger 

than the number of individuals and the string plays a key role in the center. 

Keywords: Biocompatible materials, Hydrogel, Tissue engineering, Nerve regeneration 

1- Introduction 

Alginate is a group of compounds that are 

generally considered safe by the Food and 

Drug Administration (FDA). The 

mechanical properties of alginate 

hydrogels are determined by the sequence 

and composition of its constituent 

monomer chains [1-3]. Alginate is used as 

the salt of sodium, and due to the addition 

of salts of divalent cations such as calcium 

and barium, etc., and special trivalent 

cations such as iron and aluminum, which 

cause ionic bonding and crosslinking of 

carboxyl groups of polymer chains [4-7] 
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the mechanical strength of alginate 

hydrogels depends on the tendency of the 

cations to alginate. Studies have shown 

that the chemical structure, molecular size 

and process of hydrogel gel formation play 

an important role in its properties such as 

swelling, stability, biodegradability, safety 

and biocompatibility properties [8-14]. 

Large proteins such as fibrinogen can 

easily pass-through calcium alginate 

hydrogels. Only cells and some high 

molecular weight enzymes such as catalase 

remain completely in the alginate hydrogel 

[15-21]. Alginate is biocompatible and 

harmless to the body and is used in the 

food industry as a thickener and stabilizer. 

This biocompatible hydrogel has been 

considered today due to its ease of 

preparation and its suitable properties for 

encapsulating cells. The alginate scaffold 

is formed by the cross-linking of calcium 

cations and can be degraded by the 

removal of calcium [22-28]. Alginate 

lattice congestion in hydrogels is related to 

the hardness of the alginate, which is 

directly affected by the cation 

concentration. The results of studies have 

shown that increasing the hardness of the 

hydrogel leads to a decrease in the 

permeability of the hydrogel and 

consequently a decrease in the viability 

and proliferation of encapsulated nerve 

stem cells [29-36]. It is used in the food, 

cosmetics and pharmaceutical industries 

[37-45]. The beneficial properties of 

alginate, such as biocompatibility and non-

stimulation of the immune system, are 

probably related to its hydrophilic 

properties [46-51]. As cells are not 

damaged during the gel formation and ion 

crosslinking process, it is widely used to 

release drugs, encapsulate cells, and 

regenerate tissue [52-55]. Extracellular 

matrix (ECM) polysaccharides affect 

axonal conduction, function, synaptic 

evolution, and cell migration [56]. 

Therefore, polysaccharide scaffolds and 

polysaccharide-modified scaffolds, such as 

alginate, are crucial to the development of 

neural tissue engineering. Alginate 

polysaccharide sequences can act as 

functional groups in the ECM of the brain, 

which can modulate signal transduction 

pathways to guide cell migration and nerve 

growth. Alginate has been used to fill 

cavities in brain and spinal cord injuries in 

mice. It has also been used to stop 

astrogliosis in damaged central nervous 

system areas [54-55]. In this study, the aim 

was to predict the properties of neural 

neurons with the supports of Abaqus 

software and finite elements analysis 

(FEA) according to the existing variables 

worked for polymer alginate. 

2- Physical characteristics  
Many scaffolds used in soft tissue 

engineering generally fill the space 

normally occupied by the host tissue and 

act as a framework for the cells that will 

repair the lesion in the future. In addition 

to being able to withstand the load that 

enters the tissue naturally, the graft also 

needs to be able to provide the strength 

needed for the growth of cells on the 

scaffold [58-62]. Alginate ion bonds have a 

stronger mechanical strength when they are 

formed by adding divalent cations with a 

higher affinity for the polymer. The 

presence of these variables in the 

biomechanics of the scaffold makes it 

possible to create a suitable ECM for each 

tissue in accordance with the physiological 

characteristics of the tissue in question [62-

64]. In most cases, cells cannot attach to 

hydrogels because they lack receptors, 

except for collagen, which is one of the 

proteins that make up the extracellular 
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matrix. Because hydrogels are hydrophilic, 

ECM proteins cannot readily be absorbed 

on their surfaces [13]. The best way to 

modify hydrogel levels to provide cell 

binding receptors is to bind an ECM 

protein or a peptide sequence by covalent 

bonding to the hydrogel surface [14]. For 

this purpose, peptide sequences  are mainly 

used. This sequence is naturally present in 

ECM proteins such as laminin, fibronectin 

and collagen. Numerous studies have been 

performed to prove that the peptide 

mentioned above can bind to alginate by 

covalent bonding, and it has been shown to 

improve the attachment of nerve cells [15-

18]. Studies have shown that YIGSR and 

IKVAV sequences promote a greater 

number of neurites in each neuron as well 

as selective binding of neurons [16-21].  

3- Mechanical simulation of central 

nervous system in the FEM 

Alginate has been studied as a degradable 

scaffold in vitro and in vivo to guide nerve 

fibers [17]. The study showed that the 

arrangement of axons relative to each other 

in alginate scaffold after transplantation in 

the spinal cord injury area was parallel to 

the control group, while in the axon control 

group neurons grew in different directions. 

Therefore, the use of alginate can manage 

the major challenge of directing axon 

regeneration throughout the lesion site. But 

an important issue to consider when using 

alginate as a scaffold to repair nerve 

damage is the high rate of degradation of 

the substance in the body and it 

decomposes before axons can grow more 

than 2 mm at the site of the lesion [18]. 

 

Fig. 1 Investigation of elastic properties of 

polymeric nerve fibers 

Therefore, in order to use an alginate 

scaffold to repair nerve damage, a method 

should be used to reduce its degradation 

rate. Several researchers model becomes 

spinal cord injury [19-26]. Researchers 

showed the injection of this scaffold in a 

mouse. The model of spinal cord. Hemi 

section produces more neurofilament in the 

lesion region, On the other hand, another 

study showed that alginate may provide a 

suitable environment for increasing the 

length of spinal cord axons [25-36]. In one 

study, an alginate scaffold with a spongy 

structure was used, and nerve stem cells 

were isolated from the hippocampus and 

injected after culture, and finally the 

composite structure was transplanted to the 

injury site [52-54]. The obtained their 

results of the study showed that the motor 

symptoms improved, and the injured area 

was repaired histologically. Mesenchymal 

stromal cells (MSCs) have been shown to 

regulate the inflammatory environment of 

various tissues in the body, including the 

central nervous system. Until now, 

however, the success of direct use of these 

cells in the brain has been limited due to 

the depletion of these cells. In this study, 

the TET structure with the boundary 
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conditions of the two closed sides was used 

and a force of 100 N was used.  

 

Fig. 2 Investigation of Von Mises Stress (VMS) of 

simulated nerve fibers in Abaqus software with a 

force of 100 N 

 

 
Fig. 3  Myelin formation in the nervous system 

begins from the embryonic period until puberty 

[26] 

In the study of finite elements analysis, it 

can be found that most of the stress 

concentration occurs in the center. It is also 

shown in Fig. 1(d) that a single string in 

the center and on the edges contains the 

most stress. Fig. 2 (a-d) shows the surface 

of the filaments with 20 strands and the 

cross section of the cross-section, while the 

stress level boundary shown in Fig. 2 

under load shows well that the fibers in the 

center withstand the highest stresses. In 

neuroscience, the methods of 

neuroimaging, computed tomography 

(CT), positron emission tomography 

(PET), operative magnetic resonance 

imaging (FMRI), and the study of the 

inside of the brain. The application of 

artificial intelligence and machine learning 

in biological data and neural imagery 

opens new frontiers for bioinformatics: 

Increasing the understanding of the 

umbilical cord. Advances in this field can 

eventually lead to the development of 

automated diagnostic tools as well as the 

precise medicine that may be taken into 

consideration by considering a specific 

treatment method. Prior to the advent of 

machine learning algorithms, 

bioinformatics algorithms had to be 

handwritten to solve problems such as 

predicting protein structure. The obtained 

results of this study show that the stem 

cells encapsulated in alginate have the 

ability to be used as an improved carrier 

for transplantation and also this method 

has a therapeutic effect on inflammation of 

the nervous system [21-36]. 

Transplantation of encapsulated 

mesenchymal stem cells with alginate 

improves cellular pathology after brain 

injury [22-24]. Razavi et al. [37] studied 

the safety, regulatory issues, long-term 

biotoxicity, and the processing 

environment of hydrogels. Fig. 3 shows the 

myelin formation in the nervous system 

begins from the embryonic period until 

puberty 

4- Conclusion  

The use of a similar material such as alginate 

can be used to validate for this simulation. 

Restoring the damaged nervous system is a 

great challenge due to the complex physiology 
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system and limited regenerative capacity. 

Currently, most of neural tissue engineering 

applications are in pre-clinical study, in 

particular for use in the central nervous system, 

however collagen polymer conduits aimed at 

regeneration of peripheral nerves have already 

been successfully tested in clinical trials. This 

material can be used in many medical 

applications, especially in the fields of 

wound healing, drug transfer, cell culture 

in vitro and tissue engineering. Alginate 

has effective properties such as 

biocompatibility, cheapness and 

availability of raw material and the 

possibility of applying simple changes to 

prepare alginate derivatives with new 

properties.  Mammalian cells do not have 

receptors for alginate polymers, which 

make alginate gels relatively ineffective. 

One way to create cell adhesion is to use 

cell adhesion molecules such as laminin, 

fibronectin, and collagen with alginate. 

Alginate decomposition can be controlled 

by manipulating its molecular weight and 

composition.  According to the strategy of 

using molecules with different chemical 

structure, different molecular weights, it is 

possible to design and fabricate alginate 

scaffolds suitable for use in various tissues, 

including nerve tissue. Alginate scaffold 

can play an important role in neural tissue 

engineering as it maintains a structural 

similarity to the ECM in tissues. However, 

the use of this hydrogel as a cell scaffold in 

vivo in humans requires further studies. n 

this study, due to the complexity of measuring 

nerve endurance, static simulation was used in 

Abaqus software and the results showed that 

paired strings are stronger than the number of 

individuals and the string plays a key role in 

the center. 
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